首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m?2 year?1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m?2 year?1). As N addition increased beyond 10 g N m?2 year?1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.  相似文献   

2.
基于2008—2016年青海海北站9年净初级生产力及气候因子监测数据,分析了青藏高原高寒小嵩草草甸和高寒金露梅灌丛两种植被净初级生产力年际动态,并探讨了气候因子对其影响及其不同土层深度根系周转值特征。结果表明:(1)年际尺度上,小嵩草草甸地上净初级生产力表现为显著增加趋势,增幅为7.02 g m~(-2) a~(-1),而金露梅灌丛地上净初级生产力相对较为稳定;对于其地下净初级生产力和总生产力,小嵩草草甸和金露梅灌丛均表现为增加趋势(P0.05),9年间小嵩草草甸地上、地下和总净初级生产力平均值分别为(217.55±9.95)、(1882.75±161.33) g m~(-2) a~(-1)和(2100.30±163.38) g m~(-2) a~(-1),金露梅灌丛地上、地下和总净初级生产力9年间平均值分别为(256.27±11.4)、(1614.31±173.03) g m~(-2) a~(-1)和(1870.58±177.93) g m~(-2) a~(-1)。(2)不同植被类型地上净初级生产力对气候因素响应不同,金露梅灌丛地上净初级生产力主要受温度影响,而温度对小嵩草草甸地上净初级生产力无显著影响。此外,降水不是限制高寒生态系统草地地上净初级生产力主要因子,相比于降水影响,高寒生态系统地上净初级生产力更受温度调控。(3)年均温和年降水对金露梅灌丛和小嵩草草甸地下净初级生产力均无显著影响(P0.05),表明高寒生态系统,其地下生产力受外界气候条件变化影响微弱,是一个稳定的碳库。(4)两种植被类型其根系周转值均随着土壤深度的增加呈逐渐增加趋势,且高寒灌丛根系周转值明显高于高寒草甸根系周转值。研究表明,在全球气候变暖背景下将会增加金露梅灌丛地上净初级生产力,而对小嵩草草甸地上净初级生产力无显著影响。  相似文献   

3.
Conceptual restoration models depict strong correlations between structure and function, with both decreasing as an ecosystem is degraded and increasing during restoration. We evaluated the “linear” and “asymptotic” models by measuring diversity and annual net primary productivity (NPP) within four states of a southern Wisconsin floodplain: a remnant (unplowed) wet prairie, two degraded sites (soybean field and invaded prairie), and a restored prairie. Neither model fit our data for aboveground (ANPP), belowground (BNPP), or total (TNPP) productivity. ANPP declined as species richness increased (r = 0.998, df = 2), with highest values for soybeans (1,024 g/m2; two species in 30 0.25‐m2 plots) and invaded prairie (937 g/m2; nine species, 99% cover of Phalaris arundinacea), intermediate for restored prairie (712 g/m2; 28 species), and lowest for diverse remnant prairie (571 g/m2; 36 species). In contrast, BNPP was lowest for soybeans (225 g/m2) and highest for remnant prairie (571 g/m2). TNPP in restored prairie (990 g/m2) matched that of the remnant (1,147 g/m2) within 7 years, but root:shoot NPP ratios were quite different (0.39 and 0.99, respectively). Overall, results suggest that the relationship between species diversity and productivity can differ with the component measured (ANPP, BNPP, or TNPP) and that diversity does not ensure high productivity. Because measuring ANPP does not fully test ecosystem‐function theory, we recommend assessing BNPP and additional ecosystem processes in future attempts to determine whether adding species will restore more function to degraded ecosystems.  相似文献   

4.
Net primary production (NPP) is a fundamental property of natural ecosystems. Understanding the temporal variations of NPP could provide new insights into the responses of communities to environmental factors. However, few studies based on long‐term field biomass measurements have directly addressed this subject in the unique environment of the Qinghai‐Tibet plateau (QTP). We examined the interannual variations of NPP during 2008–2015 by monitoring both aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP), and identified their relationships with environmental factors with the general linear model (GLM) and structural equation model (SEM). In addition, the interannual variation of root turnover and its controls were also investigated. The results show that the ANPP and BNPP increased by rates of 15.01 and 143.09 g/m2 per year during 2008–2015, respectively. BNPP was mainly affected by growing season air temperature (GST) and growing season precipitation (GSP) rather than mean annual air temperature (MAT) or mean annual precipitation (MAP), while ANPP was only controlled by GST. In addition, available nitrogen (AN) was significantly positively associated with BNPP and ANPP. Root turnover rate averaged 30%/year, increased with soil depth, and was largely controlled by GST. Our results suggest that alpine Kobresia meadow was an N‐limited ecosystem, and the NPP on the QTP might increase further in the future in the context of global warming and nitrogen deposition.  相似文献   

5.
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP, defined as the fraction of belowground NPP (BNPP) to NPP], and rain‐use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and half), and annual clipping in a mixed‐grass prairie in Oklahoma, USA since July, 2009. Across the years, warming significantly increased BNPP, fBNPP, and RUEBNPP by an average of 11.6%, 2.8%, and 6.6%, respectively. This indicates that BNPP was more sensitive to warming than aboveground NPP (ANPP) since warming did not change ANPP and RUEANPP much. Double precipitation stimulated ANPP, BNPP, and NPP but suppressed RUEANPP, RUEBNPP, and RUENPP while half precipitation decreased ANPP, BNPP, and NPP but increased RUEANPP, RUEBNPP, and RUENPP. Clipping interacted with altered precipitation in impacting RUEANPP, RUEBNPP, and RUENPP, suggesting land use could confound the effects of precipitation changes on ecosystem processes. Soil moisture was found to be a main factor in regulating variation in ANPP, BNPP, and NPP while soil temperature was the dominant factor influencing fBNPP. These findings suggest that BNPP is critical point to future research. Additionally, results from single‐factor manipulative experiments should be treated with caution due to the non‐additive interactive effects of warming with altered precipitation and land use (clipping).  相似文献   

6.
Gao YZ  Chen Q  Lin S  Giese M  Brueck H 《Oecologia》2011,165(4):855-864
Productivity of semiarid grasslands is affected by soil water and nutrient availability, with water controlling net primary production under dry conditions and soil nutrients constraining biomass production under wet conditions. In order to investigate limitations on plants by the response of root–shoot biomass allocation to water and nitrogen (N) availability, a field experiment, on restoration plots with rainfed, unfertilized control plots, fertilized plots receiving N (25 kg urea-N ha−1) and water (irrigation simulating a wet season), was conducted at two sites with different grazing histories: moderate (MG) and heavy (HG) grazing. Irrigation and N addition had no effect on belowground biomass. Irrigation increased aboveground (ANPP) and belowground net primary production (BNPP) and rain-use efficiency based on ANPP (RUEANPP), whereas N addition on rainfed plots had no effect on any of the measured parameters. N fertilizer application on irrigated plots increased ANPP and RUEANPP and reduced the root fraction (RF: root dry matter/total dry matter), resulting in smaller N effects on total net primary production (NPP) and rain-use efficiency based on NPP. This suggests that BNPP should be included in evaluating ecosystem responses to resource availability from the whole-plant perspective. N effects on all measured parameters were similar on both sites. However, site HG responded to irrigation with higher ANPP and a lower RF when compared to site MG, indicating that species composition had a pronounced effect on carbon allocation pattern due to below- and aboveground niche complementarity.  相似文献   

7.
Determining the abundance of N isotope (δ15N) in natural environments is a simple but powerful method for providing integrated information on the N cycling dynamics and status in an ecosystem under exogenous N inputs. However, whether the input of different N compounds could differently impact plant growth and their 15N signatures remains unclear. Here, the response of 15N signatures and growth of three dominant plants (Leymus chinensis, Carex duriuscula, and Thermopsis lanceolata) to the addition of three N compounds (NH4HCO3, urea, and NH4NO3) at multiple N addition rates were assessed in a meadow steppe in Inner Mongolia. The three plants showed different initial foliar δ15N values because of differences in their N acquisition strategies. Particularly, T. lanceolata (N2-fixing species) showed significantly lower 15N signatures than L. chinensis (associated with arbuscular mycorrhizal fungi [AMF]) and C. duriuscula (associated with AMF). Moreover, the foliar δ15N of all three species increased with increasing N addition rates, with a sharp increase above an N addition rate of ~10 g N m−2 year−1. Foliar δ15N values were significantly higher when NH4HCO3 and urea were added than when NH4NO3 was added, suggesting that adding weakly acidifying N compounds could result in a more open N cycle. Overall, our results imply that assessing the N transformation processes in the context of increasing global N deposition necessitates the consideration of N deposition rates, forms of the deposited N compounds, and N utilization strategies of the co-existing plant species in the ecosystem.  相似文献   

8.
Simple light use efficiency (ɛ) models of net primary production (NPP) have recently been given great attention (NPP = ɛ × absorbed photosynthetically active radiation). The underlying relationships have, however, not been much studied on a time step less than a month. In this study daily NPP was estimated as the sum of net ecosystem exchange (NEE) and heterotrophic respiration (Rh) of a mixed pine and spruce forest in Sweden. NEE was measured by eddy correlation technique and Rh was estimated from measurements of forest floor respiration (Rf) and the root share of Rf. The total yearly NPP was on average 810 g C m−2 year−1 for 3 years and yearly ɛ was between 0.58 and 0.71 g C MJ−1, which is high in comparison with other studies. There was a seasonal trend in ɛ with a relatively constant level of approximately 0.90 g C MJ−1 from April to September Daily NPP did not increase for daily intercepted radiation above 6 MJ m−2 d−1, indicating that between-years variation in NPP is not directly dependent on total Qi. The light was most efficiently used at an average daytime temperature of around 15 °C. At daytime vapour pressure deficit above 1400 Pa ɛ was reduced by approximately 50%.  相似文献   

9.
《Aquatic Botany》1987,27(3):267-284
The composition and productivity of two mangrove sites surrounding the Laguna de Términos, Mexico, were studied from March 1979 to January 1984. Measurements were made of the tree composition, above-ground woody biomass changes, and litterfall production at a high-salinity fringing site and a low-salinity riverine site. Rhizophora mangle L. was the dominant tree at the fringing site, but occurred only at the water's edge at the riverine site. Avicennia germinans L. dominated the inland area of the riverine site. Laguncularia racemosa Gaertn. f. had a more even distribution from shore to inland and from site to site. Average diameter at breast height (DBH) was greater at the riverine site for each of the three species; however, tree density (trees > 2.5 cm DBH) was more than twice as high at the fringing site (7510 ha−1) than at the riverine site (3360 ha−1). Wood production (1206 g m−2 year−1 vs. 772 g m−2 year−1) and litterfall (1252 g m−2 year−1 vs. 835 g m−2) were higher at the riverine site than at the fringing site. Total estimated above-ground net production was 2458 g m−2 year−1 at the riverine site and 1607 g m−2 year−1 at the fringing site.  相似文献   

10.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

11.
A network of long-term monitoring sites on nitrogen (N) input and output of forests across Germany showed that a number of Germany's forests are subject to or are experiencing N saturation and that spruce (Picea abies) stands have high risk. Our study was aimed at (1) quantifying the changes in gross rates of microbial N cycling and retention processes in forest soils along an N enrichment gradient and (2) relating the changes in soil N dynamics to N losses. We selected spruce sites representing an N enrichment gradient (indicated by leaching : throughfall N ratios) ranging from 0.04–0.13 (low N),≤0.26 (intermediate N enrichment) to≥0.42 (highly N enriched). To our knowledge, our study is the first to report on mechanistic changes in gross rates of soil N cycling and abiotic NO3 retention under ambient N enrichment gradient. Gross N mineralization, NH4+ immobilization, gross nitrification, and NO3 immobilization rates increased up to intermediate N enrichment level and somewhat decreased at highly N-enriched condition. The turnover rates of NH4+ and microbial N pools increased while the turnover rates of the NO3 pool decreased across the N enrichment gradient. Abiotic immobilization of NH4+ did not differ across sites and was lower than that of NO3. Abiotic NO3 immobilization decreased across the N enrichment gradient. Microbial assimilation and turnover appeared to contribute largely to the retention of NH4+. The increasing NO3 deposition and decreasing turnover rates of the NO3 pool, combined with decreasing abiotic NO3 retention, possibly contributed to increasing NO3 leaching and gaseous emissions across the N enrichment gradient. The empirical relationships of changes in microbial N cycling across the N enrichment gradient may be integrated in models used to predict responses of forest ecosystems (e.g. spruce) to increasing N deposition.  相似文献   

12.
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2‐year experiment in three US Great Plains grasslands – the C4‐dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3‐dominated northern mixed grass prairie (NMP; intermediate ANPP) – to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high‐rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11–13) small or (ii) fewer (3–5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3‐dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above‐ and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.  相似文献   

13.
Our current ability to detect and predict changes in forest ecosystem productivity is constrained by several limitations. These include a poor understanding of belowground productivity, the short duration of most analyses, and a need for greater examination of species- or community-specific variability in productivity studies. We quantified aboveground net primary productivity (ANPP) over 3 years (1999–2001), and both belowground NPP (BNPP) and total NPP over 2 years (2000–2001) in both mesic and xeric site community types of the mixed mesophytic forest of southeastern Kentucky to examine landscape variability in productivity and its relation with soil resource [water and nitrogen (N)] availability. Across sites, ANPP was significantly correlated with N availability (R2 = 0.58, P = 0.028) while BNPP was best predicted by soil moisture content (R2 = 0.72, P = 0.008). Because of these offsetting patterns, total NPP was unrelated to either soil resource. Interannual variability in growing season precipitation during the study resulted in a 50% decline in mesic site litter production, possibly due to a lag effect following a moderate drought year in 1999. As a result, ANPP in mesic sites declined 27% in 2000 compared to 1999, while xeric sites had no aboveground production differences related to precipitation variability. If global climate change produces more frequent occurrences of drought, then the response of mesic sites to prolonged moisture deficiency and the consequences of shifting carbon (C) allocation on C storage will become important questions.  相似文献   

14.
Soil acidification induced by reactive nitrogen (N) inputs can alter the structure and function of terrestrial ecosystems. Because different N-transformation processes contribute to the production and consumption of H+, the magnitude of acidification likely depends on the relative amounts of organic N (ON) and inorganic N (IN) inputs. However, few studies have explicitly measured the effects of N composition on soil acidification. In this study, we first conducted a meta-analysis to test the effects of ON or IN inputs on soil acidification across 53 studies in grasslands. We then compared soil acidification across five different ON:IN ratios and two input rates based on long-term field N addition experiments. The meta-analysis showed that ON had weaker effects on soil acidification than IN when the N addition rate was above 20 g N m−2 year−1. The field experiment confirmed the findings from meta-analysis: N addition with proportions of ON ≥ 20% caused less soil acidification, especially at a high input rate (30 g N m−2 year−1). Structural equation model analysis showed that this result was largely due to a relatively low rate of H+ production from ON as NH3 volatilization and uptake of ON and NH4+ by the dominant grass species Leymus chinensis (which are both lower net contributors to H+ production) result in less NH4+ available for nitrification (which is a higher net contributor to H+ production). These results indicate that the evaluation of soil acidification induced by N inputs should consider N forms and manipulations of relative composition of N inputs may provide an effective approach to alleviate the N-induced soil acidification.  相似文献   

15.
While water availability determines grassland productivity in semiarid regions, nutrient availability is the main limiting factor under wet conditions. An experiment was conducted in 2008 at two sites in Inner Mongolia with histories of heavy grazing (HG) and moderate grazing (MG) to study the interactive effects of water and nitrogen on above- and belowground net primary productivity (ANPP and BNPP), biomass partitioning, and plant species composition. The study comprises two water treatments (no irrigation and irrigated when soil water content was below 70% of the field capacity), and two nitrogen (N) levels (0 and 100 kg N ha?1). Mean values of ANPP at the peak biomass time reached 1,028?±?95 SD g m?2 at the HG site and 568?±?32 SD g m?2 at the MG site in irrigated and fertilized treatment. Nitrogen use efficiency (NUE) was significantly higher at irrigated plots compared to rain-fed plots at both HG and MG sites. Water use efficiency (WUEt) based on total water input and ANPP decreased with irrigation at the HG site. Meanwhile, N application significantly increased WUEt, WUEp (based on precipitation), and WUEi (based on irrigation water) at both sites. BNPP was significantly higher at irrigated plots compared to rain-fed plots at both HG and MG sites, and it tended to decrease with N addition. However, the fraction of belowground to total biomass (f BNPP = BNPP/(ANPP+BNPP) decreased with the addition of supplemental resources and exhibited a negative correlation with ANPP. Species diversity remained lower at the HG site compared to the MG site; it decreased with the addition of supplemental resources at the latter site. The annual Salsola collina contributed the most to the total biomass under irrigation. Based on global climate models, more frequent extreme climates are predicted in the future, which can result in changes in resource availabilities. Therefore, our research results have important implications for predicting the production and other properties of grassland ecosystems.  相似文献   

16.
We investigated how temperature and nutrient availability regulate fine-root productivity in nine tropical rainforest ecosystems on two altitudinal gradients with contrasting soil phosphorus (P) availabilities on Mount Kinabalu, Borneo. We measured the productivity and the nutrient contents of fine roots, and analyzed the relationships between fine-root parameters and environmental factors. The fine-root net primary productivity (NPP), total NPP, and ratio of fine-root NPP to total NPP differed greatly among the sites, ranging from 72 to 228 (g m?2 year?1), 281–2240 (g m?2 year?1), and 0.06–0.30, respectively. A multiple-regression analysis suggested a positive effect of P availability on total NPP, whereas fine-root NPP was positively correlated with mean annual temperature and with P and negatively correlated with N. The biomass and longevity of fine roots increased in response to the impoverishment of soil P. The carbon (C) to P ratio (C/P) of fine roots was significantly and positively correlated with the P-use efficiency of above-ground litter production, indicating that tropical rainforest trees dilute P in fine roots to maintain the C allocation ratio to these roots. We highlighted the mechanisms regulating the fine-root productivity of tropical rainforest ecosystems in relation to the magnitude of nutrient deficiency. The trees showed C-conservation mechanisms rather than C investment as responses to decreasing soil P availability, which demonstrates that the below-ground systems at these sites are strongly limited by P, similar to the above-ground systems.  相似文献   

17.
Changes in land management and reductions in fire frequency have contributed to increased cover of woody species in grasslands worldwide. These shifts in plant community composition have the potential to alter ecosystem function, particularly through changes in soil processes and properties. In semi-arid grasslands, the invasion of shrubs and trees is often accompanied by increases in soil resources and more rapid N and C cycling. We assessed the effects of shrub encroachment in a mesic grassland in Kansas (USA) on soil CO2 flux, extractable inorganic N, and N mineralization beneath shrub communities (Cornus drummondii) and surrounding undisturbed grassland sites. In this study, a shift in plant community composition from grassland to shrubland resulted in a 16% decrease in annual soil CO2 flux(4.78 kg CO2 m–2 year–1 for shrub dominated sites versus 5.84 kg CO2 m–2 year–1 for grassland sites) with no differences in total soil C or N or inorganic N. There was considerable variability in N mineralization rates within sites, which resulted in no overall difference in cumulative N mineralized during this study (4.09 g N m–2 for grassland sites and 3.03 g N m–2 for shrub islands). These results indicate that shrub encroachment into mesic grasslands does not significantly alter N availability (at least initially), but does alter C cycling by decreasing soil CO2 flux.  相似文献   

18.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   

19.
A global scale Dynamic Nitrogen scheme (DyN) has been developed and incorporated into the Lund–Posdam–Jena (LPJ) dynamic global vegetation model (DGVM). The DyN is a comprehensive process‐based model of the cycling of N through and within terrestrial ecosystems, with fully interactive coupling to vegetation and C dynamics. The model represents the uptake, allocation and turnover of N in plants, and soil N transformations including mineralization, N2 fixation, nitrification and denitrification, NH3 volatilization, N leaching, and N2, N2O and NO production and emission. Modelled global patterns of site‐scale nitrogen fluxes and reservoirs are highly correlated to observations reported from different biomes. The simulation of site‐scale net primary production and soil carbon content was improved relative to the original LPJ, which lacked an interactive N cycle, especially in the temporal and boreal regions. Annual N uptake by global natural vegetation was simulated as 1.084 Pg N yr−1, with lowest values <1 g N m−2 yr−1 (polar desert) and highest values in the range 24–36.5 g N m−2 yr−1 (tropical forests). Simulated global patterns of annual N uptake are consistent with previous model results by Melillo et al. The model estimates global total nitrogen storage potentials in vegetation (5.3 Pg N), litter (4.6 Pg N) and soil (≥67 Pg as organic N and 0.94 Pg as inorganic N). Simulated global patterns of soil N storage are consistent with the analysis by Post et al. although total simulated N storage is less. Deserts were simulated to store 460 Tg N (up to 0.262 kg N m−2) as NO3, contributing 80% of the global total NO3 inventory of 580 Tg N. This model result is in agreement with the findings of a large NO3 pool beneath deserts. Globally, inorganic soil N is a small reservoir, comprising only 1.6% of the global soil N content to 1.5 m soil depth, but the ratio has a very high spatial variability and in hot desert regions, inorganic NO3 is estimated to be the dominant form of stored N in the soil.  相似文献   

20.
Ni  Jian 《Plant Ecology》2004,174(2):217-234
Data on field biomass measurements in temperate grasslands of northern China (141 samples from 74 sites) were obtained from 23 Chinese journals, reports and books. Net primary productivity (NPP) of grasslands was estimated using three algorithms (peak live biomass, peak standing crop and maximum minus minimum live biomass), respectively, based on availability of biomass data in sites. 135 samples which have aboveground biomass (AGB) measurements, have peak AGB ranges from 20 to 2021 g m–2 (mean = 325.3) and the aboveground NPP (ANPP) ranges from 15 to 1647.1 g m–2 per year (mean = 295.7). 72 samples which have belowground biomass (BGB) measurements, have peak BGB ranges from 226.5 to 12827.5 g m–2 (mean = 3116) and the belowground NPP (BNPP) ranges from 15.8 to 12827.5 g m–2 per year (mean = 2425.6). In total 66 samples have the total NPP (TNPP), ranging from 55.3 to 13347.8 g m–2 per year (mean = 2980.3). Mean peak biomass and NPP varied from different geographical sampling locations, but they had a general rough regularity in ten grasslands. Meadow, mountain and alpine grasslands had high biomass and NPP (sometimes including saline grassland). Forested steppe, saline grassland and desert had median values. Meadowed and typical steppes had low biomass and NPP (sometimes including desert). The lowest biomass and NPP occurred in deserted steppe and stepped desert. Grassland ANPP has significant positive relationships with annual and summer precipitation as well as summer temperature (all p<0.01). However, grassland BNPP and TNPP have more significant negative relationships with summer temperature (p<0.01) than with annual temperature (p<0.05). The analysis of climate – productivity correlations implied that aboveground productivity is more controlled by rainfall, whereas belowground and total productivity is more influenced by temperature in the temperate grasslands of northern China. The present study might underestimate grassland NPP in northern China due to limitation of biomass measurements. Data on relative long-term aboveground and belowground biomass dynamics, as well as data of standing dead matter, litterfall, decomposition and turnover, are required if grassland NPP is to be more accurately estimated and the role of temperate grasslands in the regional to global carbon cycles is to be fully appreciated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号