首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The aim of this article is to develop a spatial model for multi‐subject fMRI data. There has been extensive work on univariate modeling of each voxel for single and multi‐subject data, some work on spatial modeling of single‐subject data, and some recent work on spatial modeling of multi‐subject data. However, there has been no work on spatial models that explicitly account for inter‐subject variability in activation locations. In this article, we use the idea of activation centers and model the inter‐subject variability in activation locations directly. Our model is specified in a Bayesian hierarchical framework which allows us to draw inferences at all levels: the population level, the individual level, and the voxel level. We use Gaussian mixtures for the probability that an individual has a particular activation. This helps answer an important question that is not addressed by any of the previous methods: What proportion of subjects had a significant activity in a given region. Our approach incorporates the unknown number of mixture components into the model as a parameter whose posterior distribution is estimated by reversible jump Markov chain Monte Carlo. We demonstrate our method with a fMRI study of resolving proactive interference and show dramatically better precision of localization with our method relative to the standard mass‐univariate method. Although we are motivated by fMRI data, this model could easily be modified to handle other types of imaging data.  相似文献   

2.
A vast literature has recently been concerned with the analysis of variation in disease counts recorded across geographical areas with the aim of detecting clusters of regions with homogeneous behavior. Most of the proposed modeling approaches have been discussed for the univariate case and only very recently spatial models have been extended to predict more than one outcome simultaneously. In this paper we extend the standard finite mixture models to the analysis of multiple, spatially correlated, counts. Dependence among outcomes is modeled using a set of correlated random effects and estimation is carried out by numerical integration through an EM algorithm without assuming any specific parametric distribution for the random effects. The spatial structure is captured by the use of a Gibbs representation for the prior probabilities of component membership through a Strauss‐like model. The proposed model is illustrated using real data (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Summary We provide methods that can be used to obtain more accurate environmental exposure assessment. In particular, we propose two modeling approaches to combine monitoring data at point level with numerical model output at grid cell level, yielding improved prediction of ambient exposure at point level. Extending our earlier downscaler model (Berrocal, V. J., Gelfand, A. E., and Holland, D. M. (2010b) . A spatio‐temporal downscaler for outputs from numerical models. Journal of Agricultural, Biological and Environmental Statistics 15, 176–197), these new models are intended to address two potential concerns with the model output. One recognizes that there may be useful information in the outputs for grid cells that are neighbors of the one in which the location lies. The second acknowledges potential spatial misalignment between a station and its putatively associated grid cell. The first model is a Gaussian Markov random field smoothed downscaler that relates monitoring station data and computer model output via the introduction of a latent Gaussian Markov random field linked to both sources of data. The second model is a smoothed downscaler with spatially varying random weights defined through a latent Gaussian process and an exponential kernel function, that yields, at each site, a new variable on which the monitoring station data is regressed with a spatial linear model. We applied both methods to daily ozone concentration data for the Eastern US during the summer months of June, July and August 2001, obtaining, respectively, a 5% and a 15% predictive gain in overall predictive mean square error over our earlier downscaler model ( Berrocal et al., 2010b ). Perhaps more importantly, the predictive gain is greater at hold‐out sites that are far from monitoring sites.  相似文献   

4.
Understanding patterns of pollen movement at the landscape scale is important for establishing management rules following the release of genetically modified (GM) crops. We use here a mating model adapted to cultivated species to estimate dispersal kernels from the genotypes of the progenies of male-sterile plants positioned at different sampling sites within a 10 x 10-km oilseed rape production area. Half of the pollen clouds sampled by the male-sterile plants originated from uncharacterized pollen sources that could consist of both large volunteer and feral populations, and fields within and outside the study area. The geometric dispersal kernel was the most appropriate to predict pollen movement in the study area. It predicted a much larger proportion of long-distance pollination than previously fitted dispersal kernels. This best-fitting mating model underestimated the level of differentiation among pollen clouds but could predict its spatial structure. The estimation method was validated on simulated genotypic data, and proved to provide good estimates of both the shape of the dispersal kernel and the rate and composition of pollen issued from uncharacterized pollen sources. The best dispersal kernel fitted here, the geometric kernel, should now be integrated into models that aim at predicting gene flow at the landscape level, in particular between GM and non-GM crops.  相似文献   

5.
Correlated binary response data with covariates are ubiquitous in longitudinal or spatial studies. Among the existing statistical models, the most well-known one for this type of data is the multivariate probit model, which uses a Gaussian link to model dependence at the latent level. However, a symmetric link may not be appropriate if the data are highly imbalanced. Here, we propose a multivariate skew-elliptical link model for correlated binary responses, which includes the multivariate probit model as a special case. Furthermore, we perform Bayesian inference for this new model and prove that the regression coefficients have a closed-form unified skew-elliptical posterior with an elliptical prior. The new methodology is illustrated by an application to COVID-19 data from three different counties of the state of California, USA. By jointly modeling extreme spikes in weekly new cases, our results show that the spatial dependence cannot be neglected. Furthermore, the results also show that the skewed latent structure of our proposed model improves the flexibility of the multivariate probit model and provides a better fit to our highly imbalanced dataset.  相似文献   

6.
A spatial open-population capture-recapture model is described that extends both the non-spatial open-population model of Schwarz and Arnason and the spatially explicit closed-population model of Borchers and Efford. The superpopulation of animals available for detection at some time during a study is conceived as a two-dimensional Poisson point process. Individual probabilities of birth and death follow the conventional open-population model. Movement between sampling times may be modeled with a dispersal kernel using a recursive Markovian algorithm. Observations arise from distance-dependent sampling at an array of detectors. As in the closed-population spatial model, the observed data likelihood relies on integration over the unknown animal locations; maximization of this likelihood yields estimates of the birth, death, movement, and detection parameters. The models were fitted to data from a live-trapping study of brushtail possums (Trichosurus vulpecula) in New Zealand. Simulations confirmed that spatial modeling can greatly reduce the bias of capture-recapture survival estimates and that there is a degree of robustness to misspecification of the dispersal kernel. An R package is available that includes various extensions.  相似文献   

7.
Mixture modeling provides an effective approach to the differential expression problem in microarray data analysis. Methods based on fully parametric mixture models are available, but lack of fit in some examples indicates that more flexible models may be beneficial. Existing, more flexible, mixture models work at the level of one-dimensional gene-specific summary statistics, and so when there are relatively few measurements per gene these methods may not provide sensitive detectors of differential expression. We propose a hierarchical mixture model to provide methodology that is both sensitive in detecting differential expression and sufficiently flexible to account for the complex variability of normalized microarray data. EM-based algorithms are used to fit both parametric and semiparametric versions of the model. We restrict attention to the two-sample comparison problem; an experiment involving Affymetrix microarrays and yeast translation provides the motivating case study. Gene-specific posterior probabilities of differential expression form the basis of statistical inference; they define short gene lists and false discovery rates. Compared to several competing methodologies, the proposed methodology exhibits good operating characteristics in a simulation study, on the analysis of spike-in data, and in a cross-validation calculation.  相似文献   

8.
Reich BJ  Hodges JS  Zadnik V 《Biometrics》2006,62(4):1197-1206
Disease-mapping models for areal data often have fixed effects to measure the effect of spatially varying covariates and random effects with a conditionally autoregressive (CAR) prior to account for spatial clustering. In such spatial regressions, the objective may be to estimate the fixed effects while accounting for the spatial correlation. But adding the CAR random effects can cause large changes in the posterior mean and variance of fixed effects compared to the nonspatial regression model. This article explores the impact of adding spatial random effects on fixed effect estimates and posterior variance. Diagnostics are proposed to measure posterior variance inflation from collinearity between the fixed effect covariates and the CAR random effects and to measure each region's influence on the change in the fixed effect's estimates by adding the CAR random effects. A new model that alleviates the collinearity between the fixed effect covariates and the CAR random effects is developed and extensions of these methods to point-referenced data models are discussed.  相似文献   

9.
Module-based analysis (MBA) aims to evaluate the effect of a group of biological elements sharing common features, such as SNPs in the same gene or metabolites in the same pathways, and has become an attractive alternative to traditional single bio-element approaches. Because bio-elements regulate and interact with each other as part of network, incorporating network structure information can more precisely model the biological effects, enhance the ability to detect true associations, and facilitate our understanding of the underlying biological mechanisms. How-ever, most MBA methods ignore the network structure information, which depicts the interaction and regulation relationship among basic functional units in biology system. We construct the con-nectivity kernel and the topology kernel to capture the relationship among bio-elements in a mod-ule, and use a kernel machine framework to evaluate the joint effect of bio-elements. Our proposed kernel machine approach directly incorporates network structure so to enhance the study effi-ciency; it can assess interactions among modules, account covariates, and is computational effi-cient. Through simulation studies and real data application, we demonstrate that the proposed network-based methods can have markedly better power than the approaches ignoring network information under a range of scenarios.  相似文献   

10.
Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad‐scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment‐only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment‐only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions.  相似文献   

11.
Summary Several statistical methods for detecting associations between quantitative traits and candidate genes in structured populations have been developed for fully observed phenotypes. However, many experiments are concerned with failure‐time phenotypes, which are usually subject to censoring. In this article, we propose statistical methods for detecting associations between a censored quantitative trait and candidate genes in structured populations with complex multiple levels of genetic relatedness among sampled individuals. The proposed methods correct for continuous population stratification using both population structure variables as covariates and the frailty terms attributable to kinship. The relationship between the time‐at‐onset data and genotypic scores at a candidate marker is modeled via a parametric Weibull frailty accelerated failure time (AFT) model as well as a semiparametric frailty AFT model, where the baseline survival function is flexibly modeled as a mixture of Polya trees centered around a family of Weibull distributions. For both parametric and semiparametric models, the frailties are modeled via an intrinsic Gaussian conditional autoregressive prior distribution with the kinship matrix being the adjacency matrix connecting subjects. Simulation studies and applications to the Arabidopsis thaliana line flowering time data sets demonstrated the advantage of the new proposals over existing approaches.  相似文献   

12.
Bayesian multimodel inference for geostatistical regression models   总被引:2,自引:0,他引:2  
Johnson DS  Hoeting JA 《PloS one》2011,6(11):e25677
The problem of simultaneous covariate selection and parameter inference for spatial regression models is considered. Previous research has shown that failure to take spatial correlation into account can influence the outcome of standard model selection methods. A Markov chain Monte Carlo (MCMC) method is investigated for the calculation of parameter estimates and posterior model probabilities for spatial regression models. The method can accommodate normal and non-normal response data and a large number of covariates. Thus the method is very flexible and can be used to fit spatial linear models, spatial linear mixed models, and spatial generalized linear mixed models (GLMMs). The Bayesian MCMC method also allows a priori unequal weighting of covariates, which is not possible with many model selection methods such as Akaike's information criterion (AIC). The proposed method is demonstrated on two data sets. The first is the whiptail lizard data set which has been previously analyzed by other researchers investigating model selection methods. Our results confirmed the previous analysis suggesting that sandy soil and ant abundance were strongly associated with lizard abundance. The second data set concerned pollution tolerant fish abundance in relation to several environmental factors. Results indicate that abundance is positively related to Strahler stream order and a habitat quality index. Abundance is negatively related to percent watershed disturbance.  相似文献   

13.

Background and Aims

Functional–structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs.

Methods

A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL.

Key Results

Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas.

Conclusions

The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.  相似文献   

14.

One of the most important issues in the critical assessment of spatio-temporal stochastic models for epidemics is the selection of the transmission kernel used to represent the relationship between infectious challenge and spatial separation of infected and susceptible hosts. As the design of control strategies is often based on an assessment of the distance over which transmission can realistically occur and estimation of this distance is very sensitive to the choice of kernel function, it is important that models used to inform control strategies can be scrutinised in the light of observation in order to elicit possible evidence against the selected kernel function. While a range of approaches to model criticism is in existence, the field remains one in which the need for further research is recognised. In this paper, building on earlier contributions by the authors, we introduce a new approach to assessing the validity of spatial kernels—the latent likelihood ratio tests—which use likelihood-based discrepancy variables that can be used to compare the fit of competing models, and compare the capacity of this approach to detect model mis-specification with that of tests based on the use of infection-link residuals. We demonstrate that the new approach can be used to formulate tests with greater power than infection-link residuals to detect kernel mis-specification particularly when the degree of mis-specification is modest. This new tests avoid the use of a fully Bayesian approach which may introduce undesirable complications related to computational complexity and prior sensitivity.

  相似文献   

15.
A major environmental restoration effort is under way that will affect the Everglades and its neighboring ecosystems in southern Florida. Ecosystem and population-level modeling is being used to help in the planning and evaluation of this restoration. The specific objective of one of these modeling approaches, the Across Trophic Level System Simulation (ATLSS), is to predict the responses of a suite of higher trophic level species to several proposed alterations in Everglades hydrology. These include several species of wading birds, the snail kite, Cape Sable seaside sparrow, Florida panther, white-tailed deer, American alligator, and American crocodile. ATLSS is an ecosystem landscape-modeling approach and uses Geographic Information System (GIS) vegetation data and existing hydrology models for South Florida to provide the basic landscape for these species. A method of pseudotopography provides estimates of water depths through time at 28 × 28-m resolution across the landscape of southern Florida. Hydrologic model output drives models of habitat and prey availability for the higher trophic level species. Spatially explicit, individual-based computer models simulate these species. ATLSS simulations can compare the landscape dynamic spatial pattern of the species resulting from different proposed water management strategies. Here we compare the predicted effects of one possible change in water management in South Florida with the base case of no change. Preliminary model results predict substantial differences between these alternatives in some biotic spatial patterns. Received 30 April 1997; accepted 16 September 1997.  相似文献   

16.
基于遥感的光合有效辐射吸收比率(FPAR) 估算方法综述   总被引:1,自引:0,他引:1  
董泰锋  蒙继华  吴炳方 《生态学报》2012,32(22):7190-7201
光合有效辐射吸收比率(FPAR)是反映植被生长过程的重要生理参数,是陆地生态系统模型的关键参数,是反映全球气候变化的重要因子。基于遥感的FPAR估算方法是获取区域乃至全球尺度FPAR的有效方法。目前,主要形成了植被指数法和机理法两类方法,植被指数法是建立FPAR与植被指数的经验统计模型,简单、计算效率高;机理法则从物理模型上进行FPAR的求解与反演,机理明晰、可行性强。然而,由于FPAR本身的复杂性以及环境因素、遥感数据质量的影响,导致了估算方法面临诸多不确定性问题。为了解决这些不确定性问题以及满足生态过程深入研究的需求,将进一步注重FPAR的机理研究、先验知识的获取与积累,构建长时间序列FPAR以及高时空的FPAR算法研究。  相似文献   

17.
Huggins R 《Biometrics》2000,56(2):537-545
In the study of longitudinal twin and family data, interest is often in the covariance structure of the data and the decomposition of this covariance structure into genetic and environmental components rather than in estimating the mean function. Various parametric models for covariance structures have been proposed but, e.g., in studies of children where growth spurts occur at various ages, it is difficult to a priori determine an appropriate parametric model for the covariance structure. In particular, there is a general lack of the visualization procedures, such as lowess, that are invaluable in the initial stages of constructing a parametric model for a mean function. Here we use kernel smoothing to modify a cross-sectional approach based on the sample covariance matrices to obtain smoothed estimates of the genetic and environmental variances and correlations for longitudinal twin data. The methods are proposed to be exploratory as an aid to parametric modeling rather than inferential, although approximate asymptotic standard errors are derived in the Appendix.  相似文献   

18.
龙依  蒋馥根  孙华  王天宏  邹琪  陈川石 《生态学报》2022,42(12):4933-4945
植被碳储量估测是自然资源监测的重要内容,遥感技术结合地面样地进行反演可以获得区域范围内植被碳储量的空间连续分布,弥补了传统人工抽样调查估测的不足。然而,现有的参数和非参数遥感估测模型大多忽略了样地数据的变异与空间自相关关系。研究以Landsat 8 OLI影像为数据源提取遥感变量,结合植被碳储量实测调查数据,利用最小信息准则(AICc)、最大空间自相关距离(MSAD)和交叉验证(CV)分别确定最优带宽,组合Gaussian、Bi-square和Exponential核函数构建地理加权回归(GWR)模型估算深圳市植被碳储量,并与多元线性回归(MLR)进行比较,选择最优模型绘制深圳市植被碳储量空间分布图。研究结果表明,GWR模型整体精度优于MLR模型,GWR模型的决定系数(R~2)均高于MLR模型,且均方根误差(RMSE)和平均绝对误差(MAE)显著降低。带宽和核函数的选择对GWR模型估测结果产生了显著影响。以CV确定带宽、Exponential为核函数组合构建的GWR模型效果最佳,其R~2为0.697,RMSE为10.437 Mg C/hm~2,相比其它模型精度上升了13.87%—32....  相似文献   

19.
In epidemic models, the effective reproduction number is of central importance to assess the transmission dynamics of an infectious disease and to orient health intervention strategies. Publicly shared data during an outbreak often suffers from two sources of misreporting (underreporting and delay in reporting) that should not be overlooked when estimating epidemiological parameters. The main statistical challenge in models that intrinsically account for a misreporting process lies in the joint estimation of the time-varying reproduction number and the delay/underreporting parameters. Existing Bayesian approaches typically rely on Markov chain Monte Carlo algorithms that are extremely costly from a computational perspective. We propose a much faster alternative based on Laplacian-P-splines (LPS) that combines Bayesian penalized B-splines for flexible and smooth estimation of the instantaneous reproduction number and Laplace approximations to selected posterior distributions for fast computation. Assuming a known generation interval distribution, the incidence at a given calendar time is governed by the epidemic renewal equation and the delay structure is specified through a composite link framework. Laplace approximations to the conditional posterior of the spline vector are obtained from analytical versions of the gradient and Hessian of the log-likelihood, implying a drastic speed-up in the computation of posterior estimates. Furthermore, the proposed LPS approach can be used to obtain point estimates and approximate credible intervals for the delay and reporting probabilities. Simulation of epidemics with different combinations for the underreporting rate and delay structure (one-day, two-day, and weekend delays) show that the proposed LPS methodology delivers fast and accurate estimates outperforming existing methods that do not take into account underreporting and delay patterns. Finally, LPS is illustrated in two real case studies of epidemic outbreaks.  相似文献   

20.
We review methods for detecting and assessing the strength of density dependence based on 2 types of approaches: surveys of population size and studies of life history traits, in particular demographic parameters. For the first type of studies, methods neglecting uncertainty in population size should definitely be abandoned. Bayesian approaches to simple state-space models accounting for uncertainty in population size are recommended, with some caution because of numerical difficulties and risks of model misspecification. Realistic state-space models incorporating features such as environmental covariates, age structure, etc., may lack power because of the shortness of the time series and the simultaneous presence of process and sampling variability. In all cases, complementing the population survey data with some external information, with priority on the intrinsic growth rate, is highly recommended. Methods for detecting density dependence in life history traits are generally conservative (i.e., tend to underestimate the strength of density dependence). Among approaches to correct for this effect, the state-space formulation of capture–recapture models is again the most promising. Foreseeable developments will exploit integrated monitoring combining population size surveys and individual longitudinal data in refined state-space models, for which a Bayesian approach is the most straightforward statistical treatment. One may thus expect an integration of various types of models that will make it possible to look at density dependence as a complex biological process interacting with other processes rather than in terms of a simple equation; modern statistical and modeling tools make such a synthesis within reach. © 2012 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号