首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Understanding how wildfires affect food web structure and function remains an important challenge, especially at high elevations that historically have burned infrequently. In particular, fires may alter the magnitude of reciprocal cross-ecosystem subsidies, leading to indirect effects on aquatic and terrestrial consumers. We quantified characteristics of high-elevation (2500–3000 m) stream-riparian food webs at 10 locations in the southern Rocky Mountains less than one year following high-intensity, stand-replacing wildfires. Using a paired ‘burned−unburned' stream survey design, we assessed benthic periphyton, aquatic macroinvertebrate community structure, trout population characteristics, trout stomach contents, inputs and emergence of insects to and from streams, and abundance of predatory riparian spiders that consume aquatic insects. Benthic macroinvertebrate density, flux of emerging aquatic insects, and riparian spider abundances were lower at burned sites. Fluxes of insect inputs entering the stream did not differ with burn status, despite the loss of riparian vegetation due to fire. Trout were somewhat less abundant, but larger on average at burned sites and did not differ in body condition. These results suggest mortality of smaller trout from fire disturbance and/or recolonization of burned sites by larger individuals. Trout showed subtle changes in diet composition with burn status, but no change in biomass or number of prey consumed. In general, burned sites showed greater variation in community characteristics than unburned sites, which may reflect differences in the timing and magnitude of post-fire flooding, erosion, and scouring of the stream bed. Taken together, our results suggest that short-term effects of fire disturbance strongly altered some food web responses, but others appeared relatively resilient, which is notable given the high severity of the wildfires in the study area.  相似文献   

2.
    
Changing temperature can substantially shift ecological communities by altering the strength and stability of trophic interactions. Because many ecological rates are constrained by temperature, new approaches are required to understand how simultaneous changes in multiple rates alter the relative performance of species and their trophic interactions. We develop an energetic approach to identify the relationship between biomass fluxes and standing biomass across trophic levels. Our approach links ecological rates and trophic dynamics to measure temperature‐dependent changes to the strength of trophic interactions and determine how these changes alter food web stability. It accomplishes this by using biomass as a common energetic currency and isolating three temperature‐dependent processes that are common to all consumer–resource interactions: biomass accumulation of the resource, resource consumption and consumer mortality. Using this framework, we clarify when and how temperature alters consumer to resource biomass ratios, equilibrium resilience, consumer variability, extinction risk and transient vs. equilibrium dynamics. Finally, we characterise key asymmetries in species responses to temperature that produce these distinct dynamic behaviours and identify when they are likely to emerge. Overall, our framework provides a mechanistic and more unified understanding of the temperature dependence of trophic dynamics in terms of ecological rates, biomass ratios and stability.  相似文献   

3.
    
Food webs typically quantify interactions between species, whereas evolution operates through the success of alleles within populations of a single species. To bridge this gap, we quantify genotypic interaction networks among individuals of a single specialized parasitoid species and its obligate to cyclically parthenogenetic aphid host along a climatic gradient. As a case study for the kinds of questions genotype food webs could be used to answer, we show that genetically similar parasitoids became more likely to attack genetically similar hosts in warmer sites (i.e. there was network‐wide congruence between the within‐species shared allelic distance of the parasitoid and that of its host). Narrowing of host‐genotype‐niche breadth by parasitoids could reduce resilience of the network to changes in host genetic structure or invasion by novel host genotypes and inhibit biological control. Thus, our approach can be easily used to detect changes to sub‐species‐level food webs, which may have important ecological and evolutionary implications, such as promoting host‐race specialization or the accelerated loss of functional diversity following extinctions of closely related genotypes.  相似文献   

4.
    
The metaweb is a dictionary of nodes and their potential interactions developed for a particular region, focusing on a particular type of ecosystem. Based on the local biodiversity information at different spatial and temporal scales, the regional metaweb can be easily decomposed into local webs. The generated local webs are useful for understanding spatiotemporal variations in ecological interactions in a particular region. In this study, an attempt was made to develop a trophic metaweb for freshwater ecosystems in South Korea, called the KF-metaweb. The metaweb contains 23,074 interactions between 446 taxa collected from 730 studies. This metaweb can be used to understand the spatiotemporal variability of different local food webs and the effects of the environment on food web properties. Furthermore, this is the first metaweb developed for any Asian ecosystem that contains information about many interactions that are unavailable in any other existing database. In addition, this metaweb study enriches our global understanding of ecological interactions.  相似文献   

5.
    
In the West Antarctic Peninsula, global warming has led to severe alterations in community composition, species distribution, and abundance over the last decades. Understanding the complex interplay between structure and stability of marine food webs is crucial for assessing ecosystem resilience, particularly in the context of ongoing environmental changes. In this study, we estimate the interaction strength within the Potter Cove (South Shetland Islands, Antarctica) food web to elucidate the roles of species in its structure and functioning. We use these estimates to calculate food web stability in response to perturbations, conducting sequential extinctions to quantify the importance of individual species based on changes in stability and food web fragmentation. We explore connections between interaction strength and key topological properties of the food web. Our findings reveal an asymmetric distribution of interaction strengths, with a prevalence of weak interactions and a few strong ones. Species exerting greater influence within the food web displayed higher degree and trophic similarity but occupied lower trophic levels and displayed lower omnivory levels (e.g., macroalgae and detritus). Extinction simulations revealed the key role of certain species, particularly amphipods and the black rockcod Notothenia coriiceps, as their removal led to significant changes in food web stability and network fragmentation. This study highlights the importance of considering species interaction strengths in assessing the stability of polar marine ecosystems. These insights have crucial implications for guiding monitoring and conservation strategies aimed at preserving the integrity of Antarctic marine ecosystems.  相似文献   

6.
    
Population performance is predicted to be more strongly influenced by detrimental species interactions such as predation under benign climatic conditions, and by climate forcing under harsh conditions, reflected in geographical gradients in biotic interaction strength. Less appreciated is the potential for site-specific changes in drivers with the advent of anthropogenic alteration of predator–prey relationships, including apex predator restoration and spread of invasive predators. Particularly interesting is the relative impact of climate and biotic interactions on population performance when these conflict. In this 31-year study (1990–2020), we revisit a common eider Somateria mollissima population from SW Finland, Baltic Sea, fifteen years on from an earlier study showing that climate warming positively affected reproductive parameters and performance. However, the population is simultaneously exposed to increasing predation by the rapidly recovering native apex predator and invasive mammals. Based on the current population trend, we predicted 1) a weakening of the previously documented positive effects of a warming climate on vital rates, 2) intensified predation and 3) increasing top–down control of vital rates and accompanying population decline. Five out of seven breeding parameters (annual spread in female body condition, breeding phenology and synchrony, interval between arrival and breeding, fledgling production) were best explained by predation indices, whereas climate signals (winter NAO, Baltic Sea maximum ice cover) on breeding parameters have weakened. Particularly intriguing is that the previous positive association between mild ice winters and subsequent reproductive output has disappeared during the past 15 years, highlighting the non-linear nature of climate change responses. Indirect predation effects (selective disappearance, changed reproductive strategies, nest-site selection and population age distribution) can potentially explain also the remaining breeding parameters (annual mean body condition and clutch size). The observed regime shift in predation risk appears to prevent this now endangered population from reaping the potential benefits of a warming climate.  相似文献   

7.
We show how theoretical developments in macroecology, life-history theory and food-web ecology can be combined to formulate a simple model for predicting the potential biomass, production, size and trophic structure of consumer communities. The strength of our approach is that it uses remote sensing data to predict properties of consumer communities in environments that are challenging and expensive to sample directly. An application of the model to the marine environment on a global scale, using primary production and temperature estimates from satellite remote sensing as inputs, suggests that the global biomass of marine animals more than 10(-5) g wet weight is 2.62 x 10(9)t (=8.16 gm(-2) ocean) and production is 1.00 x 10(10) tyr-1 (31.15 gm(-2)yr(-1)). Based on the life-history theory, we propose and apply an approximation for distinguishing the relative contributions of different animal groups. Fish biomass and production, for example, are estimated as 8.99 x 10(8)t (2.80 gm(-2)) and 7.91 x 108 t yr(-1) (2.46 gm(2)yr(-1)respectively, and 50% of fish biomass is shown to occur in 17% of the total ocean area (8.22 gm(-2)). The analyses show that emerging ecological theory can be synthesized to set baselines for assessing human and climate impacts on global scales.  相似文献   

8.
9.
Climate change is altering the rate and distribution of primary production in the world's oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate‐driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change.  相似文献   

10.
Most climate change predictions omit species interactions and interspecific variation in dispersal. Here, we develop a model of multiple competing species along a warming climatic gradient that includes temperature-dependent competition, differences in niche breadth and interspecific differences in dispersal ability. Competition and dispersal differences decreased diversity and produced so-called 'no-analogue' communities, defined as a novel combination of species that does not currently co-occur. Climate change altered community richness the most when species had narrow niches, when mean community-wide dispersal rates were low and when species differed in dispersal abilities. With high interspecific dispersal variance, the best dispersers tracked climate change, out-competed slower dispersers and caused their extinction. Overall, competition slowed the advance of colonists into newly suitable habitats, creating lags in climate tracking. We predict that climate change will most threaten communities of species that have narrow niches (e.g. tropics), vary in dispersal (most communities) and compete strongly. Current forecasts probably underestimate climate change impacts on biodiversity by neglecting competition and dispersal differences.  相似文献   

11.
    
Human activity is leading to changes in the mean and variability of climatic parameters in most locations around the world. The changing mean has received considerable attention from scientists and climate policy makers. However, recent work indicates that the changing variability, that is, the amplitude and the temporal autocorrelation of deviations from the mean, may have greater and more imminent impact on ecosystems. In this paper, we demonstrate that changes in climate variability alone could drive cyclic predator–prey ecosystems to extinction via so-called phase-tipping (P-tipping), a new type of instability that occurs only from certain phases of the predator–prey cycle. We construct a mathematical model of a variable climate and couple it to two self-oscillating paradigmatic predator–prey models. Most importantly, we combine realistic parameter values for the Canada lynx and snowshoe hare with actual climate data from the boreal forest. In this way, we demonstrate that critically important species in the boreal forest have increased likelihood of P-tipping to extinction under predicted changes in climate variability, and are most vulnerable during stages of the cycle when the predator population is near its maximum. Furthermore, our analysis reveals that stochastic resonance is the underlying mechanism for the increased likelihood of P-tipping to extinction.  相似文献   

12.
    
Predator feeding rates (described by their functional response) must saturate at high prey densities. Although thousands of manipulative functional response experiments show feeding rate saturation at high densities under controlled conditions, it remains unclear how saturated feeding rates are at natural prey densities. The general degree of feeding rate saturation has important implications for the processes determining feeding rates and how they respond to changes in prey density. To address this, we linked two databases—one of functional response parameters and one on mass–abundance scaling—through prey mass to calculate a feeding rate saturation index. We find that: (1) feeding rates may commonly be unsaturated and (2) the degree of saturation varies with predator and prey taxonomic identities and body sizes, habitat, interaction dimension and temperature. These results reshape our conceptualisation of predator–prey interactions in nature and suggest new research on the ecological and evolutionary implications of unsaturated feeding rates.  相似文献   

13.
A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accomplished. I examined the effect of temperature and predator climate history in food webs composed of herbaceous plants, generalist grasshopper herbivores and spider predators across a natural 4.8°C temperature gradient spanning 500 km in northeastern USA. In these grasslands, the effects of rising temperatures on the plant community are indirect and arise via altered predator-herbivore interactions. Experimental warming had no direct effect on grasshoppers, but reduced predation risk effects by causing spiders from all study sites to seek thermal refuge lower in the plant canopy. However, spider thermal tolerance corresponded to spider origin such that spiders from warmer study sites tolerated higher temperatures than spiders from cooler study sites. As a consequence, the magnitude of the indirect effect of spiders on plants did not differ along the temperature gradient, although a reciprocal transplant experiment revealed significantly different effects of spider origin on the magnitude of top-down control. These results suggest that variation in predator response to warming may maintain species interactions and associated food web processes when faced with long term, chronic climate warming.  相似文献   

14.
    
Changes in phenology are occurring from global climate change, yet the impacts of other types of global change on the phenology of animals remain less appreciated. Understanding the potential for synergistic effects of different types of global change on phenology is needed, because changing climate regimes can have cascading effects, particularly on invasive species that vary in their thermal tolerances. Using 25 years of data from 5963 nests and 4675 marked individuals across the entire US breeding range of an endangered predator, the snail kite (Rostrhamus sociabilis plumbeus), we isolated the effects of an invasion of novel prey and warming temperatures on breeding phenology and its demographic consequences. Over this time period, breeding season length doubled, increasing by approximately 14 weeks. Both temperature and the establishment of invasive prey interacted to explain the timing of nest initiation. Temperature and invasive prey played distinct roles: earlier nest initiation occurred with increasing temperatures, whereas late nesting increased with invasion. Ultimately, both nest survival and juvenile survival declined later in the year, such that effects from invasive prey, but not warming temperatures, have the apparent potential for mistiming in breeding phenology by some individuals. Nonetheless, relatively few nesting events occurred during late fall when nest survival was very low, and seasonal declines in nest survival were weaker and renesting was more frequent in invaded wetlands, such that total reproductive output increased with invasion. Variation in demographic effects illustrate that considering only particular components of demography (e.g., nest survival rates) may be inadequate to infer the overall consequences of changes in phenology, particularly the potential for mistiming of phenological events. These results emphasize that species invasions may profoundly alter phenology of native species, such effects are distinct from climate effects, and both interact to drive population change.  相似文献   

15.
    
Climate change has the potential to disrupt species interactions across global ecosystems. Ectotherm–endotherm interactions may be especially prone to this risk due to the possible mismatch between the species in physiological response and performance. However, few studies have examined how changing temperatures might differentially impact species' niches or available suitable habitat when they have very different modes of thermoregulation. An ideal system for studying this interaction is the predator–prey system. In this study, we used ecological niche modeling to characterize the niche overlap and examine biogeography in past and future climate conditions of prairie rattlesnakes (Crotalus viridis) and Ord's kangaroo rats (Dipodomys ordii), an endotherm–ectotherm pair typifying a predator–prey species interaction. Our models show a high niche overlap between these two species (D = 0.863 and I = 0.979) and further affirm similar paleoecological distributions during the last glacial maximum (LGM) and mid-Holocene (MH). Under future climate change scenarios, we found that prairie rattlesnakes may experience a reduction in overall suitable habitat (RCP 2.6 = −1.82%, 4.5 = −4.62%, 8.5 = −7.34%), whereas Ord's kangaroo rats may experience an increase (RCP 2.6 = 9.8%, 4.5 = 11.71%, 8.5 = 8.37%). We found a shared trend of stable suitable habitat at northern latitudes but reduced suitability in southern portions of the range, and we propose future monitoring and conservation be focused on those areas. Overall, we demonstrate a biogeographic example of how interacting ectotherm–endotherm species may have mismatched responses under climate change scenarios and the models presented here can serve as a starting point for further investigation into the biogeography of these systems.  相似文献   

16.
    
The advanced snakes (Alethinophidia) include the extant snakes with a highly evolved head morphology providing increased gape and jaw flexibility. Along with other physiological and morphological adaptations, this allows them to immobilize, ingest, and transport prey that may be disproportionately large or presents danger to the predator from bites, teeth, horns, or spines. Reported incidents of snakes failing to consume prey and being injured or killed during feeding mostly reflect information in the form of natural-history notes. Here we provide the first extensive review of such incidents, including 101 publications describing at least 143 cases of mortality (including six of ‘multiple individuals’) caused by ingestion or attempted consumption of injurious prey. We also report on 15 previously unpublished injurious feeding incidents from the USA, Austria, and Bulgaria, including mortality of five juvenile piscivorous dice snakes (Natrix tessellata) from a single location. Occurrences are spread across taxa, with mortality documented for at least 73 species from eight families and 45 genera. Incidents were generally well represented within each of three major categories: oversized prey (40.6%), potentially harmful prey (40.6%), and predator's behavioural/mechanical errors (18.9%). Reptile (33%) and fish (26%) prey caused disproportionately high mortality compared to mammals (16%). Feeding can be dangerous throughout a snake's life, with the later stages of feeding likely being more perilous. The number of reports has increased over time, and the data seem biased towards localities with a higher number of field-working herpetologists. We propose a standardized framework, comprising a set of basic information that should ideally be collected and published, and which could be useful as a template for future data collection, reporting, and analyses. We conclude that incidents of mortality during feeding are likely to be more common than previously assumed, and this hypothesis has implications for the ecology of persistence where populations are impacted by changing trophic environments.  相似文献   

17.
    
A major cause of reproductive failure in birds is nest predation. Predation risk depends on predator type, as predators vary in their ecology and sensory modalities (e.g. visual vs. olfactory). Snakes (generally olfactory predators) are a major nest predator for small birds, with predation strongly associated with higher temperatures. We investigated nest survival in a ground-nesting alpine species, the Cape Rockjumper Chaetops frenatus, endemic to alpine fynbos in southwestern South Africa. We collected 3 years of nest data, testing whether nest survival was related to (1) habitat stage (early post-fire vs. late post-fire habitat, ≤ 3 and > 3 years since fire respectively), (2) nest concealment and (3) temperature. We found that nests had better survival at lower temperatures, with snake predation (our main source of predation) increasing in higher temperatures.  相似文献   

18.
19.
A common problem in molecular phylogenetics is choosing a model of DNA substitution that does a good job of explaining the DNA sequence alignment without introducing superfluous parameters. A number of methods have been used to choose among a small set of candidate substitution models, such as the likelihood ratio test, the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), and Bayes factors. Current implementations of any of these criteria suffer from the limitation that only a small set of models are examined, or that the test does not allow easy comparison of non-nested models. In this article, we expand the pool of candidate substitution models to include all possible time-reversible models. This set includes seven models that have already been described. We show how Bayes factors can be calculated for these models using reversible jump Markov chain Monte Carlo, and apply the method to 16 DNA sequence alignments. For each data set, we compare the model with the best Bayes factor to the best models chosen using AIC and BIC. We find that the best model under any of these criteria is not necessarily the most complicated one; models with an intermediate number of substitution types typically do best. Moreover, almost all of the models that are chosen as best do not constrain a transition rate to be the same as a transversion rate, suggesting that it is the transition/transversion rate bias that plays the largest role in determining which models are selected. Importantly, the reversible jump Markov chain Monte Carlo algorithm described here allows estimation of phylogeny (and other phylogenetic model parameters) to be performed while accounting for uncertainty in the model of DNA substitution.  相似文献   

20.
    
Rising ocean temperatures are causing marine fish species to shift spatial distributions and ranges, and are altering predator‐prey dynamics in food webs. Most documented cases of species shifts so far involve relatively small species at lower trophic levels, and consider individual species in ecological isolation from others. Here, we show that a large highly migratory top predator fish species has entered a high latitude subpolar area beyond its usual range. Bluefin tuna, Thunnus thynnus Linnaeus 1758, were captured in waters east of Greenland (65°N) in August 2012 during exploratory fishing for Atlantic mackerel, Scomber scombrus Linnaeus 1758. The bluefin tuna were captured in a single net‐haul in 9–11 °C water together with 6 tonnes of mackerel, which is a preferred prey species and itself a new immigrant to the area. Regional temperatures in August 2012 were historically high and contributed to a warming trend since 1985, when temperatures began to rise. The presence of bluefin tuna in this region is likely due to a combination of warm temperatures that are physiologically more tolerable and immigration of an important prey species to the region. We conclude that a cascade of climate change impacts is restructuring the food web in east Greenland waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号