首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we introduce a Bayesian statistical model for the analysis of functional data observed at several time points. Examples of such data include the Michigan growth study where we wish to characterize the shape changes of human mandible profiles. The form of the mandible is often used by clinicians as an aid in predicting the mandibular growth. However, whereas many studies have demonstrated the changes in size that may occur during the period of pubertal growth spurt, shape changes have been less well investigated. Considering a group of subjects presenting normal occlusion, in this paper we thus describe a Bayesian functional ANOVA model that provides information about where and when the shape changes of the mandible occur during different stages of development. The model is developed by defining the notion of predictive process models for Gaussian process (GP) distributions used as priors over the random functional effects. We show that the predictive approach is computationally appealing and that it is useful to analyze multivariate functional data with unequally spaced observations that differ among subjects and times. Graphical posterior summaries show that our model is able to provide a biological interpretation of the morphometric findings and that they comprehensively describe the shape changes of the human mandible profiles. Compared with classical cephalometric analysis, this paper represents a significant methodological advance for the study of mandibular shape changes in two dimensions.  相似文献   

2.
Computational modeling is being used increasingly in neuroscience. In deriving such models, inference issues such as model selection, model complexity, and model comparison must be addressed constantly. In this article we present briefly the Bayesian approach to inference. Under a simple set of commonsense axioms, there exists essentially a unique way of reasoning under uncertainty by assigning a degree of confidence to any hypothesis or model, given the available data and prior information. Such degrees of confidence must obey all the rules governing probabilities and can be updated accordingly as more data becomes available. While the Bayesian methodology can be applied to any type of model, as an example we outline its use for an important, and increasingly standard, class of models in computational neuroscience—compartmental models of single neurons. Inference issues are particularly relevant for these models: their parameter spaces are typically very large, neurophysiological and neuroanatomical data are still sparse, and probabilistic aspects are often ignored. As a tutorial, we demonstrate the Bayesian approach on a class of one-compartment models with varying numbers of conductances. We then apply Bayesian methods on a compartmental model of a real neuron to determine the optimal amount of noise to add to the model to give it a level of spike time variability comparable to that found in the real cell.  相似文献   

3.
Prediction of gene dynamic behavior is a challenging and important problem in genomic research while estimating the temporal correlations and non-stationarity are the keys in this process. Unfortunately, most existing techniques used for the inclusion of the temporal correlations treat the time course as evenly distributed time intervals and use stationary models with time-invariant settings. This is an assumption that is often violated in microarray time course data since the time course expression data are at unequal time points, where the difference in sampling times varies from minutes to days. Furthermore, the unevenly spaced short time courses with sudden changes make the prediction of genetic dynamics difficult. In this paper, we develop two types of Bayesian state space models to tackle this challenge for inferring and predicting the gene expression profiles associated with diseases. In the univariate time-varying Bayesian state space models we treat both the stochastic transition matrix and the observation matrix time-variant with linear setting and point out that this can easily be extended to nonlinear setting. In the multivariate Bayesian state space model we include temporal correlation structures in the covariance matrix estimations. In both models, the unevenly spaced short time courses with unseen time points are treated as hidden state variables. Bayesian approaches with various prior and hyper-prior models with MCMC algorithms are used to estimate the model parameters and hidden variables. We apply our models to multiple tissue polygenetic affymetrix data sets. Results show that the predictions of the genomic dynamic behavior can be well captured by the proposed models.  相似文献   

4.
Researchers are often interested in predicting outcomes, detecting distinct subgroups of their data, or estimating causal treatment effects. Pathological data distributions that exhibit skewness and zero‐inflation complicate these tasks—requiring highly flexible, data‐adaptive modeling. In this paper, we present a multipurpose Bayesian nonparametric model for continuous, zero‐inflated outcomes that simultaneously predicts structural zeros, captures skewness, and clusters patients with similar joint data distributions. The flexibility of our approach yields predictions that capture the joint data distribution better than commonly used zero‐inflated methods. Moreover, we demonstrate that our model can be coherently incorporated into a standardization procedure for computing causal effect estimates that are robust to such data pathologies. Uncertainty at all levels of this model flow through to the causal effect estimates of interest—allowing easy point estimation, interval estimation, and posterior predictive checks verifying positivity, a required causal identification assumption. Our simulation results show point estimates to have low bias and interval estimates to have close to nominal coverage under complicated data settings. Under simpler settings, these results hold while incurring lower efficiency loss than comparator methods. We use our proposed method to analyze zero‐inflated inpatient medical costs among endometrial cancer patients receiving either chemotherapy or radiation therapy in the SEER‐Medicare database.  相似文献   

5.
We present an approach for identifying genes under natural selection using polymorphism and divergence data from synonymous and non-synonymous sites within genes. A generalized linear mixed model is used to model the genome-wide variability among categories of mutations and estimate its functional consequence. We demonstrate how the model''s estimated fixed and random effects can be used to identify genes under selection. The parameter estimates from our generalized linear model can be transformed to yield population genetic parameter estimates for quantities including the average selection coefficient for new mutations at a locus, the synonymous and non-synynomous mutation rates, and species divergence times. Furthermore, our approach incorporates stochastic variation due to the evolutionary process and can be fit using standard statistical software. The model is fit in both the empirical Bayes and Bayesian settings using the lme4 package in R, and Markov chain Monte Carlo methods in WinBUGS. Using simulated data we compare our method to existing approaches for detecting genes under selection: the McDonald-Kreitman test, and two versions of the Poisson random field based method MKprf. Overall, we find our method universally outperforms existing methods for detecting genes subject to selection using polymorphism and divergence data.  相似文献   

6.
Coexistence with wildlife is becoming a key challenge in Europe as populations of large carnivores recover in human-dominated landscapes. Modeling the spatial distribution of conditions for human-bear coexistence can help support conservation by identifying priority areas and measures to support coexistence, but existing models often only address risks either to humans or to large carnivores. In this study, we developed a participatory modeling process that incorporates both human-centered and large carnivore-centered perspectives on coexistence and applied it to a case study of coexistence between humans and the endangered Apennine brown bears (Ursus arctos marsicanus) in Italy. Local and expert knowledge, as well as available data on bear habitats and land use, were integrated into a spatially explicit Bayesian network. This model is used to predict and map the tolerance to bears from the human perspective and the risk of fitness loss from the bear perspective. We found that conditions for human-bear coexistence vary between human communities and are spatially heterogeneous at the local scale, depending on ecological factors, social factors influencing the level of tolerance in community, such as people’s emotions and knowledge, economic factors, such as livelihoods, and policies such as damage compensation. The participatory modeling approach allowed us to integrate perceptions of local people, expert assessments, and spatial data, and can help bridge the gap between science and conservation practice. The resulting coexistence maps can inform conservation decisions, and can be updated as new information becomes available. Our modeling approach could help to efficiently target measures for improving human-large carnivore coexistence in different settings in a site-specific manner.  相似文献   

7.
The aggregate data study design (Prentice and Sheppard, 1995, Biometrika 82, 113-125) estimates individual-level exposure effects by regressing population-based disease rates on covariate data from survey samples in each population group. In this work, we further develop the aggregate data model to allow for residual spatial correlation among disease rates across populations. Geographical variation that is not explained by model predictors and has a spatial component often arises in studies of rare chronic diseases, such as breast cancer. We combine the aggregate and Bayesian disease-mapping models to provide an intuitive approach to the modeling of spatial effects while drawing correct inference regarding the exposure effect. Based on the results of simulation studies, we suggest guidelines for use of the proposed model.  相似文献   

8.
Summary With increasing frequency, epidemiologic studies are addressing hypotheses regarding gene‐environment interaction. In many well‐studied candidate genes and for standard dietary and behavioral epidemiologic exposures, there is often substantial prior information available that may be used to analyze current data as well as for designing a new study. In this article, first, we propose a proper full Bayesian approach for analyzing studies of gene–environment interaction. The Bayesian approach provides a natural way to incorporate uncertainties around the assumption of gene–environment independence, often used in such an analysis. We then consider Bayesian sample size determination criteria for both estimation and hypothesis testing regarding the multiplicative gene–environment interaction parameter. We illustrate our proposed methods using data from a large ongoing case–control study of colorectal cancer investigating the interaction of N‐acetyl transferase type 2 (NAT2) with smoking and red meat consumption. We use the existing data to elicit a design prior and show how to use this information in allocating cases and controls in planning a future study that investigates the same interaction parameters. The Bayesian design and analysis strategies are compared with their corresponding frequentist counterparts.  相似文献   

9.
In epidemiologic studies, measurement error in the exposure variable can have a detrimental effect on the power of hypothesis testing for detecting the impact of exposure in the development of a disease. To adjust for misclassification in the hypothesis testing procedure involving a misclassified binary exposure variable, we consider a retrospective case–control scenario under the assumption of nondifferential misclassification. We develop a test under Bayesian approach from a posterior distribution generated by a MCMC algorithm and a normal prior under realistic assumptions. We compared this test with an equivalent likelihood ratio test developed under the frequentist approach, using various simulated settings and in the presence or the absence of validation data. In our simulations, we considered varying degrees of sensitivity, specificity, sample sizes, exposure prevalence, and proportion of unvalidated and validated data. In these scenarios, our simulation study shows that the adjusted model (with-validation data model) is always better than the unadjusted model (without validation data model). However, we showed that exception is possible in the fixed budget scenario where collection of the validation data requires a much higher cost. We also showed that both Bayesian and frequentist hypothesis testing procedures reach the same conclusions for the scenarios under consideration. The Bayesian approach is, however, computationally more stable in rare exposure contexts. A real case–control study was used to show the application of the hypothesis testing procedures under consideration.  相似文献   

10.
In problems with missing or latent data, a standard approach is to first impute the unobserved data, then perform all statistical analyses on the completed dataset--corresponding to the observed data and imputed unobserved data--using standard procedures for complete-data inference. Here, we extend this approach to model checking by demonstrating the advantages of the use of completed-data model diagnostics on imputed completed datasets. The approach is set in the theoretical framework of Bayesian posterior predictive checks (but, as with missing-data imputation, our methods of missing-data model checking can also be interpreted as "predictive inference" in a non-Bayesian context). We consider the graphical diagnostics within this framework. Advantages of the completed-data approach include: (1) One can often check model fit in terms of quantities that are of key substantive interest in a natural way, which is not always possible using observed data alone. (2) In problems with missing data, checks may be devised that do not require to model the missingness or inclusion mechanism; the latter is useful for the analysis of ignorable but unknown data collection mechanisms, such as are often assumed in the analysis of sample surveys and observational studies. (3) In many problems with latent data, it is possible to check qualitative features of the model (for example, independence of two variables) that can be naturally formalized with the help of the latent data. We illustrate with several applied examples.  相似文献   

11.
Brent A Coull 《Biometrics》2011,67(2):486-494
Summary In many biomedical investigations, a primary goal is the identification of subjects who are susceptible to a given exposure or treatment of interest. We focus on methods for addressing this question in longitudinal studies when interest focuses on relating susceptibility to a subject's baseline or mean outcome level. In this context, we propose a random intercepts–functional slopes model that relaxes the assumption of linear association between random coefficients in existing mixed models and yields an estimate of the functional form of this relationship. We propose a penalized spline formulation for the nonparametric function that represents this relationship, and implement a fully Bayesian approach to model fitting. We investigate the frequentist performance of our method via simulation, and apply the model to data on the effects of particulate matter on coronary blood flow from an animal toxicology study. The general principles introduced here apply more broadly to settings in which interest focuses on the relationship between baseline and change over time.  相似文献   

12.
Asymmetric regression is an alternative to conventional linear regression that allows us to model the relationship between predictor variables and the response variable while accommodating skewness. Advantages of asymmetric regression include incorporating realistic ecological patterns observed in data, robustness to model misspecification and less sensitivity to outliers. Bayesian asymmetric regression relies on asymmetric distributions such as the asymmetric Laplace (ALD) or asymmetric normal (AND) in place of the normal distribution used in classic linear regression models. Asymmetric regression concepts can be used for process and parameter components of hierarchical Bayesian models and have a wide range of applications in data analyses. In particular, asymmetric regression allows us to fit more realistic statistical models to skewed data and pairs well with Bayesian inference. We first describe asymmetric regression using the ALD and AND. Second, we show how the ALD and AND can be used for Bayesian quantile and expectile regression for continuous response data. Third, we consider an extension to generalize Bayesian asymmetric regression to survey data consisting of counts of objects. Fourth, we describe a regression model using the ALD, and show that it can be applied to add needed flexibility, resulting in better predictive models compared to Poisson or negative binomial regression. We demonstrate concepts by analyzing a data set consisting of counts of Henslow’s sparrows following prescribed fire and provide annotated computer code to facilitate implementation. Our results suggest Bayesian asymmetric regression is an essential component of a scientist’s statistical toolbox.  相似文献   

13.
Summary In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample‐related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis–Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.  相似文献   

14.
Wildlife monitoring for open populations can be performed using a number of different survey methods. Each survey method gives rise to a type of data and, in the last five decades, a large number of associated statistical models have been developed for analyzing these data. Although these models have been parameterized and fitted using different approaches, they have all been designed to either model the pattern with which individuals enter and/or exit the population, or to estimate the population size by accounting for the corresponding observation process, or both. However, existing approaches rely on a predefined model structure and complexity, either by assuming that parameters linked to the entry and exit pattern (EEP) are specific to sampling occasions, or by employing parametric curves to describe the EEP. Instead, we propose a novel Bayesian nonparametric framework for modeling EEPs based on the Polya tree (PT) prior for densities. Our Bayesian nonparametric approach avoids overfitting when inferring EEPs, while simultaneously allowing more flexibility than is possible using parametric curves. Finally, we introduce the replicate PT prior for defining classes of models for these data allowing us to impose constraints on the EEPs, when required. We demonstrate our new approach using capture–recapture, count, and ring-recovery data for two different case studies.  相似文献   

15.
16.
近年来, 分子钟定年方法(molecular dating methods)得以广泛运用, 为宏观进化研究尤其是生物多样性及其格局形成历史的相关研究提供了不可或缺且十分详尽的进化时间框架。贝叶斯方法(Bayesian methods)和马尔可夫链蒙特卡罗方法 (Markov chain Monte Carlo)可容纳多维度、多类型的数据和参数设置, 因此以BEAST、PAML-MCMCTree等软件为代表的贝叶斯节点标记法(Bayesian node-dating methods)逐渐成为分子钟定年方法中最为广泛使用的类型。贝叶斯框架的优势之一在于其可以利用复杂模型考虑各种不确定性因素, 但是该类方法中各类模型和参数的设置都可能引入误差, 从而影响进化分化时间估算的可靠性。本文介绍了贝叶斯分子钟定年方法的原理和主要类型, 并以贝叶斯节点标记法为例, 重点讨论了分子钟模型、化石标记的选择与放置、采样频率及化石标记点年龄先验分布等因素对节点定年的影响; 提供了贝叶斯时间树构建软件的使用建议、节点年龄的讨论原则和不同模型下时间树的比较方法, 针对常见的引起节点年龄潜在高估和低估风险的情况作了分析并给出了合理化建议。我们认为, 合理整合多种贝叶斯方法和模型得出的结果并从中择优, 能够提高定年结果的可靠性; 研究人员应对时间树构建结果与其参数设置的关系开展讨论, 从而为其他学者提供参考; 化石记录的更新与分子钟定年方法的改进应同步不断跟进。  相似文献   

17.
Modeling organism distributions from survey data involves numerous statistical challenges, including accounting for zero‐inflation, overdispersion, and selection and incorporation of environmental covariates. In environments with high spatial and temporal variability, addressing these challenges often requires numerous assumptions regarding organism distributions and their relationships to biophysical features. These assumptions may limit the resolution or accuracy of predictions resulting from survey‐based distribution models. We propose an iterative modeling approach that incorporates a negative binomial hurdle, followed by modeling of the relationship of organism distribution and abundance to environmental covariates using generalized additive models (GAM) and generalized additive models for location, scale, and shape (GAMLSS). Our approach accounts for key features of survey data by separating binary (presence‐absence) from count (abundance) data, separately modeling the mean and dispersion of count data, and incorporating selection of appropriate covariates and response functions from a suite of potential covariates while avoiding overfitting. We apply our modeling approach to surveys of sea duck abundance and distribution in Nantucket Sound (Massachusetts, USA), which has been proposed as a location for offshore wind energy development. Our model results highlight the importance of spatiotemporal variation in this system, as well as identifying key habitat features including distance to shore, sediment grain size, and seafloor topographic variation. Our work provides a powerful, flexible, and highly repeatable modeling framework with minimal assumptions that can be broadly applied to the modeling of survey data with high spatiotemporal variability. Applying GAMLSS models to the count portion of survey data allows us to incorporate potential overdispersion, which can dramatically affect model results in highly dynamic systems. Our approach is particularly relevant to systems in which little a priori knowledge is available regarding relationships between organism distributions and biophysical features, since it incorporates simultaneous selection of covariates and their functional relationships with organism responses.  相似文献   

18.
Bayesian methods are routinely used to combine experimental data with detailed mathematical models to obtain insights into physical phenomena. However, the computational cost of Bayesian computation with detailed models has been a notorious problem. Moreover, while high-throughput data presents opportunities to calibrate sophisticated models, comparing large amounts of data with model simulations quickly becomes computationally prohibitive. Inspired by the method of Stochastic Gradient Descent, we propose a minibatch approach to approximate Bayesian computation. Through a case study of a high-throughput imaging scratch assay experiment, we show that reliable inference can be performed at a fraction of the computational cost of a traditional Bayesian inference scheme. By applying a detailed mathematical model of single cell motility, proliferation and death to a data set of 118 gene knockdowns, we characterise functional subgroups of gene knockdowns, each displaying its own typical combination of local cell density-dependent and -independent motility and proliferation patterns. By comparing these patterns to experimental measurements of cell counts and wound closure, we find that density-dependent interactions play a crucial role in the process of wound healing.  相似文献   

19.
The ability to measure the properties of proteins at the single-molecule level offers an unparalleled glimpse into biological systems at the molecular scale. The interpretation of single-molecule time series has often been rooted in statistical mechanics and the theory of Markov processes. While existing analysis methods have been useful, they are not without significant limitations including problems of model selection and parameter nonidentifiability. To address these challenges, we introduce the use of nonparametric Bayesian inference for the analysis of single-molecule time series. These methods provide a flexible way to extract structure from data instead of assuming models beforehand. We demonstrate these methods with applications to several diverse settings in single-molecule biophysics. This approach provides a well-constrained and rigorously grounded method for determining the number of biophysical states underlying single-molecule data.  相似文献   

20.
Wolfinger RD  Kass RE 《Biometrics》2000,56(3):768-774
We consider the usual normal linear mixed model for variance components from a Bayesian viewpoint. With conjugate priors and balanced data, Gibbs sampling is easy to implement; however, simulating from full conditionals can become difficult for the analysis of unbalanced data with possibly nonconjugate priors, thus leading one to consider alternative Markov chain Monte Carlo schemes. We propose and investigate a method for posterior simulation based on an independence chain. The method is customized to exploit the structure of the variance component model, and it works with arbitrary prior distributions. As a default reference prior, we use a version of Jeffreys' prior based on the integrated (restricted) likelihood. We demonstrate the ease of application and flexibility of this approach in familiar settings involving both balanced and unbalanced data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号