首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patterns of sexual reproduction and clonal growth were investigated in the understory palm Reinhardtia gracilis var. gracilior over a 3-yr period. R. gracilis is a very abundant clonal palm in the tropical rain forest of Los Tuxtlas, Veracruz, México. Because ramets form clumps, genets are easily identified in the field. Genets were monitored in a 0.5-ha area, and classified by size according to the number of ramets they possessed. In contrast to clonal growth, sexual reproduction was highly dependent on genet size. The probability of reproduction, the number of inflorescences, and the number of fruits produced were positively correlated with genet size. However, neither the probability of producing a ramet, nor the number of ramets produced per genet were correlated with genet size. Over the 3 yr of study, 55% of the genet population had at least one ramet with reproductive structures, while <1% (a single genet in one year) had six ramets with flowers. Thirty-two percent of the mature genets reproduced during each of three consecutive years. In contrast, 58% of the genets produced no new ramets during these 3 yr. No evidence was found of a trade-off between clonal growth and sexual reproduction. Ramet production increases genet size and this in turn increases genet reproductive performance. Clonal growth in this species may be viewed as a growth strategy that tends to maximize genet fitness.  相似文献   

2.
Fitness and evolution in clonal plants: the impact of clonal growth   总被引:4,自引:0,他引:4  
Seeds have often been emphasized in estimates of plant fitness because they are the units that carry genes to the next generation, disperse, and found new populations. We contend that clonal growth also needs to be considered when estimating fitness in clonal plants, regardless of whether fitness is measured from a genet or ramet perspective. Clonal growth affects genet fitness through both genet persistence and seed production. It affects ramet fitness through new ramet production, because both seeds and clonal propagants are considered offspring. The differential production of clonal propagants will contribute to fitness differences among individuals which may result in population-level changes in allele frequencies (i.e. microevolution). We describe a form of selection unique to clonal organisms, genotypic selection, that can result in evolution. Genotypic selection occurs when genotypically based traits are associated with differences in the rate of ramet production. It can lead to evolutionary change in quantitative trait means both directly and indirectly. It leads directly to change in the ramet population by increasing the proportion of ramets with more advantageous trait values. From the genet perspective, it leads indirectly to evolution within and among populations whenever significant portions of the genetic effect on a trait are inherited through seed. We argue that under most conditions, clonal growth will play a major role in the microevolution of clonal plants.  相似文献   

3.
1 We used isozyme variation to examine the genet structure of Uvularia perfoliata patches in gap and closed canopy habitats in a temperate deciduous forest in Maryland, USA.
2 A large patch in a gap habitat was composed of a small number of widely spread genets with many ramets, and a large number of genets with more restricted distribution and few ramets. Genets with many ramets were patchily distributed at a metre scale. Analysis of genet structure on a scale of square centimetres, however, revealed that the genets were highly intermingled with no clear boundaries between them. The presence at both scales of sampling of many genets with unique multilocus genotypes indicated continuing genet recruitment within the population.
3 In the closed canopy habitat, the patches examined were each composed of a single unique multilocus genotype, suggesting that each had developed by asexual propagation following the establishment of a single genet.
4 The clonal structure of U. perfoliata patches in both gap and closed canopy habitats therefore appears to depend on recruitment patterns of genets. Populations in closed canopy habitats are characterized by a 'waiting' strategy, in which asexual ramet production maintains populations until genet recruitment by seed production can occur under the more optimal conditions associated with canopy gaps. Extended sampling suggests that the genetic diversity of U. perfoliata populations is primarily controlled by the disturbance regime of the forest canopy.  相似文献   

4.
5.
BACKGROUND AND AIMS: The mode of reproduction (sexual vs. asexual) is likely to have important effects on genetic variation and its spatial distribution within plant populations. An investigation was undertaken of fine-scale clonal structure and diversity within patches of Ilex leucoclada (a clone-forming dioecious shrub). METHODS: Six patches were selected in a 1-ha plot previously established in an old-growth beech forest. Two of the selected patches were composed predominantly of stems with male flowers (male patch), and two contained stems with predominantly female flowers (female patch). The remaining two patches contained stems with male flowers and stems with female flowers in more or less equal proportions (mixed patch). Different genets were distinguished using random amplified polymorphic DNA (RAPD) markers. KEY RESULTS: One hundred and fifty-six genets with different RAPD phenotypes were identified among 1928 stems from the six patches. Among the six patches, the male patches had the lowest clonal diversity, and the mixed patches had the highest. Distribution maps of the genets showed that they extended downhill, reflecting natural layering that occurred when stems were pressed to the ground by heavy snow. In every patch, there were a few large genets with many stems and many small genets with a few stems. CONCLUSION: The differences in clonal diversity among patches may be due to differences in seedling recruitment frequencies. The skewed distribution of genet size (defined as the number of stems per genet) within patches may be due to differences in the timing of germination, or age (with early-establishing genets having clear advantages for acquiring resources) and/or intraspecific competition.  相似文献   

6.
clonality V.0.4 is a program for testing heterozygosity-genet size relationships in clonal organisms using a randomization procedure. The software has been developed under the Borland Delphi developing environment and a Windows-executable version is freely downloadable from http://gemi.mpl.ird.fr/SiteSGASS/Prugnolle/ClonalityPage.html. The program compares the observed F(IS) of the population with the F(IS) expected if genets (multilocus genotypes present in multiple copies within the population) were chosen randomly from the set of different multilocus genotypes. The randomization procedure is performed with the same number of genets and the same number of repetitions per genet as what is observed in the original data set.  相似文献   

7.
8.
The insect-pollinated forest tree Tilia cordata Mill. grows today in small fragmented populations in Denmark and other western European countries but was, in prehistoric times, a dominating species and is considered an indicator species for ancient forest. The species is known to propagate both sexually and vegetatively, forming clonal groups. Few studies have been made on the species' population genetics and on how clonality affects the population structure. The aim of this study is to evaluate the Danish gene pool by estimating genetic diversity and differentiation, as well as through exhaustive sampling describe clonal structures in some of the populations. Genetic analysis was carried out using nine nuclear microsatellite markers in nine populations, of which four were exhaustively or partly exhaustively sampled. The markers showed a high degree of genetic diversity but low differentiation between populations, with no geographic-related structure. Clonal structures were found in eight out of the nine populations. In the exhaustively sampled populations, recruitment strategies included both sexual and clonal reproduction with indications that clonality may be enhanced by management and other disturbances.  相似文献   

9.
Clonal plants spread horizontally, and can transport nutrients between ramets. Decaying biomass feeds back nutrients into the soil, but importantly, the place of deposition may differ from the place of uptake. To our knowledge, the present model is the first attempt to couple population dynamics with resource dynamics with the consideration of lateral transport. The simulations start from various initial resource patterns. Six types of clonal plants are compared, which differ in the birth and survival rates of ramets. Size of the ramet population and the amount of translocated resource are recorded over time. In addition, we consider the pattern of gaps in the canopy of the clonal plant from the aspect of two colonizer species: a strong and a weak competitor. The results suggest that the most important factor determining the impact of a clonal plant on its environment is ramet survival; the rate of ramet production is only secondary. Phenotypic plasticity in the production of ramets does not appear to be important: it has only minor effect on resource translocation and on the availability of colonizable gaps.  相似文献   

10.
We measured rhizome branching, clonal mobility, and ramet longevity of 98 meadow plant species. A cluster analysis applied to this dataset revealed nine clonal growth types that differ mainly by the ramet lifespan and vegetative mobility. Then we compared the abundance of these groups of clonal species between the three following plant communities: (1) open, (2) restored and (3) overgrown wooded meadows in the Laelatu-Nehatu-Puhtu Nature Reserve, Estonia. This is the first study where the quantitative values of belowground clonal traits have been measured for all species of a species-rich community. We show that species with annual ramets and with a low vegetative mobility were most abundant in open grasslands. The relative abundance of perennial species with annual ramets was positively correlated with shoot density and species diversity, indicating that high ramet turnover rates combined with a high genet longevity can positively affect species coexistence in meadow communities. Hence, this study provides evidence for the fact that the average values of clonal life-history parameters differ between these communities. Herb communities under forest canopy consist, in average, of species with ramets that live longer and are clonally more mobile than in the communities of open sites.  相似文献   

11.

Background and Aims

It is important to consider the modular level when verifying sexual dimorphism in dioecious plants. Nevertheless, between-sex differences in resource translocation among modules (i.e. physiological integration) have not been tested at the whole-plant level. In this study, sexual differences in physiological integration were examined among ramets, within a genet in the dioecious sprouting shrub Lindera triloba, by a field experiment with girdling manipulation.

Methods

Female and male genets were randomly assigned to girdled or intact groups. Girdling of the main ramets was conducted in May 2009 by removing a ring of bark and cambium approx. 1 cm wide at a height of 80–100 cm. The effects of treatment and sex on ramet dynamics (mortality, recruitment and diameter growth) and inflorescence production during 1 year after girdling were examined.

Key Results

The diameter growth rate of main ramets of both sexes was lower at ground level (D0) but higher at breast height (dbh) in girdled than in intact groups. In sprouted ramets with a dbh of 0–2 cm, males in girdled groups had lower growth rates at D0 than those of intact groups, whereas no girdling effect was found for females. The main ramets in girdled groups produced more inflorescences than intact groups, irrespective of sex, but male ramets showed a greater response to the treatment than females.

Conclusions

In L. triloba, physiological integration exists at the whole-plant level, and sprouted ramets are dependent on assimilates translocated from main ramets, but this dependence weakens as sprouted ramets get larger. Female sprouted ramets can grow in a physiologically independent manner from the main ramet earlier than those of males. This study highlights the importance of considering modular structures and physiological integration when evaluating sexual differences in demographic patterns of clonal plants.  相似文献   

12.
13.
Varied nutrient sources can influence the plasticity of reproductive strategies in monoecious species differently. We examined the plasticity of sexual and clonal reproductive components in distinct nutrient sources in a monoecious species, Sagittaria graminea Michx. The results showed that for aboveground reproductive components, in rich-phosphorus and low-nitrogen conditions, the species produced more male flowers, whereas female flowers did not significantly increase in number compared to low-phosphorus and low-nitrogen conditions (control). In rich-nitrogen and low-phosphorus conditions, the species produced more flowers, particularly female, and more seeds, compared to the control conditions. In the rich-nitrogen and rich-phosphorus conditions, plants increased male flowers, female flowers, total flower number, synchronously, as well as seed production. For the belowground reproductive components, in the rich-phosphorus conditions, the plants produced bigger corms than in the rich-nitrogen and control conditions, which further enhanced their competitiveness against companion species. In rich-nitrogen conditions, the plants produced more medium and small corms, and relatively more and longer stolons, which were useful in expansion and invasion of more space. Furthermore, the species displayed trade-off relationships between the aboveground and belowground reproductive components in unbalanced nutrient conditions (add-N or add-P). However, in low nutrient levels (control) or in nutrient abundant (add-N + P) conditions, there were no significant trade-off relationships between the aboveground and belowground reproductive components, based on quantities.  相似文献   

14.
15.
16.
Patterns of clonal diversity in parthenogenetic species can be influenced by occasional sexual reproduction, selection due to environmental heterogeneity, and genetic drift. Here we investigate geographic patterns of clonal diversity in the obligate parthenogenetic earth mite species, Penthaleus major, in southeastern Australia. Spatial autocorrelation analysis indicated a relationship between geographic distance and clonal diversity at the sites. However, there was no evidence for an association between distance and clonal composition or the frequency of the two most common clones. Regression analyses indicated that clonal diversity and the frequency of one of the common clonal groups were associated with latitude and/or climatic variables, whereas the other common group was not associated with any of those variables. In four transects (each 250-400 km in length) extending from the center of the distribution of P. major to its margins, there was a consistent and continuous decline in clonal diversity as the margin was approached but no evidence that one clonal group predominated at the margin. This argues against the importance of a general-purpose genotype being favored at margins and suggests that either selection acts to decrease local diversity at sites near the margin or that diversity declines due to drift at these sites.  相似文献   

17.
Plant mating systems have received considerable attention because the proportion of selfed vs. outcrossed progeny is an important evolutionary factor. In clonally reproducing plants, geitonogamous selfing between distant ramets belonging to the same genet is expected to be widespread, yet empirical data are sparse. Nothing is known about between‐ramet selfing in aquatic flowering plants with subaqueous pollen transfer, most of which display pronounced clonal reproduction. From two locations in the western Baltic Sea, I present data on the effects of patch isolation and clonal diversity on the outcrossing rate of eelgrass, Zostera marina L., based on the genotypes of maternal plants and recently fertilized ovules scored at eight microsatellite loci. There were no differences in outcrossing rates between vegetation patches and continuous meadow although patches were nearly always composed of single genets. Quantitative effects of clonal diversity were present in the continuous vegetation where a significant positive correlation between genet diversity and the proportion of outcrossed offspring was detected (Kendall’s τ=0.82, P=0.0017). On a population‐scale as well, the genotypic diversity was positively correlated with outcrossing. The relative fitness of selfed offspring was low (ω ± 95% confidence interval=0.56 ± 0.032 and 0.322 ± 0.15) indicating that geitonogamy incurred substantial fitness costs. Selfing rates in Z. marina may not be in evolutionary equilibrium because of spatial and temporal heterogeneity of clonal size and diversity. The high prevalence of dioecy in seagrasses may have evolved to avoid the fitness costs associated with geitonogamy.  相似文献   

18.
Negative effects of small population size on fitness, so-called Allee effects, may threaten population persistence even in intact habitat remnants. We studied genotypes of 14 isolated populations of the clonal plant Ranunculus reptans, for which molecular genetic (RAPD-) variability is higher for large than for small populations. In a competition-free greenhouse environment vegetative offspring of genotypes from large populations produced more rosettes and flowers, indicating higher fitness. Within-genotype coefficients of variation in performance traits, indicating developmental instability, were lower for genotypes from populations with higher RAPD-variability. In competition with a taller grass, we found relative reduction in leaf length less pronounced for plants from large populations, suggesting higher adaptive plasticity. Our experimental study of a plant with predominantly vegetative reproduction suggests, that negative genetic effects of recent habitat fragmentation, which so far rather were expected in plants with frequent sexual reproduction, are more severe and more common than previously acknowledged.  相似文献   

19.
Habitat selection by directional growth of plants has previously been investigated but field evidence for this phenomenon is extremely scarce. In this study we demonstrate directional clonal growth in Aechmea nudicaulis, a monocarpic, perennial bromeliad native to spatially heterogeneous sandy coastal plains (restinga) in Brazil. This habitat is characterized by a matrix of bare sand with interspersed vegetation islands. Due to very high soil surface temperatures and other stress factors such as drought, A. nudicauliscan only germinate inside vegetation islands. Nevertheless, this species is very common on bare sand. In this study we tested the hypothesis that clonal fragments occurring at the border and inside vegetation islands show habitat selection by growing preferentially towards the bare sand habitat (i.e. away from the center of vegetation islands).We randomly chose 116 clonal fragments in two distinct micro-environments (inside vegetation islands, and in the border area between bare sand and vegetation islands) in the natural habitat of A.nudicaulisand measured their growth direction in relation to the island center. We measured the growth directions of entire clonal fragments (defined as the line that connects the oldest and the youngest ramets of a clonal fragment) as well as the growth direction of the youngest internode on each fragment (the growth direction of the youngest ramet in relation to its parent ramet). We used Monte Carlo simulations to test for deviations from randomness in the growth direction of clonal fragments and individual internodes. The clonal fragments of A.nudicaulis showed a significant tendency to grow away from the center of vegetation islands. In other words, the main growth direction of clonal fragments growing inside vegetation islands or at the border between bare sand and vegetation islands was preferentially directed towards bare sand environments. Individual internodes at the border of vegetation islands also exhibited this tendency to grow towards the outside of vegetation islands, but internodes growing inside vegetation islands did not show directional growth. These results provide the first field evidence for habitat selection through directional growth of a clonal plant species.Co-ordinationg editor: J. Tuomi  相似文献   

20.
Facultative sexual organisms combine sexual and asexual reproduction within a single life cycle, often switching between reproductive modes depending on environmental conditions. These organisms frequently inhabit variable seasonal environments, where favorable periods alternate with unfavorable periods, generating temporally varying selection pressures that strongly influence life history decisions and hence population dynamics. Due to the rapidly accelerating changes in our global environment today, understanding the population dynamics and genetic changes in facultative sexual populations inhabiting seasonal environments is critical to assess and prepare for additional challenges that will affect such ecosystems. In this study, we aimed at obtaining insights into the seasonal population dynamics of the facultative sexual freshwater cnidarian Hydra oligactis through a combination of restriction site‐associated sequencing (RAD‐Seq) genotyping and the collection of phenotypic data on the reproductive strategy of field‐collected hydra strains in a standard laboratory environment. We reliably detected 42 MlGs from the 121 collected hydra strains. Most of MLGs (N = 35, 83.3%) were detected in only one season. Five MLGs (11.9%) were detected in two seasons, one (2.4%) in three seasons and one (2.4%) in all four seasons. We found no significant genetic change during the 2 years in the study population. Clone lines were detected between seasons and even years, suggesting that clonal lineages can persist for a long time in a natural population. We also found that distinct genotypes differ in sexual reproduction frequency, but these differences did not affect whether genotypes reappeared across samplings. Our study provides key insights into the biology of natural hydra populations, while also contributing to understanding the population biology of facultative sexual species inhabiting freshwater ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号