首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
The Late Quaternary extinctions of megafauna (defined as animal species > 44.5 kg) reduced the dispersal of seeds and nutrients, and likely also microbes and parasites. Here we use body-mass based scaling and range maps for extinct and extant mammal species to show that these extinctions led to an almost seven-fold reduction in the movement of gut-transported microbes, such as Escherichia coli (3.3–0.5 km2 d−1). Similarly, the extinctions led to a seven-fold reduction in the mean home ranges of vector-borne pathogens (7.8–1.1 km2). To understand the impact of this, we created an individual-based model where an order of magnitude decrease in home range increased maximum aggregated microbial mutations 4-fold after 20 000 yr. We hypothesize that pathogen speciation and hence endemism increased with isolation, as global dispersal distances decreased through a mechanism similar to the theory of island biogeography. To investigate if such an effect could be found, we analysed where 145 zoonotic diseases have emerged in human populations and found quantitative estimates of reduced dispersal of ectoparasites and fecal pathogens significantly improved our ability to predict the locations of outbreaks (increasing variance explained by 8%). There are limitations to this analysis which we discuss in detail, but if further studies support these results, they broadly suggest that reduced pathogen dispersal following megafauna extinctions may have increased the emergence of zoonotic pathogens moving into human populations.  相似文献   

2.
Numerous hypotheses have been proposed to explain the end Pleistocene extinction of large bodied mammals. The disease hypothesis attributes the extinction to the arrival of a novel ‘hyperdisease’ brought by immigrating aboriginal humans. However, until West Nile virus (WNV) invaded the United States, no known disease met the criteria of a hyperdisease. We evaluate the disease hypothesis using WNV in the United States as a model system. We show that WNV is size‐biased in its infection of North America birds, but is unlikely to result in an extinction similar to that of the end Pleistocene. WNV infects birds more uniformly across the body size spectrum than extinctions did across mammals and is not size‐biased within orders. Our study explores the potential impact of WNV on bird populations and provides no support for disease as a causal mechanism for the end Pleistocene megafaunal extinction.  相似文献   

3.
Inter-island paleoecological comparisons have provided useful information concerning the role of humans vs. background-level disturbance in tropical ecosystems. Major ecological changes have occurred since human arrival in Madagascar, the West Indies, the Hawaiian Islands, and elsewhere. Prehuman vegetation changes and disturbances have also been documented for many islands. Instructive inter-island similarities and differences have been detected in the chronology, distribution, and extent of human activities, vegetation changes, and biotic extinctions. The earliest stratigraphic proxy evidence for initial human impacts (including increased charcoal particle influx to sediments, first appearance of exotic pollen, increase in ruderal pollen, and paleolimnological evidence for cultural eutrophication of lake waters) generally confirm but sometimes predate the earliest conventional archaeological evidence for human activity. Carefully chosen sites permitting the close integration of palynological, paleontological, and archaeological data from a variety of island settings with differing geographic and historical contingencies can enable investigators to more fully evaluate the importance of a range of human and ecological variables in determining the overall character and dynamics of ecosystems.  相似文献   

4.
    
Linking the species interactions occurring at the scale of local communities to their potential impact at evolutionary timescales is challenging. Here, we used the high-resolution fossil record of mammals from the Iberian Peninsula to reconstruct a timeseries of trophic networks spanning more than 20 million years and asked whether predator–prey interactions affected regional extinction patterns. We found that, despite small changes in species richness, trophic networks showed long-term trends, gradually losing interactions and becoming sparser towards the present. This restructuring of the ecological networks was driven by the loss of medium-sized herbivores, which reduced prey availability for predators. The decrease in prey availability was associated with predator longevity, such that predators with less available prey had greater extinction risk. These results not only reveal long-term trends in network structure but suggest that prey species richness in ecological communities may shape large scale patterns of extinction and persistence among predators.  相似文献   

5.
Aim In central Australia, the giant flightless bird Genyornis newtoni disappeared about 45–50 thousand years ago (ka). It has been reported that coincident with this extinction the carbon isotopic composition of preserved eggshells of the extant emu (Dromaius novaehollandiae) shows an abrupt dietary shift from tropical grasses (C4 photosynthesis) to temperate grasses and/or woody browse (C3 photosynthesis). This abrupt shift has been interpreted as signalling ‘ecosystem collapse’ due to landscape burning by humans. We evaluate an alternative interpretation, that the shift in diet was not abrupt, but gradual, and caused by the weakening of the Australian monsoon. Location Lake Eyre, central Australia. Methods We re‐analysed a large, published dataset of emu diet δ13C (inferred from δ13C of preserved eggshells) spanning the last 140,000 years, using time‐series analysis. Using Akaike's information criterion, we compared two contrasting models: (1) there was an abrupt shift in δ13C coincident with the extinction of Genyornis, assumed 47.5 ka; and (2) there was a gradual shift in δ13C, correlated with reconstructed water level in Lake Eyre, a proxy for monsoon intensity. Results There was little evidence of an abrupt shift in emu diet δ13C about 45–50 ka, but δ13C appeared to steadily decrease between about 80 and 30 ka. Indeed, the model representing a correlation between δ13C and lake level was more than seven times more likely than the model representing an abrupt shift at 47.5 ka. Main conclusions The emu eggshell isotopic record from Lake Eyre does not support the hypothesis that landscape burning by humans transformed a savanna?grassland mosaic into the modern desert scrub, contributing to the extinction of Genyornis. While our findings cast strong doubt on the foremost line of evidence that landscape burning by humans caused the megafaunal extinctions, and suggest that central Australia was becoming increasingly arid in the Late Pleistocene, the relative roles of hunting by humans and climate change in the megafaunal extinctions remain unresolved.  相似文献   

6.
  总被引:1,自引:0,他引:1  
We explored how morphological and physiological traits associated with energy expenditure over long periods of cold exposure would be integrated in a potential response to natural selection in a wild mammal, Phyllotis danwini. In particular, we studied sustained energy expenditure (SusMR), the rate of expenditure fueled by concurrent energy intake, basal metabolic rate (BMR), and sustained metabolic scope (SusMS = SusMR/BMR), a measure of the reserve for sustained work. We included the masses of different central processing organs as an underlying factor that could have a mechanistic link with whole animal traits. Only the liver had heritability statistically different from zero (0.73). Physiological and morphological traits had high levels of specific environmental variance (average 70%) and postnatal common environmental variance (average 30%) which could explain the low heritabilities estimates. Our results, (1) are in accordance with previous studies in mammals that report low heritabilities for metabolic traits (SusMR, BMR, SusMS), (2) but not completely with previous ones that report high heritabilities for morphological traits (masses of central organs), and (3) provide important evidence of the relevance of postnatal common environmental variance to sustained energy expenditure.  相似文献   

7.
    
  1. The metabolic theory of ecology (MTE) predicts that biological times should universally scale to body mass M as M0.25. However, support for this prediction came principally from non‐phylogenetically controlled studies, whereas more recent analyses, which take the degree of shared ancestry between species into account, have revealed that both length of the gestation period and time to first reproduction do not follow this rule.
  2. In the present study, we test this prediction of MTE on maximum longevity using two commonly accessible sources of information in zoology and ecology (AnAge and PanTHERIA data bases) that allow us to assess the scaling relation of longevity in more than 1200 mammalian species. We performed our analyses using both ordinary least square (OLS) and phylogenetic generalized least square (PGLS) regressions to assess the importance of controlling for phylogeny in such analyses.
  3. Our results revealed clear discrepancies between analyses using the AnAge and PanTHERIA data bases. The scaling of longevity was consistently higher with the PanTHERIA than with the AnAge data base. However, we found that with both data sets, PGLS models performed better than OLS models, and the scaling exponent of longevity is, in nearly all cases, lower than the exponent of 0.25 predicted by the MTE. In addition, we provided evidence that gestation length and longevity do not scale isometrically (i.e. with a scaling exponent of 1.0) with each other as we would expect if these two life history traits had – perhaps due to the same biological principle – the same scaling exponent.
  4. Our findings contradict the MTE and suggest that more complex processes than simple relationships with metabolism or body size control the evolution of longevity. Moreover, they reveal differences in relationships of gestation length and longevity that are probably tightly dependent on phylogeny.
  相似文献   

8.
A review of thermoregulation in marine mammals led to the following conclusions: very little is known about thermoregulation in large cetaceans. The only measured value for the metabolic rate of a whale, albeit a young one, was substantially higher than the predicted value for a terrestrial mammal of similar size. Very small and newborn marine mammals rely on a high metabolic heat production to sustain their body temperature during exposure to cold or in the water. The considerable insulation of some adult marine mammals may absolve them from the need for a high level of heat production. One marine mammal in tropical or subtropical waters is hypometabolic. There is evidence for a powerful control of thermoregulatory mechanisms by the anterior hypothalamic/preoptic region of the brain in two species. Thermoregulation in marine mammals during exercise remains paradoxical.  相似文献   

9.
    
Glucocorticoids are often measured in wildlife to assess physiological responses to environmental or ecological stress. Hair, blood, saliva, or fecal samples are generally used depending on the timescale of the stress response being investigated and species‐specific considerations. Here, we report the first use of hair samples to measure long‐term corticosterone levels in the climate‐sensitive American pika (Ochotona princeps). We validated an immunoassay‐based measurement of corticosterone extracted from hair samples and compared corticosterone estimates obtained from plasma, hair, and fecal samples of nine pikas. To demonstrate an ecological application of this technique, we characterized physiological stress in 49 pikas sampled and released at eight sites along two elevational transects. Microclimate variation was measured at each site using both ambient and subsurface temperature sensors. We used an information theoretic approach to compare support for linear, mixed‐effects models relating corticosterone estimates to microclimate, body size, and sex. Corticosterone was measured accurately in pika hair samples after correcting for the influence of sample mass on corticosterone extraction efficiency. Hair‐ and plasma‐based estimates of corticosterone were weakly correlated. The best‐supported model suggested that corticosterone was lower in larger, male pikas, and at locations with higher ambient temperatures in summer. Our results are consistent with a general negative relationship between body mass and glucocorticoid concentration observed across mammalian species, attributed to the higher mass‐specific metabolic rates of smaller bodied animals. The higher corticosterone levels in female pikas likely reflected the physiological demands of reproduction, as observed in a wide array of mammalian species. Additionally, we establish the first direct physiological evidence for thermal stress in the American pika through nonlethal sampling of corticosterone. Interestingly, our data suggest evidence for cold stress likely induced during the summer molting period. This technique should provide a useful tool to researchers wishing to assess chronic stress in climate‐sensitive mammals.  相似文献   

10.
Among terrestrial mammals, the morphology of the gastrointestinal tract reflects the metabolic demands of the animal and individual requirements for processing, distributing, and absorbing nutrients. To determine if gastrointestinal tract morphology is similarly correlated with metabolic requirements in marine mammals, we examined the relationship between basal metabolic rate (BMR) and small intestinal length in pinnipeds and cetaceans. Oxygen consumption was measured for resting bottlenose dolphins and Weddell seals, and the results combined with data for four additional species of carnivorous marine mammal. Data for small intestinal length were obtained from previously published reports. Similar analyses were conducted for five species of carnivorous terrestrial mammal, for which BMR and intestinal length were known. The results indicate that the BMRs of Weddell seals and dolphins resting on the water surface are 1.6 and 2.3 times the predicted levels for similarly sized domestic terrestrial mammals, respectively. Small intestinal lengths for carnivorous marine mammals depend on body size and are comparatively longer than those of terrestrial carnivores. The relationship between basal metabolic rate (kcal day(-1)) and small intestinal length (m) for both marine and terrestrial carnivores was, BMR=142.5 intestinal length(1.20) (r(2)=0.83). We suggest that elevated metabolic rates among marine mammal carnivores are associated with comparatively large alimentary tracts that are presumably required for supporting the energetic demands of an aquatic lifestyle and for feeding on vertebrate and invertebrate prey.  相似文献   

11.
Mammals of Australian islands: factors influencing species richness   总被引:1,自引:0,他引:1  
Distribution patterns of indigenous non-volant terrestrial mammals on 257 Australian islands were examined in relation to environmental parameters and the effects of human-induced disturbance during prehistoric and historic times on island species numbers. Species occurrence for individual species, for taxonomic and trophic groups, and for all species together was related to environmental parameters using regression analysis and the extreme-value function model. Patterns of occurrence were examined separately within three major biogeographic regions derived by pattern analysis. The number of species known to have occurred on these islands during historic times was adequately predicted from area alone. No statistically significant improvement in predicted species number was gained by including island elevation, mean annual rainfall, isolation from the mainland or the number of potentially competing species present on the island. Similarly, no single factor other than area was found to influence consistently the presence of individual species. We conclude that the occurrence of indigenous non-volant terrestrial mammal species on these islands indicates a relictual rather than equilibrial fauna. Visitation by Aboriginal people during prehistoric times did not significantly increase mammal extinctions on islands. Examination of patterns of species richness for a given area on a regional basis showed that islands in and around Bass Strait and Tasmania (Bass Region) were the most species-rich, islands off the northern coasts were slightly less rich, and islands off the south western coasts had fewest species. This is in contrast to the usual latitudinal gradient in species richness patterns. However, islands off the northern and eastern coasts had an overall greater number of different species. When considered in relation to the number of different species of mammals occurring within each region, islands of a given size in Bass Region typically bore a higher proportion of this species pool than other regions. The Bass Region was found to be particularly rich in macropoid herbivores and dasyurid carnivores and insectivores. Analyses indicated that there is a very strong relationship between the presence of exotics as a whole and the local extinction of native mammals. Many mammal species formerly widespread on the Australian mainland are now restricted totally to islands (nine species) or are threatened with extinction on the mainland and have island populations of conservation significance (ten species). In all, thirty-five islands protect eighteen taxa of Australian threatened mammals. The land-use and management of these islands is of considerable importance to nature conservation. The introduction of exotic mammals to these islands should be prevented; any introductions that occur should be eradicated immediately.  相似文献   

12.
Rodent seed predation and seedling recruitment in mesic grassland   总被引:11,自引:0,他引:11  
Seedling recruitment of two grasses (Arrhenatherum elatius and Festuca rubra) and two herbs (Centaurea nigra and Rumex acetosa) was measured in areas with and without rodents to which seeds of each species were sown at three seed densities (1000, 10,000 and 50,000 seeds m−2) in two seasons (spring and autumn 1995). Seed removal was measured for 10-day periods and the fate of seedlings was followed for 15 months after sowing. The proportion of seed removed ranged from 6 to 85% and increased with increasing seed density for each species. Rodents had no effect on seedling emergence or survival in the spring sowing. In the autumn sowing, rodents reduced seedling emergence of all four species sown at 1000 and 10,000 seeds m−2 but had no impact at 50,000 seeds m−2, presumably because of microsite limitation. We suggest the difference between spring and autumn arose because emergence was seed limited in autumn but microsite limited in spring; microsite availability was higher in autumn because a summer drought killed plants, reduced plant biomass and opened up the sward. Fifteen months after the autumn sowing, fewer A. elatius and C. nigra seedlings survived on plots exposed to rodents. This result reflected not only the reduced seedling emergence but also increased seedling mortality (seedling herbivory) in sites exposed to rodents. In contrast, F. rubra and R.acteosa showed density-dependent seedling survival which compensated for initial differences in seedling emergence, so that no effect of rodents remained after 15 months. The results suggest that rodent seed predation and seedling herbivory exert strong effects on seedling recruitment of A.elatius and C. nigra when recruitment conditions are favourable (conditions that lead to high microsite availability) and may contribute to both species being maintained at low densities in the grassland. The results also demonstrate that highly significant impacts of rodent seed predation at the seedling emergence stage can disappear by the time of plant maturation. Received: 2 March 1998 / Accepted: 28 September 1998  相似文献   

13.
    
《Palaeoworld》2020,29(3):577-589
A latest Permian timeline (251.9 Ma) can be constructed from the perspectives of: a global nickel spike attributed to emissions from the coeval Siberian flood-basalt eruptions, the correlative end-Permian marine mass extinction (EPME), a transition from reversed to normal paleomagnetism, and a negative anomaly in δ13Ccarb and δ13Corg. In a number of marine and non-marine localities, this timeline is also correlated (to within ≤30 ky) with palynological evidence for the latest Permian destruction of terrestrial vegetation and the accompanying short-lived global fungal (Reduviasporonites) event. This correlation suggests that devastation in marine and non-marine environments was essentially coeval at a time marked by hyperthermal conditions and anoxic oceans.We utilized this proposed timeline to estimate the relative timing of the extinction of latest Permian vertebrates in the Karoo Basin of South Africa. In several sections in the Karoo, the LAD of the therapsid Dicynodon, is correlated with the proposed timeline. In the Carlton Heights section in the Karoo we estimate that the palynological changes and the fungal event occurred within ≤30 ky of the LAD of Dicynodon. Further sampling in the Karoo and other Permian–Triassic non-marine basins would help to clarify the relative timing of the global marine extinctions, plant devastation and the disappearance of non-marine vertebrates.  相似文献   

14.
Altitudinal and seasonal effects on aerobic metabolism of deer mice   总被引:9,自引:0,他引:9  
Summary I compared the maximal aerobic metabolic rates ( ), field metabolic rates (FMR), aerobic reserves ( -FMR), and basal metabolic rates (BMR) of wild and recently captured deer mice from low (440 m) and high (3800 m) altitudes. To separate the effects of the thermal environment from other altitudinal effects, I examined mice from different altitudes, but similar thermal environments (i.e., summer mice from high altitude and winter mice from low altitude). When the thermal environment was similar, , FMR, and aerobic reserve of low and high altitude mice did not differ, but BMR was significantly higher at high altitude. Thus, in the absence of thermal differences, altitude had only minor effects on the aerobic metabolism of wild or recently captured deer mice.At low altitude, there was significant seasonal variation in , FMR, and aerobic reserve, but not BMR. BMR was correlated with , but not with FMR. The significant positive correlation of BMR with indicates a cost of high , because higher BMR increases food requirements and energy use during periods of thermoneutral conditions.Abbreviations BMR basal metabolic rate - FMR field metabolic rate - partial pressure of oxygen - T a ambient temperature - T b body temperature - T e operative temperature - maximal aerobic metabolic rate  相似文献   

15.
Shorebirds have high resting and field metabolic rates relative to many other bird groups, and this is posited to be related to their high‐energy lifestyle. Maximum metabolic outputs for cold or exercise are also often high for bird groups with energetically demanding lifestyles. Moreover, shorebirds demonstrate flexible basal and maximal metabolic rates, which vary with changing energy demands throughout the annual cycle. Consequently, shorebirds might be expected to have high maximum metabolic rates, especially during migration periods. We captured least Calidris minutilla and pectoral C. melanotos sandpipers during spring and fall migration in southeastern South Dakota and measured maximal exercise metabolic rate (MMR; least sandpipers only), summit metabolic rate (Msum, maximal cold‐induced metabolic rate) and basal metabolic rate (BMR, minimum maintenance metabolic rate) with open‐circuit respirometry. BMR for both least and pectoral sandpipers exceeded allometric predictions by 3–14%, similar to other shorebirds, but Msum and MMR for both species were either similar to or lower than allometric predictions, suggesting that the elevated BMR in shorebirds does not extend to maximal metabolic capacities. Old World shorebirds show the highest BMR during the annual cycle on the Arctic breeding grounds. Similarly, least sandpiper BMR during migration was lower than on the Arctic breeding grounds, but this was not the case for pectoral sandpipers, so our data only partially support the idea of similar seasonal patterns of BMR variation in New World and Old World shorebirds. We found no correlations of BMR with either Msum or MMR for either raw or mass‐independent data, suggesting that basal and maximum aerobic metabolic rates are modulated independently in these species.  相似文献   

16.
恒温脊椎动物最大持续能量代谢率及其研究进展   总被引:1,自引:0,他引:1  
研究最大持续代谢率具有重要的理论和实践意义,本文概述了近年来国外对脊椎动物最大持续代谢率研究的成果,概括介绍了限制最大持续代谢率的四个假说:(1)食物限制假说(food limit hypothesis) ,(2)外周限制假说(peripheral limit hypotheisis),(3)中心限制假说(central limit hypothesis)和(4)对称性形态构成假说(symmorphosis hypothesis),分析了静止代谢率随持续代谢率的增加而增加的机理,讨论了最大持续代谢率对动物的生态进化意义,最后指出了最大持续代谢率研究中可能的发展前景。  相似文献   

17.
Individual differences in the energy cost of self-maintenance (resting metabolic rate, RMR) are substantial and the focus of an emerging research area. These differences may influence fitness because self-maintenance is considered as a life-history component along with growth and reproduction. In this review, we ask why do some individuals have two to three times the ‘maintenance costs’ of conspecifics, and what are the fitness consequences? Using evidence from a range of species, we demonstrate that diverse factors, such as genotypes, maternal effects, early developmental conditions and personality differences contribute to variation in individual RMR. We review evidence that RMR is linked with fitness, showing correlations with traits such as growth and survival. However, these relationships are modulated by environmental conditions (e.g. food supply), suggesting that the fitness consequences of a given RMR may be context-dependent. Then, using empirical examples, we discuss broad-scale reasons why variation in RMR might persist in natural populations, including the role of both spatial and temporal variation in selection pressures and trans-generational effects. To conclude, we discuss experimental approaches that will enable more rigorous examination of the causes and consequences of individual variation in this key physiological trait.  相似文献   

18.
Debate on the mechanism(s) responsible for the scaling of metabolic rate with body size in mammals has focused on why the maximum metabolic rate (VO2max ) appears to scale more steeply with body size than the basal metabolic rate (BMR). Consequently, metabolic scope, defined as VO2max/BMR, systematically increases with body size. These observations have led some to suggest that VO2max, and BMR are controlled by fundamentally different processes, and to discount the generality of models that predict a single power-law scaling exponent for the size dependence of the metabolic rate. We present a model that predicts a steeper size dependence for VO2max than BMR based on the observation that changes in muscle temperature from rest to maximal activity are greater in larger mammals. Empirical data support the model's prediction. This model thus provides a potential theoretical and mechanistic link between BMR and VO2 max.  相似文献   

19.
    
Road networks and human density are major factors contributing to habitat fragmentation and loss, isolation of wildlife populations, and reduced genetic diversity. Terrestrial mammals are particularly sensitive to road networks and encroachment by human populations. However, there are limited assessments of the impacts of road networks and human density on population-specific nuclear genetic diversity, and it remains unclear how these impacts are modulated by life-history traits. Using generalized linear mixed models and microsatellite data from 1444 North American terrestrial mammal populations, we show that taxa with large home range sizes, dense populations, and large body sizes had reduced nuclear genetic diversity with increasing road impacts and human density, but the overall influence of life-history traits was generally weak. Instead, we observed a high degree of genus-specific variation in genetic responses to road impacts and human density. Human density negatively affected allelic diversity or heterozygosity more than road networks (13 vs. 5–7 of 25 assessed genera, respectively); increased road networks and human density also positively affected allelic diversity and heterozygosity in 15 and 6–9 genera, respectively. Large-bodied, human-averse species were generally more negatively impacted than small, urban-adapted species. Genus-specific responses to habitat fragmentation by ongoing road development and human encroachment likely depend on the specific capability to (i) navigate roads as either barriers or movement corridors, and (ii) exploit resource-rich urban environments. The nonuniform genetic response to roads and human density highlights the need to implement efforts to mitigate the risk of vehicular collisions, while also facilitating gene flow between populations of particularly vulnerable taxa.  相似文献   

20.
Metabolic scope and its utilization in relation to feeding and activity were measured in individual and grouped zebrafish (weight range, 430–551 mg) at 24° C by respirometry. Mean maximum metabolic rate, induced by swimming to exhaustion, Rmax(i), was 1223 (s.d. , 157) mg O2, kg?1 h?1 for individuals. Standard metabolic rate, Rs. was 364 mg O2 kg?1 h?1, as estimated by extrapolating to zero activity from measurements of unfed, spontaneously active individuals. Mean routine metabolic rate, Rrout, of individuals was 421 (s.d. , 58) mg O2, kg-1 h-1. The mean voluntary maximum metabolic rate, Rmax(v), following transfer of minimally exercised fish to the respirometer, was 1110 (s.d. , 83) mg O2 kg ?1 h?1 for groups of six fish, and was not significantly different from the value measured for individuals, 1066 (s.d. , 122) mg O2, kg?1 h?1. Grouped fish acclimated to the respirometer more slowly than individual fish and exhibited significantly higher Rrout, apparently a result of greater social interaction and activity in groups. Mean Rrout for groups was 560 (s.d. , 78) mg O2, kg?1 h?1. While groups of zebrafish fed a ration of 5% wet body weight day?1 exhibited consistently higher metabolic rates than fish fed rations of 2.5% wet body weight day?1 the high ration group still used only a maximum of 77% of the metabolic scope. Zebrafish of the size studied do not appear to demonstrate a high degree of conflict in utilization of metabolic scope by different respiratory components. The metabolic rates measured for zebrafish are among the highest yet measured for fish of similar size and at similar temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号