首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emergent aquatic insects constitute an important food source for higher trophic levels, linking aquatic to terrestrial ecosystems. Little is known about how land use affects the biomass or composition of insect emergence. Previous studies are limited to individual time points or seasons, hampering understanding of annual biomass export patterns and detection of phenological changes. Over 1 year's primary emergence period, we continuously determined the biomass, abundance, and identity of >45,000 aquatic insects and recorded land-use-related environmental variables in 20 stream sites using a paired design with upstream forested sites and downstream agricultural sites. Total insect biomass and abundance were 2–7 mg day−1 m−2 and 7–36 ind day−1 m−2 higher in agricultural than forested sites. However, we found turnover of families between forested and agricultural sites, with more insects with shorter generation time in agriculture, indicating lower sensitivity to land-use-related stress because of higher recovery potential. Except for stoneflies, biomass and abundance of major orders were higher in agriculture, but their phenology differed. For different orders, emergence peaked 30 days earlier to 51 days later in agriculture than forest, whereas total abundance and biomass both peaked earlier in agriculture: 3–5 and 3–19 days, respectively. The most important land-use-related drivers were pesticide toxicity and electrical conductivity, which were differentially associated with different aquatic insect order abundances and biomass. Overall, we found that land use was related to changes in composition and phenology of aquatic insect emergence, which is likely to affect food-web dynamics in a cross-ecosystem context.  相似文献   

2.
Adult aquatic insects are a common resource for many terrestrial predators, often considered to subsidize terrestrial food webs. However, larval aquatic insects themselves consume both aquatic primary producers and allochthonous terrestrial detritus, suggesting that adults could provide aquatic subsidy and/or recycled terrestrial energy to terrestrial consumers. Understanding the source of carbon (aquatic vs. terrestrial) driving aquatic insect emergence is important for predicting magnitude of emergence and effects on recipient food web dynamics; yet direct experimental tests of factors determining source are lacking. Here, we use Culex mosquitoes in experimental pools as an exemplar to test how variation in general factors common to aquatic systems (terrestrial plant inputs and light) may alter the source and amount of energy exported to terrestrial ecosystems in adult aquatic insects that rely on terrestrial resources as larvae. We found strong sequential effects of terrestrial plant inputs and light on aquatic insect oviposition, diet, and emergence of Culex mosquitoes. Ovipositing mosquitoes laid ~3 times more egg masses in high terrestrial input pools under low light conditions. This behavior increased adult emergence from pools under low light conditions; however, high input pools (which had the highest mosquito densities) showed low emergence rates due to density-dependent mortality. Mosquito diets consisted mainly of terrestrial resources (~70–90 %). As a result, the amount of aquatic carbon exported from pools by mosquitoes during the experiment was ~18 times higher from low versus high light pools, while exports of terrestrial carbon peaked from pools receiving intermediate levels of inputs (3–6 times higher) and low light (~6 times higher). Our results suggest that understanding the interplay among terrestrial plant inputs, light availability and biotic responses of aquatic insects may be key in predicting source and magnitude of emergence, and thus the strength and effects of aquatic–terrestrial linkages in freshwater systems.  相似文献   

3.
A variety of organisms mediate river–terrestrial linkages through spatial subsidies. However, most empirical studies have classified organisms rather broadly (e.g., by functional group or taxonomic family) and have dismissed species-level linkages at the interface of ecosystems. Here, we show how allochthonous resource use varies among taxonomically similar species of ground beetles (family Carabidae) across seasons (June–September). We investigated seasonal shifts in the distribution of five beetle species and their dietary responses to spatial subsidies (emerging aquatic insects) in a Japanese braided river. Despite their taxonomic closeness, the ground beetles showed species-specific responses to spatial subsidies, and beetle distribution patterns tended to coincide with their diets. Overall, 1–56% of ground beetle diets were derived from aquatic prey. One genus (Bembidion spp.) mainly consumed aquatic prey, while three species fed primarily on terrestrial prey across all seasons. However, one species (Lithochlaenius noguchii) showed shifts in its diet from aquatic to terrestrial prey according to subsidy availability. The observed variation in allochthonous resource use was likely related to species-specific foraging modes, physiological tolerance to dry conditions, and interspecific competition. Our findings suggest that considering species-specific interactions is necessary to fully understand cross-system interactions and recipient food-web dynamics.  相似文献   

4.
Some terrestrial consumers may be limited by food quality, namely by contents of essential polyunsaturated fatty acids (PUFA), eicosapentaenoic acid (20:5n−3, EPA) and docosahexaenoic acid (22:6n−3, DHA) in their food. Since EPA and DHA are mainly produced in aquatic ecosystems, for future estimating of the potential limitation by food quality in global scale, the water-land fluxes of these PUFA with the biomass of emergent aquatic insects in several biomes were calculated. The water /land area ratios for each biome were calculated by dividing the water area of each biome by its terrestrial area. Data on insect emergence from water bodies (g of dry mass m−2 year−1), were summarized and averaged for each biome. From available data, EPA and DHA contents (mg g−1dry mass), in the biomass of emergent aquatic insects were calculated first so that annual fluxes of PUFA to land area via aquatic insect emergence could be estimated for each biome. PUFA fluxes occurred between the biomes, ranging from 0.04 to 4.39 mg m−2 year−1. In this study, the aquatic PUFA supply to land area appeared to be significantly lower than estimated earlier. This suggests that terrestrial consumers may experience food quality limitations mediated by shortage of PUFA compounds.  相似文献   

5.
6.
7.
8.

Background and Aims

Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere.

Methods

Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1–9 years per site from 1998 to 2011.

Key Results

The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern

Conclusions

The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.  相似文献   

9.
Xia J  Wan S 《PloS one》2012,7(2):e32088

Background

The longer growing season under climate warming has served as a crucial mechanism for the enhancement of terrestrial carbon (C) sink over the past decades. A better understanding of this mechanism is critical for projection of changes in C cycling of terrestrial ecosystems.

Methodology/Principal Findings

A 4-year field experiment with day and night warming was conducted to examine the responses of plant phenology and their influences on plant coverage and ecosystem C cycling in a temperate steppe in northern China. Greater phenological responses were observed under night than day warming. Both day and night warming prolonged the growing season by advancing phenology of early-blooming species but without changing that of late-blooming species. However, no warming response of vegetation coverage was found for any of the eight species. The variances in species-level coverage and ecosystem C fluxes under different treatments were positively dependent upon the accumulated precipitation within phenological duration but not the length of phenological duration.

Conclusions/Significance

These plants'' phenology is more sensitive to night than day warming, and the warming effects on ecosystem C exchange via shifting plant phenology could be mediated by precipitation patterns in semi-arid grasslands.  相似文献   

10.

Aim

To evaluate how environment and evolutionary history interact to influence global patterns of mammal trait diversity (a combination of 14 morphological and life‐history traits).

Location

The global terrestrial environment.

Taxon

Terrestrial mammals.

Methods

We calculated patterns of spatial turnover for mammalian traits and phylogenetic lineages using the mean nearest taxon distance. We then used a variance partitioning approach to establish the relative contribution of trait conservatism, ecological adaptation and clade specific ecological preferences on global trait turnover.

Results

We provide a global scale analysis of trait turnover across mammalian terrestrial assemblages, which demonstrates that phylogenetic turnover by itself does not predict trait turnover better than random expectations. Conversely, trait turnover is consistently more strongly associated with environmental variation than predicted by our null models. The influence of clade‐specific ecological preferences, reflected by the shared component of phylogenetic turnover and environmental variation, was considerably higher than expectations. Although global patterns of trait turnover are dependent on the trait under consideration, there is a consistent association between trait turnover and environmental predictive variables, regardless of the trait considered.

Main conclusions

Our results suggest that changes in phylogenetic composition are not always coupled with changes in trait composition on a global scale and that environmental conditions are strongly associated with patterns of trait composition across species assemblages, both within and across phylogenetic clades.  相似文献   

11.

Aim

The capacity for poleward range expansions beyond the tropics in corals hinges on ecophysiological constraints and resulting responses to climatic variability. We aimed to determine how future warming will affect coral habitat suitability at the poleward range edges of these foundational species in the Northwest Pacific.

Location

Northwest Pacific.

Methods

We generated models integrating thermal physiological constraints of corals adapted to extreme seasonality in Hong Kong, specifically the minimum annual temperature and the proportion of time annually spent at seasonal extremes. With these models, we projected habitat suitability for five coral species under current and future climatic conditions across the Northwest Pacific.

Results

Climate model projections reveal an easing of thermal constraints on the leading-edge of coral ecophysiological limits with an expansion of thermally suitable habitat poleward by 2°–7° in latitude depending on the coral species and model considered. We also highlight a potential divergence of present and future thermal regimes that may lead to a mismatch in suitability for corals currently inhabiting high latitude reefs.

Main Conclusions

Understanding the thermal constraints on coral distributions and defining the potential range of corals under climate change is critical for adaptive management that focuses on coral conservation and ensuring ecosystem function of existing subtropical and temperate ecosystems.  相似文献   

12.
Community structure and dynamics can be influenced by resource transfers between ecosystems, yet little is known about how boundary structure determines both the magnitude of exchanges and their effects on recipient and donor communities. Aquatic and terrestrial ecosystems are often linked by resource fluxes and riparian vegetation is commonly affected by anthropogenic alterations to land use or river hydrological regime. I investigated whether shrubs at the freshwater–terrestrial interface alter the supply, distribution and importance of aquatic prey resources to terrestrial consumers. Shrubs were predicted to alter the larval community composition of aquatic insects and the emergence of winged adults, thus affecting aquatic prey subsidies to terrestrial consumers. In addition, shrubs were hypothesized to alter the microclimatic suitability of the riparian zone for adult aquatic insects, act as a physical barrier to their dispersal and affect terrestrial community composition, particularly the abundance and type of predators that could benefit from the aquatic prey resource. Stable isotope dietary analyses and a survey of shrub‐dominated and open grassland riparian habitats revealed that larval densities of aquatic insects (EPTM: Ephemeroptera, Plecoptera, Trichoptera and Megaloptera) were higher in shrub than grassland habitats; however, reduced emergence and lateral dispersal in shrub areas led to lower densities of adults. The temperature and relative humidity of the riparian zone did not differ between the habitats. Ground‐active terrestrial invertebrate communities had a higher proportion of cursorial spiders in grassland, coinciding with greater abundances of aquatic prey. Aquatic prey contribution to cursorial spider diet matched adult aquatic insect abundances. Overall, riparian shrubs reduced the magnitude, or at least altered the timing, of cross‐ecosystem subsidy supply, distribution and use by consumers through mechanisms operating in both the aquatic and terrestrial ecosystems. Thus, the structure of ecosystem boundaries has complex effects on the strength of biological interactions between adjacent systems.  相似文献   

13.
14.
The strength and direction of phenological responses to changes in climate have been shown to vary significantly both among species and among populations of a species, with the overall patterns not fully resolved. Here, we studied the temporal and spatial variability associated with the response of several insect species to recent global warming. We use hierarchical models within a model comparison framework to analyze phenological data gathered over 40 years by the Japan Meteorological Agency on the emergence dates of 14 insect species at sites across Japan. Contrary to what has been predicted with global warming, temporal trends of annual emergence showed a later emergence day for some species and sites over time, even though temperatures are warming. However, when emergence data were analyzed as a function of temperature and precipitation, the overall response pointed out an earlier emergence day with warmer conditions. The apparent contradiction between the response to temperature and trends over time indicates that other factors, such as declining populations, may be affecting the date phenological events are being recorded. Overall, the responses by insects were weaker than those found for plants in previous work over the same time period in these ecosystems, suggesting the potential for ecological mismatches with deleterious effects for both suites of species. And although temperature may be the major driver of species phenology, we should be cautious when analyzing phenological datasets as many other factors may also be contributing to the variability in phenology.  相似文献   

15.
Many ecosystems are linked to their adjacent ecosystems by movements of organisms. For instance, aquatic and terrestrial ecosystems are linked via emerging aquatic insects that serve as prey for terrestrial consumers. However, the role of these organisms in returning recycled carbon to the ecosystem from which it originated is not well known. This is due to the fact that values of carbon isotope signatures from terrestrial leaves and aquatic resources are usually similar and hence results of isotope mixing models need to be considered with caution. We overcame this problem by adding isotopically distinct terrestrial particulate organic carbon (tPOC) as a tracer to the experimental sides of two lakes that were divided in two equal halves with plastic curtains. We focused on aquatic insect larvae (Chironomidae) that fed on maize Zea mays leaves experimentally added to the lakes, and subsequently became prey for terrestrial predators (spiders) after emergence. The carbon isotope values of Chironomidae and spiders were significantly elevated in the lake treatment sides as compared to reference sides, whereas the values of all autochthonous resources were not affected by maize additions. Estimates from stable isotope mixing models indicated a low but demonstrable contribution of maize leaves to the diet of Chironomidae. Overlap between the isotope values of alder leaves, the major natural tPOC source, and autochthonous resources prevented a reliable quantification of allochthony of Chironomidae. However, we qualitatively demonstrated the flow of terrestrial particulate organic carbon to lakes, as leaf fall, and back to terrestrial surroundings via emerging insects. This ‘boomerang’ carbon flux between land and lakes blurs the distinction between autochthonous and allochthonous carbon sources.  相似文献   

16.

Background

Ecological succession drives large-scale changes in ecosystem composition over time, but the mechanisms whereby climatic change might alter succession remain unresolved. Here, we asked if the effects of atmospheric and climatic change would alter tree seedling emergence and establishment in an old-field ecosystem, recognizing that small shifts in rates of seedling emergence and establishment of different species may have long-term repercussions on the transition of fields to forests in the future.

Methodology/Principal Findings

We introduced seeds from three early successional tree species into constructed old-field plant communities that had been subjected for 4 years to altered temperature, precipitation, and atmospheric CO2 regimes in an experimental facility. Our experiment revealed that different combinations of atmospheric CO2 concentration, air temperature, and soil moisture altered seedling emergence and establishment. Treatments directly and indirectly affected soil moisture, which was the best predictor of seedling establishment, though treatment effects differed among species.

Conclusions

The observed impacts, coupled with variations in the timing of seed arrival, are demonstrated as predictors of seedling emergence and establishment in ecosystems under global change.  相似文献   

17.

Aim

The identification of biogeographical zones has been fundamental in broadscale biodiversity analyses over the last 150 years. If processes underlying bioregionalization, such as climatic differences, tectonics and physical barriers, are consistent across vertebrate clades, we expect that groups with more similar ecological characteristics would show more similar bioregions. Lack of data has so far hampered the delineation of global bioregions for reptiles. Therefore, we integrated comprehensive geographic distribution and phylogenetic data of lepidosaurian reptiles to delineate global reptile bioregions, compare determinants of biogeographical boundaries across terrestrial vertebrates and test whether clades showing similar responses to environmental factors also show more similar bioregions.

Location

Global.

Time Period

Present.

Major Taxa Studied

Reptiles, amphibians, birds, mammals.

Methods

For reptiles, we used phylogenetic beta diversity to quantify changes in community composition, and hierarchical clustering to identify biogeographic ‘realms’ and ‘regions’. Then, we assessed the determinants of biogeographical boundaries using spatially explicit regression models, testing the effect of climatic factors, physical barriers and tectonics. Bioregions of reptiles were compared to those of other vertebrate clades by testing the overall similarity of the spatial structure of bioregions, and the match of the position of biogeographical boundaries.

Results

For reptiles, we identified 24 evolutionarily unique regions, nested within 14 realms. Biogeographical boundaries of reptiles were related to both climatic factors and past tectonic movements. Bioregions were very consistent across vertebrate clades. Bioregions of reptiles and mammals showed the highest similarity, followed by reptiles/birds and mammals/birds while amphibian bioregions were less similar to those of the other clades.

Main Conclusions

The overall high similarity among bioregions suggests that bioregionalization was affected by similar underlying processes across terrestrial vertebrates. Nevertheless, clades with different eco-physiological characteristics respond somewhat differently to the same environmental factors, resulting in similar but not identical regionalizations across vertebrate clades.  相似文献   

18.
In headwater streams, many aquatic insects rely on terrestrial detritus, while their emergence from streams often subsidizes riparian generalist predators. However, spatial variations in such reciprocal trophic linkages remain poorly understood. The present study, conducted in a northern Japanese stream and the surrounding forest, showed that pool–riffle structure brought about heterogeneous distributions of detritus deposits and benthic aquatic insects. The resulting variations in aquatic insect emergence influenced the distributions of riparian web-building spiders. Pools with slow current stored greater amounts of detritus than riffles, allowing more benthic aquatic insects to develop in pools. The greater larval biomass in pools and greater tendency for riffle insects to drift into pools at metamorphosis resulted in an emergence rate of aquatic insects from pools that was some four to five times greater than from riffles. In the riparian forest, web-building spiders (Tetragnathidae and Linyphiidae) were distributed in accordance with the emergence rates of aquatic insects, upon which both spider groups heavily depended. Consequently, the riparian strips bordering pools had a density of tetragnathid spiders that was twice as high as that of the riparian strips adjacent to riffles. Moreover, although limitations of vegetation structure prevented the aggregation of linyphiid spiders around pools, linyphiid density normalized by shrub density was higher in habitats adjacent to pools than those adjacent to riffles. The results indicated that stream geomorphology, which affects the storage of terrestrial organic material and the export of such material to riparian forests via aquatic insect emergence, plays a role in determining the strength of terrestrial–aquatic linkages in headwater ecosystems.  相似文献   

19.
Stream and riparian food webs are connected by reciprocal fluxes of invertebrates, and a growing number of studies demonstrate strong effects of these subsidies on consumers and food webs in both habitats. However, despite its importance in understanding energy flow between these habitats, seasonality of reciprocal subsidies has been examined only in a single temperate system in Japan. We measured input of terrestrial invertebrates and emergence of adult aquatic insects for 14?months in two adjacent streams in a coastal Mediterranean basin in California to assess seasonal patterns, annual fluxes, and local variation. Fluxes of terrestrial and aquatic invertebrates fluctuated seasonally and were relatively synchronous, although in the fall of 2004, terrestrial inputs peaked 1?C2?months earlier than emergence. Terrestrial inputs were similar in the two streams with annual flux of 7.9?C8.6?g dry mass?m?2?year?1. Emergence differed between the streams: annual emergence was 7.8?g?m?2?year?1 (similar to terrestrial flux) in one reach but 5.3?g?m?2?year?1 from the other. The presence of streambed travertine in the reach with lower emergence was the primary difference in habitat between the streams, suggesting that travertine may reduce emergence and alter net reciprocal flux. Comparison of our results with those from Japan suggests that seasonality and net annual flux of reciprocal stream-riparian subsidies vary among biomes due to differences in climate, vegetation, and geography. Our results also indicate that local factors, such as travertine, may cause reciprocal fluxes to vary at finer spatial scales.  相似文献   

20.
Davis JM  Rosemond AD  Small GE 《Oecologia》2011,167(3):821-834
Because nutrient enrichment can increase ecosystem productivity, it may enhance resource flows to adjacent ecosystems as organisms cross ecosystem boundaries and subsidize predators in recipient ecosystems. Here, we quantified the biomass and abundance of aquatic emergence and terrestrial spiders in a reference and treatment stream that had been continuously enriched with nitrogen and phosphorus for 5 years. Because we previously showed that enrichment increased secondary production of stream consumers, we predicted that aquatic emergence flux would be higher in the treatment stream, subsequently increasing the biomass and abundance of terrestrial spiders. Those increases were predicted to be greatest for spiders specializing on aquatic emergence subsidies (e.g., Tetragnathidae). By adding a 15N stable isotope tracer to both streams, we also quantified nitrogen flow from the stream into the riparian community. Emergence biomass, but not abundance, was higher in the treatment stream. The average body size of emerging adult insects and the relative dominance of Trichoptera adults were also greater in the treatment stream. However, spider biomass did not differ between streams. Spiders also exhibited substantially lower reliance on aquatic emergence nitrogen in the treatment stream. This reduced reliance likely resulted from shifts in the body size distributions and community composition of insect emergence that may have altered predator consumption efficiency in the treatment stream. Despite nutrient enrichment approximately doubling stream productivity and associated cross-ecosystem resource flows, the response of terrestrial predators depended more on the resource subsidy’s characteristics that affected the predator’s ability to capitalize on such increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号