首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa ubiquitously inhabits soil and water habitats and also causes serious, often antibiotic resistant, infections in immunocompromised patients (e.g. cystic fibrosis). This versatility is mediated in part by a large repertoire of two-component regulatory systems that appear instrumental in the regulation of both virulence processes and resistance to antimicrobials. Major two-component regulatory system proteins demonstrated to regulate these diverse processes include PhoP–PhoQ, GacA–GacS, RetS, LadS, and AlgR, among others. Here, we summarize the current body of knowledge of these and other two-component systems that provides insight into the complex regulation of virulence and resistance in P. aeruginosa .  相似文献   

2.
Quorum sensing (QS) has been a novel target for the treatment of infectious diseases. Here structural analogs of Pseudomonas aeruginosa autoinducer N-acyl homoserine lactone (AHL) were investigated for QS inhibitor (QSI) activity and a novel QSI was discovered, N-decanoyl-L-homoserine benzyl ester (C2). Virulence assays showed that C2 down-regulated total protease and elastase activities, as well as the production of rhamnolipid, that are controlled by QS in P. aeruginosa wild-type strain PAO1 without affecting growth. C2 was also shown to inhibit swarming motility of PAO1. Using a microdilution checkerboard method, we identified synergistic interactions between C2 and several antibiotics, tobramycin, gentamycin, cefepime, and meropenem. Data from real-time RT-PCR suggested that C2 inhibited the expression of lasR (29.67%), lasI (21.57%), rhlR (28.20%), and rhlI (29.03%).  相似文献   

3.
The aims of this study were to assess the association patterns of 96 clinical isolates of Pseudomonas aeruginosa using hierarchical cluster analysis from data obtained from the measurement of the physicochemical cell surface properties, adhesion and initial biofilm formation abilities, to investigate any correspondence with source, serotype, beta-lactam pattern, motility and M13-PCR genogroup or clonal lineage, as well as to select clinical isolates that could act as representatives of the genotypic and phenotypic diversity of this P. aeruginosa population from a Portuguese Central Hospital. The isolates were phenotypically characterized by their ability to adhere and form biofilms on polystyrene surfaces, their affinity to hexadecane and silicone, their swimming and twitching abilities, their antibiotic susceptibility patterns and their serotypes. No particular phenotypic cluster associated with the same source, serotype, beta-lactam pattern, motility and M13-PCR genogroup and clonal lineage was found. Nevertheless, five representative strains of the P. aeruginosa population from this Hospital, selected on the basis of low genetic similarity, were also found to be dispersed among the phenotypic clusters.  相似文献   

4.
Pseudomonas aeruginosa, an opportunistic pathogen that often initiates infections from a reservoir in the intestinal tract, may donate or acquire antibiotic resistance in an anaerobic environment. Only by including nitrate and nitrite in media could antibiotic-resistant and -sensitive strains of P. aeruginosa be cultured in a glove box isolator. These anaerobically grown cells remained sensitive to lytic phage isolated from sewage. After incubation with a phage lysate derived from P. aeruginosa 1822, anaerobic transfer of antibiotic resistance to recipients P. aeruginosa PS8EtBr and PS8EtBrR occurred at frequencies of 6.2 x 10(-9) and 5.0 x 10(-8) cells per plaque-forming unit, respectively. In experiments performed outside the isolator, transfer frequencies to PS8EtBr and PS8EtBrR were higher, 1.3 x 10(-7) and 6.5 x 10(-8) cells per plaque-forming unit, respectively. When P. aeruginosa 1822 was incubated aerobically with Escherichia coli B in medium containing nitrate and nitrite, the maximum concentration of carbenicillin-resistant E. coli B reached 25% of the total E. coli B population. This percentage declined to 0.01% of the total E. coli B population when anaerobically grown P. aeruginosa 1822 and E. coli B were combined and incubated in the glove box isolator. The highest concentration of the recipient population converted to antibiotic resistance occurred after 24 h of aerobic incubation, when an initially high donor/recipient ratio (>15) of cells was mixed. These data indicate that transfer of antibiotic resistance either by transduction between Pseudomonas spp. or by conjugation between Pseudomonas sp. and E. coli occurs under strict anaerobic conditions, although at lower frequencies than under aerobic conditions.  相似文献   

5.
从绿脓杆菌(Pseudomonas aeruginosa)PAK菌株的染色体DNA构建的基因文库中筛选到一 基因片段与绿脓杆菌的抗性相关。经测序证明该片段包含了绿脓杆菌基因组中PA4293所编码 序列,进一步实验证明与它相邻的另一段827bp的基因也与绿脓杆菌的抗药性有关。上述2基 因分别命名为pprA和pprB。以绿脓杆菌PAK菌株为出发菌株,经过新霉素耐受培养得到抗生素 抗性菌株PAK1-3,该菌株对氨基糖苷类抗生素的抗性明显增强。经PCR方法扩增上述基因并克 隆至PAK1-3菌株中,可引起该菌株对氨基糖苷类抗生素的敏感。又经pprB基因转入临床分离 得到的致病性绿脓杆菌中,导致部分绿脓杆菌对氨基糖苷类抗生素的敏感性增强。pprA和pprB 很可能是一组与绿脓杆菌抗药性相关的双分子调节系统,并与细胞膜的通透性有关。  相似文献   

6.
In addition to exhibiting swimming and twitching motility, Pseudomonas aeruginosa is able to swarm on semisolid (viscous) surfaces. Recent studies have indicated that swarming is a more complex type of motility influenced by a large number of different genes. To investigate the adaptation process involved in swarming motility, gene expression profiles were analyzed by performing microarrays on bacteria from the leading edge of a swarm zone compared to bacteria growing in identical medium under swimming conditions. Major shifts in gene expression patterns were observed under swarming conditions, including, among others, the overexpression of a large number of virulence-related genes such as those encoding the type III secretion system and its effectors, those encoding extracellular proteases, and those associated with iron transport. In addition, swarming cells exhibited adaptive antibiotic resistance against polymyxin B, gentamicin, and ciprofloxacin compared to what was seen for their planktonic (swimming) counterparts. By analyzing a large subset of up-regulated genes, we were able to show that two virulence genes, lasB and pvdQ, were required for swarming motility. These results clearly favored the conclusion that swarming of P. aeruginosa is a complex adaptation process in response to a viscous environment resulting in a substantial change in virulence gene expression and antibiotic resistance.  相似文献   

7.
In Pseudomonas aeruginosa many of the clinically relevant resistance mechanisms result from changes in gene expression as exemplified by the Mex drug efflux pumps, the AmpC beta-lactamase and the carbapenem-specific porin OprD. We used quantitative real-time-PCR to analyze the expression of these genes in susceptible and antibiotic-resistant laboratory and clinical strains. In nalB mutants, which overexpress OprM, we observed a four- to eightfold increase in the expression of mexA, mexB, and oprM genes. MexX and mexY genes were induced eight to 12 times in the presence of 2 mg L(-1) tetracycline. The mexC/oprJ and mexE/oprN gene expression levels were increased 30- to 250-fold and 100- to 760-fold in nfxB and nfxC mutants, respectively. We further found that in defined laboratory strains expression levels of ampC and oprD genes paralleled beta-lactamase activity and OprD protein levels, respectively. Our data support the use of quantitative real-time-PCR chain reaction for the analysis of the antimicrobial resistance gene expression in P. aeruginosa.  相似文献   

8.
目的了解广州地区喹诺酮类耐药铜绿假单胞菌的耐药性及泵抑制剂对其耐药水平降低的作用,并调查血清型分布情况。方法用法国生物梅里埃公司的微生物鉴定和药敏分析系统VITEK-2对127株铜绿假单胞菌进行鉴定和药敏检测,并采用羰酰氰基-对-氯苯胺(CCCP)与环丙沙星共同作用,以琼脂稀释法测定耐药菌的最低抑菌浓度(M IC)的变化,同时用玻片凝集法对耐药株进行血清学分型。结果环丙沙星耐药菌对哌拉西林/他唑巴坦(65.5%)的敏感率最高,只有阿米卡星(64.4%)、哌拉西林(51.7%)和妥布霉素(50.6%)的敏感率大于50.0%,而敏感菌对美罗培南(97.5%)及左氧氟沙星(97.5%)的敏感率最高,妥布霉素(95.0%)次之,对临床常用的13种抗生素,耐药菌较敏感菌的敏感性明显降低(P值均<0.001);耐药菌受泵抑制CCCP作用,M IC降低1~4个稀释度;血清分型率为93.1%,耐药菌的血清型以B型(20.7%)和L型(19.5%)为主。结论耐喹诺酮类铜绿假单胞菌对临床常用抗生素的敏感性降低,并呈多重耐药,使用抗生素 泵抑制剂可提高药物对铜绿假单胞菌的敏感性;血清学分型可以快速简单地监测铜绿假单胞菌在医院内的流行情况。  相似文献   

9.
Pseudomonas aeruginosa is a common cause of corneal infections, particularly among users of soft contact lenses. Previous studies with chemically induced mutants deficient in alkaline protease (AP) or elastase (LasB) suggested that these proteases contributed to the rapid liquifactive stromal necrosis characteristic of P. aeruginosa corneal infections. Because these mutants might harbor other chromosomal changes that could affect virulence, the role of these proteases in the pathogenesis of corneal disease (as well as a second elastase, LasA protease) was reexamined by constructing isogenic mutants deficient only in these enzymes. Allelic exchange was used to construct mutants of P. aeruginosa PAO1-V deficient in AP (PAO1-V AP[ - ]), LasB and LasA protease (PDO801 LasB[ - ]), or all three proteases (PDO801 TM). These mutants were then evaluated for virulence using mouse scratch and rabbit intrastromal injection models of corneal disease. Loss of AP significantly increased disease scores in the rabbit (P < 0.030) but not the mouse (P > 0.060) model of infection. Loss of both elastases had no effect on ocular virulence in either animal model of corneal disease (P > 0.100). The loss of all three proteases significantly decreased disease scores in the rabbit (P < 0.035), but not in the mouse (P > 0.110). Taken together, these data suggest that AP, LasB, and LasA protease are not essential for initiating or maintaining a corneal infection. Furthermore, AP appears to be an important mediator of pathology depending on the location of the organism within the cornea and whether or not concomitant elastolytic activity is present.  相似文献   

10.
Pseudomonas aeruginosa is an opportunistic pathogen that possesses a large arsenal of virulence factors enabling the pathogen to cause serious infections in immunocompromised patients, burn victims, and cystic fibrosis patients. CbrA is a sensor kinase that has previously been implied to play a role with its cognate response regulator CbrB in the metabolic regulation of carbon and nitrogen utilization in P. aeruginosa. Here it is demonstrated that CbrA and CbrB play an important role in various virulence and virulence-related processes of the bacteria, including swarming, biofilm formation, cytotoxicity, and antibiotic resistance. The cbrA deletion mutant was completely unable to swarm while exhibiting an increase in biofilm formation, supporting the inverse regulation of swarming and biofilm formation in P. aeruginosa. The cbrA mutant also exhibited increased cytotoxicity to human lung epithelial cells as early as 4 and 6 h postinfection. Furthermore, the cbrA mutant demonstrated increased resistance toward a variety of clinically important antibiotics, including polymyxin B, ciprofloxacin, and tobramycin. Microarray analysis revealed that under swarming conditions, CbrA regulated the expression of many genes, including phoPQ, pmrAB, arnBCADTEF, dnaK, and pvdQ, consistent with the antibiotic resistance and swarming impairment phenotypes of the cbrA mutant. Phenotypic and real-time quantitative PCR (RT-qPCR) analyses of a PA14 cbrB mutant suggested that CbrA may be modulating swarming, biofilm formation, and cytotoxicity via CbrB and that the CrcZ small RNA is likely downstream of this two-component regulator. However, as CbrB did not have a resistance phenotype, CbrA likely modulates antibiotic resistance in a manner independent of CbrB.  相似文献   

11.
New strains of Pseudomonas aeruginosa were isolated from clinical and environmental settings in order to characterize the virulence properties of this opportunistic pathogen. P. aeruginosa was frequently recovered from oil-contaminated samples but not from non-oil-contaminated soils. The virulence of five environmental and five clinical strains of P. aeruginosa was tested using two different models, Drosophila melanogaster and Lactuca sativa var. capitata L. There was no difference in the virulence between the two groups of isolates in either of the models. Since environmental P. aeruginosa strains are used for bioaugmentation in bioremediation programs, the results presented here should be taken into account in the future design of degradative consortia and/or in establishing containment measures.  相似文献   

12.
13.
The AA report about the resistence towards antibiotics of 42 stocks of Pseudomonas aeruginosa isolated from hospitalized patients and of 18 stocks isolated from non hospitalized patients. The most active antibiotics are Gentamicine, Neomicine and Streptomicine. Interestingly towards Tobramicine no resistence has been detected. The stocks isolated from hospitalized patients have generally shown a higher resistence.  相似文献   

14.
Organic solvent-tolerant mutants of Pseudomonas aeruginosa selected in the presence of hexane exhibited increased resistance to a variety of structurally unrelated antimicrobial agents, including beta-lactams, fluoroquinolones, chloramphenicol, tetracycline, and novobiocin, a phenotype typical of nalB multidrug-resistant mutants. Western immunoblotting with antibodies specific to components of the three known multidrug efflux systems in P. aeruginosa demonstrated that the solvent-tolerant mutants displayed increased expression of the MexAB-OprM system and decreased expression of the MexEF-OprN system. Sequence analysis of mexR, the repressor gene of mexAB-oprM efflux operon, identified a nonsense mutation and a point mutation in the mexR genes of two solvent-tolerant mutants. These results emphasize the importance of the MexAB-OprM efflux system in organic solvent tolerance and the ability of environmental pollutants to select bacteria with a medically relevant antibiotic-resistant phenotype.  相似文献   

15.
Biofilm-specific antibiotic resistance is influenced by multiple factors. We demonstrated that Pseudomonas aeruginosa tssC1, a gene implicated in type VI secretion (T6S), is important for resistance of biofilms to a subset of antibiotics. We showed that tssC1 expression is induced in biofilms and confirmed that tssC1 is required for T6S.  相似文献   

16.
17.
Why should organisms cooperate with each other? Helping close relatives that are likely to share the same genes (kin selection) is one important explanation that is likely to apply across taxa. The production of metabolically costly extracellular iron-scavenging molecules (siderophores) by microorganisms is a cooperative behaviour because it benefits nearby conspecifics. We review experiments focusing on the production of the primary siderophore (pyoverdin) of the opportunistic bacterial pathogen, Pseudomonas aeruginosa, which test kin selection theories that seek to explain the evolution of cooperation. First, cooperation is indeed favoured when individuals interact with their close relatives and when there is competition between groups of cooperators and noncooperators, such that the benefit of cooperation can be realized. Second, the relative success of cheats and cooperators is a function of their frequencies within populations. Third, elevated mutation rates can confer a selective disadvantage under conditions when cooperation is beneficial, because high mutation rates reduce how closely bacteria are related to each other. Fourth, cooperative pyoverdin production is also shown to be favoured by kin selection in vivo (caterpillars), and results in more virulent infections. Finally, we briefly outline ongoing and future work using this experimental system.  相似文献   

18.
19.
目的探究铜绿假单胞菌生物膜和浮游菌状态下毒力因子的表达差异。方法使用铜绿假单胞菌标准菌株PAO1,分别在生物膜(静置)和浮游菌(摇床)状态下培养,收集上清液,检测总蛋白酶、LasA和LasB弹性蛋白酶、鼠李糖脂、绿脓素、溶血活性;通过荧光定量PCR检测群体感应(quorum sensing, QS)系统相关基因的表达;同时,通过活菌计数检测PAO1在生物膜和浮游菌状态下的生长曲线。结果生物膜状态下,铜绿假单胞菌PAO1的总蛋白酶、LasA、LasB弹性蛋白酶、鼠李糖脂、绿脓素表达均增高(均P0.05),溶血活性增高(P0.05),生物膜和浮游菌状态下细菌生长曲线差异无统计学意义,QS相关基因rhlI、rhlR、rhlA、lasI、lasR、pqsA、pqsR表达增高(均P0.05)。结论铜绿假单胞菌PAO1在生物膜状态下毒力因子表达较浮游菌状态下增高。  相似文献   

20.
Strain PA14, a human clinical isolate of Pseudomonas aeruginosa, is pathogenic in mice and insects (Galleria mellonella). Analysis of 32 different PA14 mutants in these two hosts showed a novel positive correlation in the virulence patterns. Thus, G. mellonella is a good model system for identifying mammalian virulence factors of P. aeruginosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号