首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Biodiversity loss is a key component of biodiversity change and can impact ecosystem services. However, estimation of the loss has focused mostly on per‐species extinction rates measured over a limited number of spatial scales, with little theory linking small‐scale extirpations to global extinctions. Here, we provide such a link by introducing the relationship between area and the number of extinctions (number of extinctions–area relationship; NxAR) and between area and the proportion of extinct species (proportion of extinctions–area relationship; PxAR). Unlike static patterns, such as the species–area relationship, NxAR and PxAR represent spatial scaling of a dynamic process. We show theoretical and empirical forms of these relationships and we discuss their role in perception and estimation of the current extinction crisis.

Location

U.S.A., Europe, Czech Republic and Barro Colorado Island (Panama).

Time period

1500–2009.

Major taxa studied

Vascular plants, birds, butterflies and trees.

Methods

We derived the expected forms of NxAR and PxAR from several theoretical frameworks, including the theory of island biogeography, neutral models and species–area relationships. We constructed NxAR and PxAR from five empirical datasets collected over a range of spatial and temporal scales.

Results

Although increasing PxAR is theoretically possible, empirical data generally support a decreasing PxAR; the proportion of extinct species decreases with area. In contrast, both theory and data revealed complex relationships between numbers of extinctions and area (NxAR), including nonlinear, unimodal and U‐shaped relationships, depending on region, taxon and temporal scale.

Main conclusions

The wealth of forms of NxAR and PxAR explains why biodiversity change appears scale dependent. Furthermore, the complex scale dependence of NxAR and PxAR means that global extinctions indicate little about local extirpations, and vice versa. Hence, effort should be made to understand and report extinction rates as a scale‐dependent problem. In this effort, estimation of scaling relationships such as NxAR and PxAR should be central.  相似文献   

2.

Aim

Much research has quantified species responses to human-modified ecosystems. However, there is limited work on how human-modified ecosystems may reshape competitive interactions between species. Using a 19-year study across 3 million ha, we aimed to answer the question: Are levels of interference competition between bird species context dependent and influenced by habitat structure and productivity? We focussed on the hyper-aggressive behaviour of the Noisy Miner (Manorina melanocephala), which is recognized as a key threatening process for other woodland bird species in Australia. Whether environmental conditions such as amount of forest cover and net primary productivity (NPP) mediate the Noisy Miners' impact remains untested at large spatiotemporal scales.

Location

Temperate woodlands of south-eastern Australia.

Methods

We gathered data on bird site occupancy from repeated surveys of field sites and assembled satellite data on tree cover and NPP. We constructed Bayesian multi-species occupancy/detection models of bird species in woodland patches and tested the fixed and interactive effects of Noisy Miner presence, the amount of tree cover, NPP, and time. We quantified the responses of 31 species, many with known interactions with the Noisy Miner documented previously at fine spatial scales.

Results

We identified negative associations between the Noisy Miner and 18 bird species, including, unexpectedly, both small and large bodied taxa. Site occupancy in some species was influenced by interactions between Noisy Miner presence and increasing amounts of tree cover or productivity. For some species, interference competition by the Noisy Miner is context-dependent and mitigated by increasing tree cover and/or increasing NPP.

Main Conclusions

Our analyses revealed that woodland bird conservation in our study region will be promoted by protecting refugia characterized by areas of high NPP and high tree cover. Preventing vegetation clearing that reduces tree cover could reduce interference competition by the Noisy Miner on parts of the remaining woodland bird community, including species of conservation concern.  相似文献   

3.

Aim

Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe.

Location

Global.

Time period

Present.

Major taxa studied

Birds, mammals and amphibians.

Methods

Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a “species–energy model” by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in “wilderness” areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists.

Results

Species–energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R2-values: 0.79–0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57).

Main conclusions

Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species–area relationships to improve predictions of land-use-driven biodiversity loss.  相似文献   

4.

Purpose

Agriculture is a major water user worldwide, potentially depriving many ecosystems of water. Comprehensive global impact assessment methodologies are therefore required to assess impacts from water consumption on biodiversity. Since scarcity of water, as well as species richness, varies greatly between different world regions, a spatially differentiated approach is needed. Therefore, our aim is to enhance a previously published methodology in terms of spatial and species coverage.

Methods

We developed characterization factors for lifecycle impact assessment (LCIA) targeting biodiversity loss of various animal taxa (i.e., birds, reptiles, mammals, and amphibians) in wetlands. Data was collected for more than 22,000 wetlands worldwide, distinguishing between surface water- and groundwater-fed wetlands. Additionally, we account for a loss of vascular plant species in terrestrial ecosystems, based on precipitation. The characterization factors are expressed as global fractions of potential species extinctions (PDF) per cubic meter of water consumed annually and are developed with a spatial resolution of 0.05 arc degrees. Based on the geographic range of species, as well as their current threat level, as indicated by the International Union for Conservation of Nature (IUCN), we developed a vulnerability indicator that is included in the characterization factor.

Results and discussion

Characterization factors have maximal values in the order of magnitude of 10?11 PDF·year/m3 for animal taxa combined and 10?12 PDF·year/m3 for vascular plants. The application of the developed factors for global cultivation of wheat, maize, cotton, and rice highlights that the amount of water consumption alone is not sufficient to indicate the places of largest impacts but that species richness and vulnerability of species are indeed important factors to consider. Largest impacts are calculated for vascular plants in Madagascar, for maize, and for animal taxa; in Australia and the USA for surface water consumption (cotton); and in Algeria and Tunisia for groundwater consumption (cotton).

Conclusions

We developed a spatially differentiated approach to account for impacts from water consumption on a global level. We demonstrated its functionality with an application to a global case study of four different crops.
  相似文献   

5.

Aim

Understanding the determinants of species distribution and richness is key to explaining global ecological patterns. We examined the current knowledge about terrestrial mammals in tidal marshes and evaluated whether species richness increased with the marsh surface area and/or with their proximity to the equator and whether species distribution ranges decreased with latitude.

Location

Global.

Methods

We reviewed the existing literature on terrestrial mammals in tidal marshes. We examined their ecological characteristics (e.g. habitat specialists, native or alien), predicted their variation in species richness and range size along latitude, and explored factors, such as surface area, underlying the global patterns found.

Results

We found 962 records, describing 125 mammalian species using tidal marshes worldwide, also including several alien species. Most species (95%) were not marsh specialized, and some (18%) were of conservation concern. There were information gaps in South America, Africa, Australia and Asia, and a lack of information about mammalian ecological roles worldwide. We found that species richness increased with surface area, and showed a bimodal pattern peaked between 40° and 50° latitude in each hemisphere. We found no relationship between latitude and species range size.

Main conclusions

Our worldwide findings revealed a broader range of tidal marshes inhabited by terrestrial mammals, and higher values of species richness than previously reported. The bimodal pattern of species richness was consistent with the species–area hypothesis, but it also suggested that further studies of species distribution in relation to historical and environmental factors will yield significant insights about variables driving richness in tidal marshes. Despite terrestrial mammal ubiquitous distribution in these ecosystems, there are considerable geographic gaps as regards knowledge about their functional importance and the impact of alien species on tidal marsh functioning. Consequently, extending our research efforts is key to planning the conservation of these coastal ecosystems.  相似文献   

6.
Small islands are particularly vulnerable to degradation by invasive species and often lack source populations to replace those lost during localized extinctions. Robben Island, a significant South African cultural heritage site, has a long history of anthropogenic impact. Introduced alien mammals and trees have resulted in numerous localized plant extinctions with their impact on arthropod biodiversity remaining unclear. We used Robben Island’s arthropod fauna as focal group to investigate the rehabilitation potential of this transformed island. Ground surface-living, foliage-inhabiting and flower-visiting arthropods were collected using five sampling techniques. Arthropod diversity was highest in the two ‘natural’ habitats compared to alien Eucalyptus plantations. Arthropod compositional diversity differed significantly between alien plantations and natural habitats. Nevertheless, a remarkable 17 % of all species were confined to plantations. However, when we corrected for the effect of rarity, only 15 species (4 %) were unique to alien plantations and all those identified to species level were either alien in origin or were widespread generalists only normally associated with transformed areas. This emphasizes the need to identify species that drive similarity indices to fully comprehend the conservation value of alien vegetation. Arthropods found in the remaining natural vegetation showed remarkable tolerance of long-term grazing pressures from introduced alien mammals. Only eight Orthoptera species were sampled, yet one was a rediscovery of a rare species and another a range extension. All indigenous species showed strong preferences for natural habitats. Thus, Robben Island could still hold conservation value if the natural habitats are rehabilitated and the Eucalyptus plantations removed.  相似文献   

7.

Aims

The objective of this study was to investigate how plants maintain productivity under a limited supply of water and N along the topographical soil water and N gradients in semi-arid forests.

Methods

We investigated forest structure and productivity, N cycling, and water and N use by plants at three different slope positions in a forested area near an arid boundary on a loess plateau in China.

Results

Net primary production (NPP) and aboveground N uptake decreased as soil water and/or N availability decreased on upper slopes; however, NPP and aboveground N uptake were only slightly lower than those of more humid forest ecosystems. Water use efficiency (WUE), N use efficiency (NUE), and fine root biomass increased as soil water and/or N supply decreased with altitude. High NUE was linked to higher N mean residence time, caused by higher N resorption efficiency rather than increasing N productivity.

Conclusions

Our results suggest that NPP and N uptake can be maintained by increasing WUE and NUE and increasing fine root biomass in water and N co-limited semi-arid forest ecosystems near arid boundaries. Such changes in resource use and acquisition strategy can affect production and N cycling via plant-soil feedback systems.
  相似文献   

8.
Cadotte MW  Strauss SY 《PloS one》2011,6(5):e19363

Background

Evolutionary history has provided insights into the assembly and functioning of plant communities, yet patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in experimentally assembled communities.

Methodology/Principal Findings

We used plant community phylogenetic patterns two years after experimental diversity treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically compared relatedness of species that colonized or went extinct to remaining community members and patterns of aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related.

Conclusions

We found that successful non-legume colonists were typically found where close relatives already existed in the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values, while maintaining differences in species composition.  相似文献   

9.

Background  

Introduced species can have profound effects on native species, communities, and ecosystems, and have caused extinctions or declines in native species globally. We examined the evolutionary response of native zooplankton populations to the introduction of non-native salmonids in alpine lakes in the Sierra Nevada of California, USA. We compared morphological and life-history traits in populations of Daphnia with a known history of introduced salmonids and populations that have no history of salmonid introductions.  相似文献   

10.

Aim

Several large-mammal species in Europe have recovered and recolonized parts of their historical ranges. Knowing where suitable habitat exists, and thus where range expansions are possible, is important for proactively promoting coexistence between people and large mammals in shared landscapes. We aimed to assess the opportunities and limitations for range expansions of Europe's two largest herbivores, the European bison (Bison bonasus) and moose (Alces alces).

Location

Central Europe.

Methods

We used large occurrence datasets from multiple populations and species distribution models to map environmentally suitable habitats for European bison and moose across Central Europe, and to assess human pressure inside the potential habitat. We then used circuit theory modeling to identify potential recolonization corridors.

Results

We found widespread suitable habitats for both European bison (>120,000 km2) and moose (>244,000 km2), suggesting substantial potential for range expansions. However, much habitat was associated with high human pressure (37% and 43% for European bison and moose, respectively), particularly in the west of Central Europe. We identified a strong east–west gradient of decreasing connectivity, with major barriers likely limiting natural recolonization in many areas.

Main conclusions

We identify major potential for restoring large herbivores and their functional roles in Europe's landscapes. However, we also highlight considerable challenges for conservation planning and wildlife management, including areas where recolonization likely leads to human–wildlife conflict and where barriers to movement prevent natural range expansion. Conservation measures restoring broad-scale connectivity are needed in order to allow European bison and moose to recolonize their historical ranges. Finally, our analyses and maps indicate suitable but isolated habitat patches that are unlikely to be colonized but are candidate locations for reintroductions to establish reservoir populations. More generally, our work emphasizes that transboundary cooperation is needed for restoring large herbivores and their ecological roles, and to foster coexistence with people in Europe's landscapes.  相似文献   

11.
植被NPP作为衡量陆地生态系统的关键指标和地表碳循环的重要组成部分,能够合理地评价生态系统变化及其可持续性。基于MOD17A3数据,借助GIS空间分析、相关性分析及地理探测器模型等方法,探讨了2000—2014年秦巴山区NPP时空格局及演变特征,并对影响NPP的自然和人为因子进行量化研究。结果表明:(1)秦巴山区近15年NPP总量整体呈波动增加趋势,增速0.65TgC a~(-1),单位面积NPP均值为493.09gC m~(-2) a~(-1),呈"西高东低"空间特征,地域差异明显;(2)不同植被类型的NPP总量存在差异,阔叶林和栽培植被是对秦巴山区生态系统最具贡献的植被类型;(3)NPP随高程、坡度均呈阶段性变化特征,其中坡度影响NPP变化的幅度弱于高程,NPP与降雨、气温、实际蒸散量均呈显著正相关关系;(4)自然因子对NPP贡献率存在显著差异(P0.01),依次排序为:实际蒸散量降雨气温高程坡度,且研究区NPP受多种自然因子的交互影响;(5)人为因子对NPP的影响表现为土地利用类型变化造成NPP总量的损益,可分为还林还草的积极效应及城市发展和人类破坏等的消极效应。  相似文献   

12.

Background

Domestic cats ranging freely in natural areas are a conservation concern due to competition, predation, disease transmission or hybridization with wildcats. In order to improve our ability to design effective control policies, we investigate the factors affecting their numbers and space use in natural areas of continental Europe.

Methodology/Principal Findings

We describe the patterns of cat presence, abundance and space use and analyse the associated environmental and human constraints in a well-preserved Mediterranean natural area with small scattered local farms. We failed in detecting cats in areas away from human settlements (trapping effort above 4000 trap-nights), while we captured 30 individuals near inhabited farms. We identified 130 cats, all of them in farms still in use by people (30% of 128 farms). All cats were free-ranging and very wary of people. The main factor explaining the presence of cats was the presence of people, while the number of cats per farm was mostly affected by the occasional food provisioning with human refuse and the presence of people. The home ranges of eight radio tagged cats were centred at inhabited farms. Males went furthest away from the farms during the mating season (3.8 km on average, maximum 6.3 km), using inhabited farms as stepping-stones in their mating displacements (2.2 km of maximum inter-farm distance moved). In their daily movements, cats notably avoided entering in areas with high fox density.

Conclusions

The presence, abundance and space use of cats were heavily dependent on human settlements. Any strategy aiming at reducing their impact in areas of conservation concern should aim at the presence of settlements and their spatial spread and avoid any access to human refuse. The movements of domestic cats would be limited in areas with large patches of natural vegetation providing good conditions for other carnivore mammals such as red foxes.  相似文献   

13.
Hanna & Cardillo (2014) report an association between the presence of black rats (Rattus rattus) and extinctions of endemic mammals on Australian islands. Although we agree that introductions of the black rat are likely to have had a significant impact on island ecosystems, we suggest that there is little empirical support for their main conclusion, that predation (and thus mesopredator processes) is the causal mechanism driving the association between the presence of black rats and extinctions of native mammals on Australian islands. We present a brief literature review of evidence for two alternative mechanisms – introduction of novel diseases and competition – which suggest there are multiple explanations for how native mammal extinctions on Australian islands may have occurred. The potential impact of these processes interacting across different trophic levels is rarely considered, but is applicable across many different ecosystems world‐wide.  相似文献   

14.
The combined effects of climate change and habitat loss represent a major threat to species and ecosystems around the world. Here, we analyse the vulnerability of ecosystems to climate change based on current levels of habitat intactness and vulnerability to biome shifts, using multiple measures of habitat intactness at two spatial scales. We show that the global extent of refugia depends highly on the definition of habitat intactness and spatial scale of the analysis of intactness. Globally, 28% of terrestrial vegetated area can be considered refugia if all natural vegetated land cover is considered. This, however, drops to 17% if only areas that are at least 50% wilderness at a scale of 48 × 48 km are considered and to 10% if only areas that are at least 50% wilderness at a scale of 4.8 × 4.8 km are considered. Our results suggest that, in regions where relatively large, intact wilderness areas remain (e.g. Africa, Australia, boreal regions, South America), conservation of the remaining large‐scale refugia is the priority. In human‐dominated landscapes, (e.g. most of Europe, much of North America and Southeast Asia), focusing on finer scale refugia is a priority because large‐scale wilderness refugia simply no longer exist. Action to conserve such refugia is particularly urgent since only 1 to 2% of global terrestrial vegetated area is classified as refugia and at least 50% covered by the global protected area network.  相似文献   

15.

Aim

Climate change affects forest functioning not only through direct physiological effects such as modifying photosynthesis and growing season lengths, but also through indirect effects on community composition related to species extinctions and colonizations. Such indirect effects remain poorly explored in comparison with the direct ones. Biodiversity–ecosystem functioning (BEF) studies commonly examine the effects of species loss by eliminating species randomly. However, species extinctions caused by climate change will depend on the species’ vulnerability to the new environmental conditions, thus occurring in a specific, non‐random order. Here, we evaluated whether successive tree species extinctions, according to their vulnerability to climate change, impact forest functions differently than random species losses.

Location

Eleven temperate forests across a gradient of climatic conditions in central Europe.

Methods

We simulated tree community dynamics with a forest succession model to study the impact of species loss on the communities’ aboveground biomass, productivity and temporal stability. Tree species were removed from the local pool (1) randomly, and according to (2) their inability to be recruited under a warmer climate or (3) their increased mortality under drier conditions.

Results

Results showed that non‐random species loss (i.e., based on their vulnerability to warmer or drier conditions) changed forest functioning at a different rate, and sometimes direction, than random species loss. Furthermore, directed extinctions, unlike random, triggered tipping points along the species loss process where forest functions were strongly impacted. These tipping points occurred after fewer extinctions in forests located in the coldest areas, where ecosystem functioning relies on fewer species.

Main conclusions

We showed that the extinction of species in a deterministic and mechanistically motivated order, in this case the species vulnerability to climate change, strengthens the selection effect of diversity on ecosystem functioning. BEF studies exploring the impact of species loss on ecosystem functioning using random extinctions thus possibly underestimate the potential effect of biodiversity loss when driven by a directional force, such as climate change.
  相似文献   

16.

Background & aims

Herbivore-driven changes to soil properties can influence the decomposition rate of organic material and therefore soil carbon cycling within grassland ecosystems. We investigated how aboveground foraging mammalian and invertebrate herbivores affect mineral soil decomposition rates and associated soil properties in two subalpine vegetation types (short-grass and tall-grass) with different grazing histories.

Methods

Using exclosures with differing mesh sizes, we progressively excluded large, medium and small mammals and invertebrates from the two vegetation types in the Swiss National Park (SNP). Mineral soil decomposition rates were assessed using the cotton cloth (standard substrate) method between May and September 2010.

Results

Decomposition displayed strong spatio-temporal variability, best explained by soil temperature. Exclusion of large mammals increased decomposition rates, but further exclusion reduced decomposition rates again in the lightly grazed (tall-grass) vegetation. No difference among treatments was found in the heavily grazed (short-grass) vegetation. Heavily grazed areas had higher decomposition rates than the lightly grazed areas because of higher soil temperatures. Microbial biomass carbon and soil C:N ratio were also linked to spatio-temporal decomposition patterns, but not to grazing history.

Conclusions

Despite altering some of the environmental controls of decomposition, cellulose decomposition rates in the SNP’s subalpine grasslands appear to be mostly resistant to short-term herbivore exclusion.  相似文献   

17.

Background and aims

Litter, an essential component of forest ecosystems, plays an important role in maintaining soil fertility, sequestering carbon (C) and improving soil biodiversity. However, litter decomposition is affected by increased nitrogen (N) deposition. Numerous reports have presented N deposition experiments in different forest ecosystems to investigate the effects of N deposition on litter decomposition, but the effects remain unclear, especially in ecosystems receiving increasingly higher levels of ambient N deposition. To address this gap, we performed a litterbag experiment to understand the effects of increasing N deposition on the litter decomposition process in natural evergreen broad-leaved forest in the Rainy Area of Western China.

Methods

A 2-year field litter decomposition experiment was conducted using the litterbag method. Four levels of N deposition were established: control (CK; 0 kg·N·ha?1·year?1), low N deposition (LN; 50 kg·N·ha?1·year?1), medium N deposition (MN; 150 kg·N·ha?1·year?1), and high N deposition (HN; 300 kg·N·ha?1·year?1). The simulated N depositions ranged from 50% to 320% of the ambient rate of wet N deposition.

Results

Simulated N deposition significantly increased the remaining mass, C, N, lignin and cellulose of the litter. The LN treatment decreased the remaining phosphorus (P); conversely, the HN treatment increased it. In the late stage of the study period, the mass remaining was positively closely correlated to the lignin and cellulose remaining during the decomposition process.

Conclusions

Simulated N deposition significantly suppressed the litter decomposition in the natural evergreen broad-leaved forest, despite the high rate of ambient N deposition, and the inhibitory effects increased with the N deposition levels. The suppressive effect of N deposition on litter decomposition may be primarily explained by the inhibition of lignin and cellulose degradation by the exogenous inorganic N. With ongoing N deposition in future, N deposition may have a potentially significant impact on C and N cycles in such forest ecosystems.
  相似文献   

18.
Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.  相似文献   

19.

Aim

We documented how the similarity of mammal assemblages on continental and oceanic islands has changed since initial human colonization, since European arrival and overall. We investigated how levels of similarity might change in the future.

Location

Continental and oceanic islands worldwide.

Time period

Human settlement of islands to the present, as well as projections for the future.

Major taxa studied

Mammals.

Methods

We used mammal occurrence data on islands to calculate the change in similarity using a pairwise approach based on Jaccard's index and a multisite approach based on Jaccard's and Sørensen's measures. We divided the mammal assemblages into two time periods, before and after island colonization or trade began with Europeans. We unpacked the mechanisms driving changes in similarity, exploring how initial similarity interacts with seven types of species turnover events to determine overall change. Finally, we calculated how future similarity levels will change if past trends in introductions and extinctions continue.

Results

Mammals, on both continental and oceanic islands, show one of the most pronounced cases of homogenization ever observed, and on oceanic islands mammals show the largest increase in homogenization ever observed for a terrestrial group. Most of the homogenization observed to date has been driven by recent historical changes, not by changes that occurred before European arrival. If current patterns of species introductions and extinctions continue, then oceanic islands will experience little additional homogenization, whereas continental islands will homogenize greatly beyond current levels.

Main conclusions

Mammal assemblages on oceanic islands show nearly an order of magnitude greater change in similarity than plant and bird assemblages. Projections of future similarity indicate that continental and oceanic islands are on different trajectories of change. These trajectories could be altered by management actions, but in some cases those actions that would be impactful run counter to current conservation norms.  相似文献   

20.

Aim

Although the effects of life history traits on population density have been investigated widely, how spatial environmental variation influences population density for a large range of organisms and at a broad spatial scale is poorly known. Filling this knowledge gap is crucial for global species management and conservation planning and to understand the potential impact of environmental changes on multiple species.

Location

Global.

Time period

Present.

Major taxa studied

Terrestrial amphibians, reptiles, birds and mammals.

Methods

We collected population density estimates for a range of terrestrial vertebrates, including 364 estimates for amphibians, 850 for reptiles, 5,667 for birds and 7,651 for mammals. We contrasted the importance of life history traits and environmental predictors using mixed models and tested different hypotheses to explain the variation in population density for the four groups. We assessed the predictive accuracy of models through cross‐validation and mapped the partial response of vertebrate population density to environmental variables globally.

Results

Amphibians were more abundant in wet areas with high productivity levels, whereas reptiles showed relatively higher densities in arid areas with low productivity and stable temperatures. The density of birds and mammals was typically high in temperate wet areas with intermediate levels of productivity. The models showed good predictive abilities, with pseudo‐R2 ranging between 0.68 (birds) and 0.83 (reptiles).

Main conclusions

Traits determine most of the variation in population density across species, whereas environmental conditions explain the intraspecific variation across populations. Species traits, resource availability and climatic stability have a different influence on the population density of the four groups. These models can be used to predict the average species population density over large areas and be used to explore macroecological patterns and inform conservation analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号