首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertebrate head is a complex assemblage of cranial specializations, including the central and peripheral nervous systems, viscero- and neurocranium, musculature and connective tissue. The primary differences that exist between vertebrates and other chordates relate to their craniofacial organization. Therefore, evolution of the head is considered fundamental to the origins of vertebrates (Gans and Northcutt, 1983). The transition from invertebrate to vertebrate chordates was a multistep process, involving the formation and patterning of many new cell types and tissues. The evolution of early vertebrates, such as jawless fish, was accompanied by the emergence of a specialized set of cells, called neural crest cells which have long held a fascination for developmental and evolutionary biologists due to their considerable influence on the complex development of the vertebrate head. Although it has been classically thought that protochordates lacked neural crest counterparts, the recent identification and characterization of amphioxus and ascidian genes homologous to those involved in vertebrate neural crest development challenges this idea. Instead it suggests thatthe neural crest may not be a novel vertebrate cell population, but could have in fact originated from the protochordate dorsal midline epidermis. Consequently, the evolution of the neural crest cells could be reconsidered in terms of the acquisition of new cell properties such as delamination-migration and also multipotency which were key innovations that contributed to craniofacial development. In this review we discuss recent findings concerning the inductive origins of neural crest cells, as well as new insights into the mechanisms patterning this cell population and the subsequent influence this has had on craniofacial evolution.  相似文献   

2.
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.  相似文献   

3.
4.
5.
隶属于头索动物亚门的文昌鱼是现存生物中最近似于脊椎动物亚门直接祖先的一个类群, 具有重要的进化地位, 是研究脊椎动物原始祖先的重要材料和模式动物。随着文昌鱼实验室连续繁殖的成功, 全基因组测序成为中国文昌鱼模式化急需完成的工作之一。文章从单条雄性白氏文昌鱼精巢组织中提取高质量的基因组DNA, 经EcoRⅠ限制性内切酶和EcoRⅠ甲基化酶酶切, 脉冲场电泳选择合适酶切DNA片段, 连接线性磷酸化的载体pCC1BAC, 转化大肠杆菌EPI300 E. coli, 构建了含有44 706个克隆的全基因组BAC( Bacterial artificial chromosome)文库, 该文库平均插入片段80 kb,具有9倍的基因组覆盖率, 基本能够满足功能基因等研究需要, 为中国文昌鱼全基因组测序打下基础。  相似文献   

6.
Mox genes are members of the "extended" Hox-cluster group of Antennapedia-like homeobox genes. Homologues have been cloned from both invertebrate and vertebrate species, and are expressed in mesodermal tissues. In vertebrates, Mox1 and Mox2 are distinctly expressed during the formation of somites and differentiation of their derivatives. Somites are a distinguishing feature uniquely shared by cephalochordates and vertebrates. Here, we report the cloning and expression of the single amphioxus Mox gene. AmphiMox is expressed in the presomitic mesoderm (PSM) during early amphioxus somitogenesis and in nascent somites from the tail bud during the late phase. Once a somite is completely formed, AmphiMox is rapidly downregulated. We discuss the presence and extent of the PSM in both phases of amphioxus somitogenesis. We also propose a scenario for the functional evolution of Mox genes within chordates, in which Mox was co-opted for somite formation before the cephalochordate-vertebrate split. Novel expression sites found in vertebrates after somite formation postdated Mox duplication in the vertebrate stem lineage, and may be linked to the increase in complexity of vertebrate somites and their derivatives, e.g., the vertebrae. Furthermore, AmphiMox expression adds new data into a long-standing debate on the extent of the asymmetry of amphioxus somitogenesis.  相似文献   

7.
Retinoic acid signaling and the evolution of chordates   总被引:1,自引:0,他引:1       下载免费PDF全文
In chordates, which comprise urochordates, cephalochordates and vertebrates, the vitamin A-derived morphogen retinoic acid (RA) has a pivotal role during development. Altering levels of endogenous RA signaling during early embryology leads to severe malformations, mainly due to incorrect positional codes specifying the embryonic anteroposterior body axis. In this review, we present our current understanding of the RA signaling pathway and its roles during chordate development. In particular, we focus on the conserved roles of RA and its downstream mediators, the Hox genes, in conveying positional patterning information to different embryonic tissues, such as the endoderm and the central nervous system. We find that some of the control mechanisms governing RA-mediated patterning are well conserved between vertebrates and invertebrate chordates, such as the cephalochordate amphioxus. In contrast, outside the chordates, evidence for roles of RA signaling is scarce and the evolutionary origin of the RA pathway itself thus remains elusive. In sum, to fully understand the evolutionary history of the RA pathway, future research should focus on identification and study of components of the RA signaling cascade in non-chordate deuterostomes (such as hemichordates and echinoderms) and other invertebrates, such as insects, mollusks and cnidarians.  相似文献   

8.
The origin of chordates and the consequent genesis of vertebrates were major events in natural history. The amphioxus (lancelet) is now recognised as the closest extant relative to the stem chordate and is the only living invertebrate that retains a vertebrate‐like development and body plan through its lifespan, despite more than 500 million years of independent evolution from the stem vertebrate. The inspiring data coming from its recently sequenced genome confirms that amphioxus has a prototypical chordate genome with respect to gene content and structure, and even chromosomal organisation. Pushed by joint efforts of amphioxus researchers, amphioxus is now entering a new era, namely its maturation as a laboratory model, through the availability of a large amount of molecular data and the advent of experimental manipulation of the embryo. These two facts may well serve to illuminate the hidden secrets of the genetic changes that generated, among other vertebrates, ourselves.  相似文献   

9.
10.
One important question in evolutionary biology concerns the origin of vertebrates from invertebrates. The current consensus is that the proximate ancestor of vertebrates was an invertebrate chordate. Today, the invertebrate chordates comprise cephalochordates (amphioxus) and tunicates (each a subphylum in the phylum Chordata, which also includes the vertebrate subphylum). It was widely accepted that, within the chordates, tunicates represent the sister group of a clade of cephalochordates plus vertebrates. However, recent studies suggest that the evolutionary positions of tunicates and cephalochordates should be reversed, the implications of which are considered here. We also review the two major groups of invertebrate chordates and compare relative advantages (and disadvantages) of each as model systems for elucidating the origin of the vertebrates.  相似文献   

11.
Chordates comprise three major groups, cephalochordates (amphioxus), tunicates (urochordates), and vertebrates. Since cephalochordates were the early branching group, comparisons between amphioxus and other chordates help us to speculate about ancestral chordates. Here, I summarize accumulating data from functional studies analyzing amphioxus cis-regulatory modules (CRMs) in model systems of other chordate groups, such as mice, chickens, clawed frogs, fish, and ascidians. Conservatism and variability of CRM functions illustrate how gene regulatory networks have evolved in chordates. Amphioxus CRMs, which correspond to CRMs deeply conserved among animal phyla, govern reporter gene expression in conserved expression domains of the putative target gene in host animals. In addition, some CRMs located in similar genomic regions (intron, upstream, or downstream) also possess conserved activity, even though their sequences are divergent. These conservative CRM functions imply ancestral genomic structures and gene regulatory networks in chordates. However, interestingly, if expression patterns of amphioxus genes do not correspond to those of orthologs of experimental models, some amphioxus CRMs recapitulate expression patterns of amphioxus genes, but not those of endogenous genes, suggesting that these amphioxus CRMs are close to the ancestral states of chordate CRMs, while vertebrates/tunicates innovated new CRMs to reconstruct gene regulatory networks subsequent to the divergence of the cephalochordates. Alternatively, amphioxus CRMs may have secondarily lost ancestral CRM activity and evolved independently. These data help to solve fundamental questions of chordate evolution, such as neural crest cells, placodes, a forebrain/midbrain, and genome duplication. Experimental validation is crucial to verify CRM functions and evolution.  相似文献   

12.
In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.  相似文献   

13.
Amphioxus is the closest relative to vertebrates but lacks key vertebrate characters, like rhombomeres, neural crest cells, and the cartilaginous endoskeleton. This reflects major differences in the developmental patterning of neural and mesodermal structures between basal chordates and vertebrates. Here, we analyse the expression pattern of an amphioxus FoxB ortholog and an amphioxus single-minded ortholog to gain insight into the evolution of vertebrate neural segmentation. AmphiFoxB expression shows cryptic segmentation of the cerebral vesicle and hindbrain, suggesting that neuromeric segmentation of the chordate neural tube arose before the origin of the vertebrates. In the forebrain, AmphiFoxB expression combined with AmphiSim and other amphioxus gene expression patterns shows that the cerebral vesicle is divided into several distinct domains: we propose homology between these domains and the subdivided diencephalon and midbrain of vertebrates. In the Hox-expressing region of the amphioxus neural tube that is homologous to the vertebrate hindbrain, AmphiFoxB shows the presence of repeated blocks of cells along the anterior-posterior axis, each aligned with a somite. This and other data lead us to propose a model for the evolution of vertebrate rhombomeric segmentation, in which rhombomere evolution involved the transfer of mechanisms regulating neural segmentation from vertical induction by underlying segmented mesoderm to horizontal induction by graded retinoic acid signalling. A consequence of this would have been that segmentation of vertebrate head mesoderm would no longer have been required, paving the way for the evolution of the unsegmented head mesoderm seen in living vertebrates.  相似文献   

14.
15.
16.
Thyroid hormones (THs) have pleiotropic effects on vertebrate development, with amphibian metamorphosis as the most spectacular example. However, developmental functions of THs in non-vertebrate chordates are largely hypothetical and even TH endogenous production has been poorly investigated. In order to get better insight into the evolution of the thyroid hormone signaling pathway in chordates, we have taken advantage of the recent release of the amphioxus genome. We found amphioxus homologous sequences to most of the genes encoding proteins involved in thyroid hormone signaling in vertebrates, except the fast-evolving thyroglobulin: sodium iodide symporter, thyroid peroxidase, deiodinases, thyroid hormone receptor, TBG, and CTHBP. As only some genes encoding proteins involved in TH synthesis regulation were retrieved (TRH, TSH receptor, and CRH receptor but not their corresponding receptors and ligands), there may be another mode of upstream regulation of TH synthesis in amphioxus. In accord with the notion that two whole genome duplications took place at the base of the vertebrate tree, one amphioxus gene often corresponded to several vertebrate homologs. However, some amphioxus specific duplications occurred, suggesting that several steps of the TH pathway were independently elaborated in the cephalochordate and vertebrate lineages. The present results therefore indicate that amphioxus is capable of producing THs. As several genes of the TH signaling pathway were also found in the sea urchin genome, we propose that the thyroid hormone signaling pathway is of ancestral origin in chordates, if not in deuterostomes, with specific elaborations in each lineage, including amphioxus.  相似文献   

17.
The neural crest is an embryonic cell population unique to vertebrates. During vertebrate embryogenesis, neural crest cells are first induced from the neural plate border; subsequently, they delaminate from the dorsal neural tube and migrate to their destination, where they differentiate into a wide variety of derivatives. The emergence of the neural crest is thought to be responsible for the evolution of many complex novel structures of vertebrates that are lacking in invertebrate chordates. Despite its central importance in understanding the origin of vertebrates, the evolutionary origin of the neural crest remains elusive. The basal chordate amphioxus (Branchiostoma floridae) occupies an outgroup position that is useful for investigating this question. In this review, I summarize recent genomic and comparative developmental studies between amphioxus and vertebrates and discuss their implications for the evolutionary origin of neural crest cells. I focus mainly on the origin of the gene regulatory network underlying neural crest development, and suggest several hypotheses regarding how this network could have been assembled during early vertebrate evolution.  相似文献   

18.
The neural crest is a uniquely vertebrate cell type present in the most basal vertebrates, but not in cephalochordates. We have studied differences in regulation of the neural crest marker AP-2 across two evolutionary transitions: invertebrate to vertebrate, and agnathan to gnathostome. Isolation and comparison of amphioxus, lamprey and axolotl AP-2 reveals its extensive expansion in the vertebrate dorsal neural tube and pharyngeal arches, implying co-option of AP-2 genes by neural crest cells early in vertebrate evolution. Expression in non-neural ectoderm is a conserved feature in amphioxus and vertebrates, suggesting an ancient role for AP-2 genes in this tissue. There is also common expression in subsets of ventrolateral neurons in the anterior neural tube, consistent with a primitive role in brain development. Comparison of AP-2 expression in axolotl and lamprey suggests an elaboration of cranial neural crest patterning in gnathostomes. However, migration of AP-2-expressing neural crest cells medial to the pharyngeal arch mesoderm appears to be a primitive feature retained in all vertebrates. Because AP-2 has essential roles in cranial neural crest differentiation and proliferation, the co-option of AP-2 by neural crest cells in the vertebrate lineage was a potentially crucial event in vertebrate evolution.  相似文献   

19.
The oral cirri of amphioxus function as the first filter during feeding by eliminating unwanted large or noxious particulates. In this study, we were able to regenerate cirri following artificial amputation. This is the first firm observation of regeneration in amphioxus. Using this regeneration system, we studied skeletogenesis of the cellular skeleton of amphioxus oral cirri. During regeneration, the skeletal cells showed expression of fibrillar collagen and SoxE genes. These observations suggest that an evolutionarily conserved genetic regulatory system is involved in amphioxus cirrus and vertebrate cartilage skeletogenesis. In addition, Runx and SPARC/osteonectin expression were observed in regenerating cirral skeletal cells, indicating that cirral skeletogenesis is similar to vertebrate osteogenesis. We propose that the common ancestors of chordates possessed a genetic regulatory system that was the prototype of chondrogenesis and osteogenesis in vertebrates. Genome duplications caused divergence of this genetic regulatory system resulting in the emergence of cartilage and mineralized bone. The development of the vertebrate skeleton is an example of the functional segregation and subsequent recruitment of unique genetic materials that may account for the evolutionary diversification of novel cell types.  相似文献   

20.
SUMMARY Cephalochordates, urochordates, and vertebrates comprise the three extant groups of chordates. Although higher morphological and developmental similarity exists between cephalochordates and vertebrates, molecular phylogeny studies have instead suggested that the morphologically simplified urochordates are the closest relatives to vertebrates. MicroRNAs (miRNAs) are regarded as the major factors driving the increase of morphological complexity in early vertebrate evolution, and are extensively characterized in vertebrates and in a few species of urochordates. However, the comprehensive set of miRNAs in the basal chordates, namely the cephalochordates, remains undetermined. Through extensive sequencing of a small RNA library and genomic homology searches, we characterized 100 miRNAs from the cephalochordate amphioxus, Branchiostoma japonicum , and B. floridae . Analysis of the evolutionary history of the cephalochordate miRNAs showed that cephalochordates possess 54 miRNA families homologous to those of vertebrates, which is threefold higher than those shared between urochordates and vertebrates. The miRNA contents demonstrated a clear correlation between the extent of miRNA overlapping and morphological similarity among the three chordate groups, providing a strong evidence of miRNAs being the major genetic factors driving morphological complexity in early chordate evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号