首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

Coastal fishes have a fundamental role in marine ecosystem functioning and contributions to people, but face increasing threats due to climate change, habitat degradation and overexploitation. The extent to which human pressures are impacting coastal fish biodiversity in comparison with geographic and environmental factors at large spatial scale is still under scrutiny. Here, we took advantage of environmental DNA (eDNA) metabarcoding to investigate the relationship between fish biodiversity, including taxonomic and genetic components, and environmental but also socio-economic factors.

Location

Tropical, temperate and polar coastal areas.

Time period

Present day.

Major taxa studied

Marine fishes.

Methods

We analysed fish eDNA in 263 stations (samples) in 68 sites distributed across polar, temperate and tropical regions. We modelled the effect of environmental, geographic and socio-economic factors on α- and β-diversity. We then computed the partial effect of each factor on several fish biodiversity components using taxonomic molecular units (MOTU) and genetic sequences. We also investigated the relationship between fish genetic α- and β-diversity measured from our barcodes, and phylogenetic but also functional diversity.

Results

We show that fish eDNA MOTU and sequence α- and β-diversity have the strongest correlation with environmental factors on coastal ecosystems worldwide. However, our models also reveal a negative correlation between biodiversity and human dependence on marine ecosystems. In areas with high dependence, diversity of all fish, cryptobenthic fish and large fish MOTUs declined steeply. Finally, we show that a sequence diversity index, accounting for genetic distance between pairs of MOTUs, within and between communities, is a reliable proxy of phylogenetic and functional diversity.

Main conclusions

Together, our results demonstrate that short eDNA sequences can be used to assess climate and direct human impacts on marine biodiversity at large scale in the Anthropocene and can further be extended to investigate biodiversity in its phylogenetic and functional dimensions.  相似文献   

2.
As fish communities are a major concern in rivers ecosystems, we investigated if their environmental (e)DNA signals vary according to the sampling period or hydromorphological conditions. Three rivers were studied over a year using eDNA metabarcoding approach. The majority of the species (c. 80%) were detected all year round in two rivers having similar hydromorphological conditions, whereas in the river affected by an upstream lake waterflow, more species were detected sporadically (42%). For all the rivers, in more than 98% of the occasional detections, the reads abundance represented <0.4% of the total reads per site and per sampling session. Even if the majority of the fish communities remained similar over the year for each of the three rivers, specific seasonal patterns were observed. We studied if the waterflow or the reproduction period had an effect on the observed dynamics. Waterflow, which influences eDNA downstream transportation, had a global influence in taxonomic richness, while the fishes' reproductive period had only an influence on certain species. Our results may help selecting the best sampling strategy according to research objectives. To study fish communities at local scale, seasons of low waterflow periods are recommended. This particularly helps to restraint effects of external eDNA coming from connections with other aquatic environment (tributaries, lakes, wetlands, sewage effluents, etc.). To obtain a more integrative overview of the fish community living in a river basin, high waterflow or breeding seasons are preferable for enhancing species detection probability, especially for rare species.  相似文献   

3.
4.

Aim

Understanding the distribution of marine organisms is essential for effective management of highly mobile marine predators that face a variety of anthropogenic threats. Recent work has largely focused on modelling the distribution and abundance of marine mammals in relation to a suite of environmental variables. However, biotic interactions can largely drive distributions of these predators. We aim to identify how biotic and abiotic variables influence the distribution and abundance of a particular marine predator, the bottlenose dolphin (Tursiops truncatus), using multiple modelling approaches and conducting an extensive literature review.

Location

Western North Atlantic continental shelf.

Methods

We combined widespread marine mammal and fish and invertebrate surveys in an ensemble modelling approach to assess the relative importance and capacity of the environment and other marine species to predict the distribution of both coastal and offshore bottlenose dolphin ecotypes. We corroborate the modelled results with a systematic literature review on the prey of dolphins throughout the region to help explain patterns driven by prey availability, as well as reveal new ones that may not necessarily be a predator–prey relationship.

Results

We find that coastal bottlenose dolphin distributions are associated with one family of fishes, the Sciaenidae, or drum family, and predictions slightly improve when using only fish versus only environmental variables. The literature review suggests that this tight coupling is likely a predator–prey relationship. Comparatively, offshore dolphin distributions are more strongly related to environmental variables, and predictions are better for environmental-only models. As revealed by the literature review, this may be due to a mismatch between the animals caught in the fish and invertebrate surveys and the predominant prey of offshore dolphins, notably squid.

Main Conclusions

Incorporating prey species into distribution models, especially for coastal bottlenose dolphins, can help inform ecological relationships and predict marine predator distributions.  相似文献   

5.
Freshwater fish biodiversity is quickly decreasing and requires effective monitoring and conservation. Environmental DNA (eDNA)‐based methods have been shown to be highly sensitive and cost‐efficient for aquatic biodiversity surveys, but few studies have systematically investigated how spatial sampling design affects eDNA‐detected fish communities across lentic systems of different sizes. We compared the spatial patterns of fish diversity determined using eDNA in three lakes of small (SL; 3 ha), medium (ML; 122 ha) and large (LL; 4,343 ha) size using a spatially explicit grid sampling method. A total of 100 water samples (including nine, 17 and 18 shoreline samples and six, 14 and 36 interior samples from SL, ML and LL, respectively) were collected, and fish communities were analysed using eDNA metabarcoding of the mitochondrial 12S region. Together, 30, 35 and 41 fish taxa were detected in samples from SL, ML, and LL, respectively. We observed that eDNA from shoreline samples effectively captured the majority of the fish diversity of entire waterbodies, and pooled samples recovered fewer species than individually processed samples. Significant spatial autocorrelations between fish communities within 250 m and 2 km of each other were detected in ML and LL, respectively. Additionally, the relative sequence abundances of many fish species exhibited spatial distribution patterns that correlated with their typical habitat occupation. Overall, our results support the validity of a shoreline sampling strategy for eDNA‐based fish community surveys in lentic systems but also suggest that a spatially comprehensive sampling design can reveal finer distribution patterns of individual species.  相似文献   

6.
Organisms continuously release DNA into their environments via shed cells, excreta, gametes and decaying material. Analysis of this ‘environmental DNA’ (eDNA) is revolutionizing biodiversity monitoring. eDNA outperforms many established survey methods for targeted detection of single species, but few studies have investigated how well eDNA reflects whole communities of organisms in natural environments. We investigated whether eDNA can recover accurate qualitative and quantitative information about fish communities in large lakes, by comparison to the most comprehensive long‐term gill‐net data set available in the UK. Seventy‐eight 2L water samples were collected along depth profile transects, gill‐net sites and from the shoreline in three large, deep lakes (Windermere, Bassenthwaite Lake and Derwent Water) in the English Lake District. Water samples were assayed by eDNA metabarcoding of the mitochondrial 12S and cytochrome b regions. Fourteen of the 16 species historically recorded in Windermere were detected using eDNA, compared to four species in the most recent gill‐net survey, demonstrating eDNA is extremely sensitive for detecting species. A key question for biodiversity monitoring is whether eDNA can accurately estimate abundance. To test this, we used the number of sequence reads per species and the proportion of sampling sites in which a species was detected with eDNA (i.e. site occupancy) as proxies for abundance. eDNA abundance data consistently correlated with rank abundance estimates from established surveys. These results demonstrate that eDNA metabarcoding can describe fish communities in large lakes, both qualitatively and quantitatively, and has great potential as a complementary tool to established monitoring methods.  相似文献   

7.
8.
Terrestrial animals must have frequent contact with water to survive, implying that environmental DNA (eDNA) originating from those animals should be detectable from places containing water in terrestrial ecosystems. Aiming to detect the presence of terrestrial mammals using forest water samples, we applied a set of universal PCR primers (MiMammal, a modified version of fish universal primers) for metabarcoding mammalian eDNA. The versatility of MiMammal primers was tested in silico and by amplifying DNAs extracted from tissues. The results suggested that MiMammal primers are capable of amplifying and distinguishing a diverse group of mammalian species. In addition, analyses of water samples from zoo cages of mammals with known species composition suggested that MiMammal primers could successfully detect mammalian species from water samples in the field. Then, we performed an experiment to detect mammals from natural ecosystems by collecting five 500‐ml water samples from ponds in two cool‐temperate forests in Hokkaido, northern Japan. MiMammal amplicon libraries were constructed using eDNA extracted from water samples, and sequences generated by Illumina MiSeq were subjected to data processing and taxonomic assignment. We thereby detected multiple species of mammals common to the sampling areas, including deer (Cervus nippon), mouse (Mus musculus), vole (Myodes rufocanus), raccoon (Procyon lotor), rat (Rattus norvegicus) and shrew (Sorex unguiculatus). Many previous applications of the eDNA metabarcoding approach have been limited to aquatic/semiaquatic systems, but the results presented here show that the approach is also promising even for forest mammal biodiversity surveys.  相似文献   

9.
Analysis of aquatic environmental DNA (eDNA) is a promising tool to determine species distribution, abundance, and biomass. Understanding how the amount of eDNA collected is affected by spatial and temporal processes needs to become better understood before eDNA quantification can be used in species management. In this study, we analyzed how the amount of eDNA changed across space and time in a high mountain basin where nonnative fish were being removed. We sampled from restoration (sites with fish removal activities; n?=?6) and control sites (sites with no fish removal activities where fish were present; n?=?3) and found the number and biomass of fish removed were related to the quantities of DNA collected and not related to site position within the drainage. Our results indicate that the amount of eDNA collected in an open system can provide an index of population size despite inherent complications of analyzing a spatially connected and temporally dynamic watershed. However, there are complications when applying these methods in species management: (1) small increases in eDNA density corresponded to large increases in trout density; (2) eDNA and traditional field techniques disproportionately target certain life stages, complicating comparisons between techniques; and (3) eDNA index values may need to be calibrated when sampling different species, life stages, environments, and habitats. We call for further research before this process can be used in a management context.  相似文献   

10.
Marine ecosystems worldwide are under threat with many fish species and populations suffering from human over-exploitation. This is greatly impacting global biodiversity, economy and human health. Intriguingly, marine fish are largely surveyed using selective and invasive methods, which are mostly limited to commercial species, and restricted to particular areas with favourable conditions. Furthermore, misidentification of species represents a major problem. Here, we investigate the potential of using metabarcoding of environmental DNA (eDNA) obtained directly from seawater samples to account for marine fish biodiversity. This eDNA approach has recently been used successfully in freshwater environments, but never in marine settings. We isolate eDNA from ½-litre seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of PCR amplicons, we obtain eDNA from 15 different fish species, including both important consumption species, as well as species rarely or never recorded by conventional monitoring. We also detect eDNA from a rare vagrant species in the area; European pilchard (Sardina pilchardus). Additionally, we detect four bird species. Records in national databases confirmed the occurrence of all detected species. To investigate the efficiency of the eDNA approach, we compared its performance with 9 methods conventionally used in marine fish surveys. Promisingly, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Our study demonstrates that even small samples of seawater contain eDNA from a wide range of local fish species. Finally, in order to examine the potential dispersal of eDNA in oceans, we performed an experiment addressing eDNA degradation in seawater, which shows that even small (100-bp) eDNA fragments degrades beyond detectability within days.Although further studies are needed to validate the eDNA approach in varying environmental conditions, our findings provide a strong proof-of-concept with great perspectives for future monitoring of marine biodiversity and resources.  相似文献   

11.

Aim

Lichens are often regarded as paradigms of mutualistic relationships. However, it is still poorly known how lichen-forming fungi and their photosynthetic partners interact at a community scale. We explored the structure of fungus-alga networks of interactions in lichen communities along a latitudinal transect in continental Antarctica. We expect these interactions to be highly specialized and, consequently, networks with low nestedness degree and high modularity.

Location

Transantarctic Mountains from 76° S to 85° S (continental Antarctica).

Time Period

Present.

Major Taxa Studied

Seventy-seven species of lichen-forming fungi and their photobionts.

Methods

DNA barcoding of photobionts using nrITS data was conducted in 756 lichen specimens from five regions along the Transantarctic Mountains. We built interaction networks for each of the five studied regions and a metaweb for the whole area. We explored the specialization of both partners using the number of partners a species interacts with and the specialization parameter d'. Network architecture parameters such as nestedness, modularity and network specialization parameter H2' were studied in all networks and contrasted through null models. Finally, we measured interaction turnover along the latitudinal transect.

Results

We recovered a total of 842 interactions. Differences in specialization between partners were not statistically significant. Fungus-alga interaction networks showed high specialization and modularity, as well as low connectance and nestedness. Despite the large turnover in interactions occurring among regions, network parameters were not correlated with latitude.

Main Conclusions

The interaction networks established between fungi and algae in saxicolous lichen communities in continental Antarctica showed invariant properties along the latitudinal transect. Rewiring is an important driver of interaction turnover along the transect studied. Future work should answer whether the patterns observed in our study are prevalent in other regions with milder climates and in lichen communities on different substrates.  相似文献   

12.

Aim

Poleward migration is a clear response of marine organisms to current global warming but the generality and geographical uniformity of this response are unclear. Marine fossils are expected to record the range shift responses of taxa and ecosystems to past climate change. However, unequal sampling (natural and human) in time and space biases the fossil record, restricting previous studies of ancient migrations to individual taxa and events. We expect that temporal changes in the latitudinal distribution of surviving taxa will reveal range shifts to trace global climate change.

Location

Global.

Time period

Post‐Cambrian Phanerozoic aeon.

Major taxa studied

Well‐fossilized marine benthic invertebrates comprising stony corals, bivalves, gastropods, brachiopods, trilobites and calcifying sponges.

Methods

We track deviations in the latitudinal distribution of range centres of age boundary crossing taxa from the expected distribution, and compare responses across latitudes. We build deviation time series, spanning hundreds of million years, from fossil occurrences and test correlations with seawater temperature estimates derived from stable oxygen isotopes of fossils.

Results

Seawater temperature and latitudinal deviations from sampling are positively correlated over the post‐Cambrian Phanerozoic. Simulations suggest that sampling patterns are highly unlikely to drive this putative signal of range shifts. Systematically accounting for known sampling issues strengthens this correlation, so that climate is capable of explaining nearly a third of the variance in ancient latitudinal range shifts. The relationship is stronger in low latitude taxa than higher latitude taxa, and in warm ages than cool ages.

Main conclusions

Latitudinal range shifts occurred in concert with climate change throughout the post‐Cambrian Phanerozoic. Low latitude taxa show the clearest climate‐migration signal through time, corroborating predictions of their shift in a warming future.  相似文献   

13.
Environmental DNA (eDNA)-based methods of species detection are enabling various applications in ecology and conservation including large-scale biomonitoring efforts. qPCR is widely used as the standard approach for species-specific detection, often targeting a fish species of interest from aquatic eDNA. However, DNA metabarcoding has the potential to displace qPCR in certain eDNA applications. In this study, we compare the sensitivity of the latest Illumina NovaSeq 6000 NGS platform to qPCR TaqMan assays by measuring limits of detection and by analysing eDNA from water samples collected from Churchill River and Lake Melville, NL, Canada. Species-specific, targeted next generation sequencing (NGS) assays had significantly higher sensitivity than qPCR, with limits of detection 14- to 29-fold lower. For example, when analysing eDNA, qPCR detected Gadus ogac (Greenland cod) in 21% of samples, but targeted NGS detected this species in 29% of samples. General NGS assays were as sensitive as qPCR, while simultaneously detecting 15 fish species from eDNA samples. With over 34,000 fish species on the planet, parallel and sensitive methods such as NGS will be required to support effective biomonitoring at both regional and global scales.  相似文献   

14.
Aim We used published inventories of trematodes in Littorina littorea (L.) and Hydrobia ulvae (Pennant) in European seas to search for two basic biogeographical patterns in the spatial occurrence of various trematode species: (1) do parasite distribution and richness patterns in the two host snails overlap with known ecoregions of free‐living organisms; and (2) does trematode species richness in the snails follow latitudinal or longitudinal gradients? Location North East Atlantic. Methods We used multidimensional scaling (MDS), analysis of similarity (ANOSIM) and analysis of variance (ANOVA) to test whether there were overlaps of parasite distribution and richness with known ecoregions of free‐living organisms. In addition, we used linear regression analyses to test whether trematode richness in snails (corrected for sampling effort) was correlated with the latitude or longitude of the sampling sites. Results When corrected for sampling effort, mean trematode species richness per site did not differ among the different ecoregions in L. littorea. In contrast, in H. ulvae, mean species richness was much lower for sites from the Celtic Sea compared with sites from the Baltic Sea and the North Sea. Based on the results of MDS analyses, trematode species composition was distinct among ecoregions; in particular, communities from the Baltic Sea differed markedly from communities in the Celtic Sea, for both snail species. Latitude and longitude were not significantly correlated with parasite species richness in either snail species. Most trematode species had restricted distributions, and only three species in L. littorea and five species in H. ulvae occurred at more than 50% of the sites. Main conclusions There is more structure in the large‐scale distribution of trematodes in gastropods than one would expect from the large‐scale dispersal capabilities of their bird and fish final hosts. We propose mechanisms based both on limited dispersal via fish and bird final hosts and on gradients in environmental factors to explain the observed patterns.  相似文献   

15.
  1. During spawning activity, fish release large amounts of sperm and eggs into the water, which has been assumed to cause an increase in environmental DNA (eDNA) levels and nuclear DNA/mitochondrial DNA ratios. To test whether these assumptions are valid and whether nuclear and mitochondrial eDNA analysis can be used to monitor the spawning activity of freshwater fish, we conducted field eDNA surveys and traditional surveys using common carp (Cyprinus carpio), largemouth bass (Micropterus salmoides) and bluegill sunfish (Lepomis macrochirus) as model species.
  2. Fish spawning periods were estimated based on age, as estimated using the body lengths of juveniles collected in the Miharu reservoir in Fukushima, Japan. The results showed that the main spawning periods of largemouth bass and bluegill sunfish were from April to July and from July to August, respectively.
  3. Field eDNA surveys were conducted in the Hebisawagawa front reservoir, which is connected to the Miharu reservoir. From March to August 2019 and 2020, weekly eDNA sampling was conducted at three sites, and daily sampling was conducted at six sites from 23 June to 3 July 2020. The eDNA concentrations of the nuclear internal transcribed spacer 1 (ITS1) and mitochondrial cytochrome B (CytB), as well as the ITS1/CytB ratio, were measured for each of the three fish in each water sample. Water temperature had a statistically significant effect on eDNA concentration, probably reflecting the relationship between water temperature and spawning.
  4. We created generalised additive mixed models to estimate spawning activity periods based on weekly eDNA data. The estimated periods of spawning activity for common carp, largemouth bass and bluegill sunfish were March to May, May to July, and May to August, respectively. The estimated spawning periods coincided with known fish ecology or the results of traditional methods. This method also has been applied to daily eDNA samples, showing the feasibility of high-resolution estimation of spawning activity.
  5. For common carp and bluegill sunfish, we were able to estimate the spawning period using this method. Although the method is affected by biomass and the diffusion and degradation of eDNA, it has the potential to accurately estimating spawning activities. These then can be estimated without conducting laborious traditional surveys, facilitating the monitoring of reproduction by rare, invasive or important fishery species. Further research on the diffusion distance and degradation time of the eDNA concentration peak caused by fish spawning activity may improve the accuracy of monitoring.
  相似文献   

16.

Background  

South America's western coastline, extending in a near-straight line across some 35 latitudinal degrees, presents an elegant setting for assessing both contemporary and historic influences on cladogenesis in the marine environment. Southern bull-kelp (Durvillaea antarctica) has a broad distribution along much of the Chilean coast. This species represents an ideal model taxon for studies of coastal marine connectivity and of palaeoclimatic effects, as it grows only on exposed rocky coasts and is absent from beaches and ice-affected shores. We expected that, along the central Chilean coast, D. antarctica would show considerable phylogeographic structure as a consequence of the isolating effects of distance and habitat discontinuities. In contrast, we hypothesised that further south - throughout the region affected by the Patagonian Ice Sheet at the Last Glacial Maximum (LGM) - D. antarctica would show relatively little genetic structure, reflecting postglacial recolonisation.  相似文献   

17.
Aim The endoparasites of Sebastes capensis Gmelin are examined over most of its geographical range (coasts of Peru, Chile, Argentina and South Africa) to determine: (1) whether the endoparasite communities of this fish show zoogeographical patterns; and (2) if so, whether there are any relationships between spatial variations in the endoparasite fauna and known zoogeographical patterns for marine free‐living organisms (e.g. prey that are included in the life cycles of endoparasites). Location Fish were captured at nine localities along the Pacific coast of South America, from 11° S in the centre of the Peruvian coast, to 52° S in southern Chile, and also at two localities in the Atlantic Ocean, at 43° S in Argentina, and 34° S in South Africa. Methods From April to September 2003 and April to August 2004, 626 fish were captured. Endoparasites and diet were examined following traditional methods. Cluster analyses were used to evaluate the distribution patterns of the endoparasite communities, and to evaluate similarities in the prey composition per locality. Results The endoparasite fauna of S. capensis consisted of four species widely distributed along the Pacific coast: Ascarophis cf. sebastodis, Anisakis sp., Corynosoma australe, and Pseudopecoelus sp. Other parasites were distributed only in some geographical areas. The species richness of the parasite communities increased with latitude along the Pacific coast, while parasite communities from Argentina and South Africa showed low species richness. Cluster analyses based on endoparasite composition and on prey composition grouped localities in a way consistent with known biogeographical areas for marine free‐living organisms. Main conclusions The endoparasites of S. capensis exhibit a pattern associated with known biogeographical areas for free‐living organisms. The latitudinal increase in endoparasite community richness is associated with changes in prey composition (intermediate hosts) and also possibly with the presence of definitive hosts. Therefore, the biogeographical patterns of prey are considered key determinants of the endoparasite community structure of the host.  相似文献   

18.
Three mantras often guide species and ecosystem management: (i) for preventing invasions by harmful species, ‘early detection and rapid response’; (ii) for conserving imperilled native species, ‘protection of biodiversity hotspots’; and (iii) for assessing biosecurity risk, ‘an ounce of prevention equals a pound of cure.’ However, these and other management goals are elusive when traditional sampling tools (e.g. netting, traps, electrofishing, visual surveys) have poor detection limits, are too slow or are not feasible. One visionary solution is to use an organism’s DNA in the environment (eDNA), rather than the organism itself, as the target of detection. In this issue of Molecular Ecology, Thomsen et al. (2012) provide new evidence demonstrating the feasibility of this approach, showing that eDNA is an accurate indicator of the presence of an impressively diverse set of six aquatic or amphibious taxa including invertebrates, amphibians, a fish and a mammal in a wide range of freshwater habitats. They are also the first to demonstrate that the abundance of eDNA, as measured by qPCR, correlates positively with population abundance estimated with traditional tools. Finally, Thomsen et al. (2012) demonstrate that next‐generation sequencing of eDNA can quantify species richness. Overall, Thomsen et al. (2012) provide a revolutionary roadmap for using eDNA for detection of species, estimates of relative abundance and quantification of biodiversity.  相似文献   

19.
《Ecology and evolution》2021,11(21):14630
Quantifying fish species diversity in rich tropical marine environments remains challenging. Environmental DNA (eDNA) metabarcoding is a promising tool to face this challenge through the filtering, amplification, and sequencing of DNA traces from water samples. However, because eDNA concentration is low in marine environments, the reliability of eDNA to detect species diversity can be limited. Using an eDNA metabarcoding approach to identify fish Molecular Taxonomic Units (MOTUs) with a single 12S marker, we aimed to assess how the number of sampling replicates and filtered water volume affect biodiversity estimates. We used a paired sampling design of 30 L per replicate on 68 reef transects from 8 sites in 3 tropical regions. We quantified local and regional sampling variability by comparing MOTU richness, compositional turnover, and compositional nestedness. We found strong turnover of MOTUs between replicated pairs of samples undertaken in the same location, time, and conditions. Paired samples contained non‐overlapping assemblages rather than subsets of one another. As a result, non‐saturated localized diversity accumulation curves suggest that even 6 replicates (180 L) in the same location can underestimate local diversity (for an area <1 km). However, sampling regional diversity using ~25 replicates in variable locations (often covering 10 s of km) often saturated biodiversity accumulation curves. Our results demonstrate variability of diversity estimates possibly arising from heterogeneous distribution of eDNA in seawater, highly skewed frequencies of eDNA traces per MOTU, in addition to variability in eDNA processing. This high compositional variability has consequences for using eDNA to monitor temporal and spatial biodiversity changes in local assemblages. Avoiding false‐negative detections in future biomonitoring efforts requires increasing replicates or sampled water volume to better inform management of marine biodiversity using eDNA.  相似文献   

20.

Aim

We examined whether and how tree radial‐growth responses to climate have changed for the world's southernmost conifer species throughout its latitudinal distribution following rapid climate change in the second half of the 20th century.

Location

Temperate forests in southern South America.

Methods

New and existing tree‐ring radial growth chronologies representing the entire latitudinal range of Pilgerodendron uviferum were grouped according to latitude and then examined for differences in growth trends and non‐stationarity in growth responses to a drought severity index (scPDSI) over the 1900–1993 AD period and also before and after significant shifts in climate in the 1950s and 1970s.

Results

The radial‐growth response of P. uviferum climate was highly variable across its full latitudinal distribution. There was a long‐term and positive association between radial growth and higher moisture at the northern and southern edges of the distribution of this species and the opposite relationship for the core of its distribution, especially following the climatic shifts of the 1950s and 1970s. In addition, non‐stationarity in moisture‐radial growth relationships was observed in all three latitudinal groups (southern and northern edges and core) for all seasons during the 20th century.

Main conclusions

Climate shifts in southern South America in the 1950s and 1970s resulted in different responses in the mean radial growth of P. uviferum at the southern and northern edges and at the core of its range. Dendroclimatic analyses document that during the first half of the 20th century climate‐growth relationships were relatively similar between the southern and northern range edges but diverged after the 1950s. Our findings imply that simulated projections of climate impacts on tree growth, and by implication on forest ecosystem productivity, derived from models of past climate‐growth relationships need to carefully consider different and non‐stationarity responses along the wide latitudinal distribution of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号