首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
  1. Although savanna woody encroachment has become a global phenomenon, relatively little is known about its effects on multiple dimensions and levels of savanna biodiversity.
  2. Using a combination of field surveys, a species-level phylogeny, and functional metrics drawn from a morphological dataset, we evaluated how the progressive increase in tree cover in a fire-suppressed savanna landscape affects the taxonomic, functional, and phylogenetic diversity of neotropical ant communities, at both the alpha and beta levels. Ants were sampled along an extensive tree cover gradient, ranging from open savannas to forests established in former savanna areas.
  3. Variation in tree cover had a significant influence on all facets of diversity at the beta level, whereas at the alpha level tree cover variation affected the taxonomic and functional but not the phylogenetic diversity of the ant communities.
  4. In general, ant community responses to variation in tree cover were largely non-linear as differences in taxonomic alpha diversity and in the taxonomic, functional, and phylogenetic composition of the sampled communities were often much stronger at the savanna/forest transition than at any other part of the gradient. This indicates that savanna ant communities switch rapidly to an alternative state once the savanna turns into forest.
  5. Ant communities in the newly formed forest areas lacked many of the species typical of the savanna habitats, suggesting that the maintenance of a fire suppression policy is likely to result in a decrease in ant diversity and in the homogenisation of the ant fauna at the landscape scale.
  相似文献   

2.
    
It has recently been found that the frequency distribution of remotely sensed tree cover in the tropics has three distinct modes, which seem to correspond to forest, savanna, and treeless states. This pattern has been suggested to imply that these states represent alternative attractors, and that the response of these systems to climate change would be characterized by critical transitions and hysteresis. Here, we show how this inference is contingent upon mechanisms at play. We present a simple dynamical model that can generate three alternative tree cover states (forest, savanna, and a treeless state), based on known mechanisms, and use this model to simulate patterns of tree cover under different scenarios. We use these synthetic data to show that the hysteresis inferred from remotely sensed tree cover patterns will be inflated by spatial heterogeneity of environmental conditions. On the other hand, we show that the hysteresis inferred from satellite data may actually underestimate real hysteresis in response to climate change if there exists a positive feedback between regional tree cover and precipitation. Our results also indicate that such positive feedback between vegetation and climate should cause direct shifts between forest and a treeless state (rather than through an intermediate savanna state) to become more likely. Finally, we show how directionality of historical change in conditions may bias the observed relationship between tree cover and environmental conditions.  相似文献   

3.
    
  相似文献   

4.
    
In their recent paper, Staver and Hansen (Global Ecology and Biogeography, 2015, 24, 985–987) refute the case made by Hanan et al. (Global Ecology and Biogeography, 2014, 23, 259–263) that the use of classification and regression trees (CARTs) to predict tree cover from remotely sensed imagery (MODIS VCF) inherently introduces biases, thus making the resulting tree cover unsuitable for showing alternative stable states through tree cover frequency distribution analyses. Here we provide a new and equally fundamental argument for why the published frequency distributions should not be used for such purposes. We show that the practice of pre‐average binning of tree cover values used to derive cover values to train the CART model will also introduce errors in the frequency distributions of the final product. We demonstrate that the frequency minima found at tree covers of 8–18%, 33–45% and 55–75% can be attributed to numerical biases introduced when training samples are derived from landscapes containing asymmetric tree cover distributions and/or a tree cover gradient. So it is highly likely that the CART, used to produce MODIS VCF, delivers tree cover frequency distributions that do not reflect the real world situation.  相似文献   

5.
Smith CC  Ryan MJ 《Biology letters》2011,7(5):733-735
In species with alternative reproductive tactics, males that sneak copulations often have larger, higher quality ejaculates relative to males that defend females or nest sites. Ejaculate traits can, however, exhibit substantial phenotypic plasticity depending on a male's mating role in sperm competition, which may depend on the tactic of his competitor. We tested whether exposure to males of different tactics affected sperm number and quality in the swordtail Xipophorus nigrensis, a species with small males that sneak copulations and large males that court females. Sperm swimming speed was higher when the perceived competitor was small than when the competitor was large. Plasticity, however, was only exhibited by small males. Sperm number and viability were invariant between social environments. Our results suggest sperm quality is role-dependent and that plastic responses to the social environment can differ between male reproductive tactics.  相似文献   

6.
Modulation of behaviours as a result of fighting experience has been observed in many animals and can influence pre-copulatory sexual selection. This study investigated how fighting experience affects ejaculatory strategies. In male flour beetles, Gnatocerus cornutus, experience of losing a fight decreases a male''s aggressiveness for up to 4 days. We found that males losing a fight show increased ejaculatory investment, but there was no ejaculatory modulation owing to winning. However, the increase in ejaculate investment following a loss was no longer observed after 5 days. These results indicate that males adjust their investment in sperm competition according to their experience, and that fighting experience can significantly influence pre- and post-copulatory reproductive tactics.  相似文献   

7.
A large proportion of studies in systems science focus on processes involving a mixture of positive and negative feedbacks, which are also common themes in evolutionary ecology. Examples of negative feedback are density dependence (population regulation) and frequency-dependent selection (polymorphisms). Positive feedback, in turn, plays a role in Fisherian 'runaway' sexual selection, the evolution of cooperation, selfing and inbreeding tolerance under purging of deleterious alleles, and the evolution of sex differences in parental care. All these examples feature self-reinforcing processes where the increase in the value of a trait selects for further increases, sometimes via a coevolutionary feedback loop with another trait. Positive feedback often leads to alternative stable states (evolutionary endpoints), making the interpretation of evolutionary predictions challenging. Here, we discuss conceptual issues such as the relationship between self-reinforcing selection and disruptive selection. We also present an extension of a previous model on parental care, focusing on the relationship between the operational sex ratio and sexual selection, and the influence of this relationship on the evolution of biparental or uniparental care.  相似文献   

8.
  总被引:2,自引:0,他引:2  
Fire shapes the distribution of savanna and forest through complex interactions involving climate, resources and species traits. Based on data from central Brazil, we propose that these interactions are governed by two critical thresholds. The fire-resistance threshold is reached when individual trees have accumulated sufficient bark to avoid stem death, whereas the fire-suppression threshold is reached when an ecosystem has sufficient canopy cover to suppress fire by excluding grasses. Surpassing either threshold is dependent upon long fire-free intervals, which are rare in mesic savanna. On high-resource sites, the thresholds are reached quickly, increasing the probability that savanna switches to forest, whereas low-resource sites are likely to remain as savanna even if fire is infrequent. Species traits influence both thresholds; saplings of savanna trees accumulate bark thickness more quickly than forest trees, and are more likely to become fire resistant during fire-free intervals. Forest trees accumulate leaf area more rapidly than savanna trees, thereby accelerating the transition to forest. Thus, multiple factors interact with fire to determine the distribution of savanna and forest by influencing the time needed to reach these thresholds. Future work should decipher multiple environmental controls over the rates of tree growth and canopy closure in savanna.  相似文献   

9.
It has been argued that waterfowl and fish may threaten growth of submerged macrophytes, especially in spring during the early growth phase when plant biomass is low. A small reduction of biomass at that time might delay growth or decrease subsequent productivity. We investigated the impact of waterfowl and large fish on the spring growth of fennel pondweed (Potamogeton pectinatusL.) by employing an exclosure experiment in the macrophyte-dominated clear-water Lake Mogan, Turkey. Birds and large fish were excluded from eight plots and both in situvegetation and macrophytes kept in pots were compared to eight open plots. Also, to investigate the effect of periphyton on plant growth it was removed from half of the pot plants. Exclusion of waterfowl and fish may decrease predation on macroinvertebrates, which in turn may affect periphyton, and macrophyte growth, why macroinvertebrates also were sampled. Waterfowl density was high (15–70 ind. of coot, Fulica atraL. ha–1), abundance of submerged plants was also high with a surface coverage of 70–80%, and benthivorous fish were present, mainly tench, (Tinca tincaL.) and carp, (Cyprinus carpioL.). Exclusion of waterfowl and large fish did not significantly affect the spring growth of pondweed; neither plants growing in situnor kept in pots. Removal of periphyton from the plants in the pots did not favour growth. The density of macroinvertebrates was not affected by the exclusion of waterfowl and large fish, but it was positively related to aboveground biomass of fennel pondweed. We suggest that even if waterfowl and large fish are in high densities, their effect on fennel pondweed spring growth in lakes with abundant submerged vegetation, such as Lake Mogan, is low.  相似文献   

10.
    
Ecological systems can show complex and sometimes abrupt responses to environmental change, with important implications for their resilience. Theories of alternate stable states have been used to predict regime shifts of ecosystems as equilibrium responses to sufficiently slow environmental change. The actual rate of environmental change is a key factor affecting the response, yet we are still lacking a non-equilibrium theory that explicitly considers the influence of this rate of environmental change. We present a metacommunity model of predator–prey interactions displaying multiple stable states, and we impose an explicit rate of environmental change in habitat quality (carrying capacity) and connectivity (dispersal rate). We study how regime shifts depend on the rate of environmental change and compare the outcome with a stability analysis in the corresponding constant environment. Our results reveal that in a changing environment, the community can track states that are unstable in the constant environment. This tracking can lead to regime shifts, including local extinctions, that are not predicted by alternative stable state theory. In our metacommunity, tracking unstable states also controls the maintenance of spatial heterogeneity and spatial synchrony. Tracking unstable states can also lead to regime shifts that may be reversible or irreversible. Our study extends current regime shift theories to integrate rate-dependent responses to environmental change. It reveals the key role of unstable states for predicting transient dynamics and long-term resilience of ecological systems to climate change.  相似文献   

11.
12.
1.  We discuss a simple implicit-space model for the competition of trees and grasses in an idealized savanna environment. The model represents patch occupancy dynamics within the habitat and introduces life stage structure in the tree population, namely adults and seedlings. A tree can be out-competed by grasses only as long as it is a seedling.
2.  The model is able to predict grassland, forest, savanna and bistability between forest and grassland, depending on the different characteristics of the ecosystem, represented by the model's parameters.
3.  The inclusion of stochastic fire disturbances significantly widens the parameter range where coexistence of trees and grasses is found. At the same time, grass-fire feedback can induce bistability between forest and grassland.
4.   Synthesis . These results suggest that tree–grass coexistence in savannas can be either deterministically stable or stabilized by random disturbances, depending on prevailing environmental conditions and on the types of plant species present in the ecosystem.  相似文献   

13.
    
Plant invasions can cause severe degradation of natural areas. The ability of an ecosystem to recover autogenically from degradation following weed control is in part determined by the type and magnitude of changes to both biotic and abiotic processes caused by the invasion and how these interact with structural and functional components of the ecosystem. Recently, a number of conceptual frameworks have been proposed to describe the dynamics of degradation and regeneration in degraded ecosystems. We assessed the utility of one of these frameworks in describing the degradation and restoration potential of Australia’s tropical savannas following exotic grass invasion. First, we identified easily measured structural characteristics of putative states. We found that a continuous cover of the exotic grasses Gamba grass (Andropogon gayanus Kunth.) and Perennial mission grass (Pennisetum polystachion (L.) Schult.) under an intact tree canopy was a common state with an understorey characterized by reduced species richness and abundance and a change in the relative contribution of functional groups. Further degradation led to a state where the canopy was severely reduced and the impacts on the understorey were more severe. In both states, the seed bank was substantially less degraded than the understorey vegetation. Guided by the framework, we combined our study with other studies to construct a conceptual model for degradation in exotic grass‐invaded savannas.  相似文献   

14.
    
Alternative reproductive tactics, whereby members of the same sex use different tactics to secure matings, are often associated with conditional intrasexual dimorphisms. Given the different selective pressures on males adopting each mating tactic, intrasexual dimorphism is more likely to arise if phenotypes are genetically uncoupled and free to evolve towards their phenotypic optima. However, in this context, genetic correlations between male morphs could result in intralocus tactical conflict (ITC). We investigated the genetic architecture of male dimorphism in bulb mites (Rhizoglyphus echinopus) and earwigs (Forficula auricularia). We used half‐sibling breeding designs to assess the heritability and intra/intersexual genetic correlations of dimorphic and monomorphic traits in each species. We found two contrasting patterns; F. auricularia exhibited low intrasexual genetic correlations for the dimorphic trait, suggesting that the ITC is moving towards a resolution. Meanwhile, R. echinopus exhibited high and significant intrasexual genetic correlations for most traits, suggesting that morphs in the bulb mite may be limited in evolving to their optima. This also shows that intrasexual dimorphisms can evolve despite strong genetic constraints, contrary to current predictions. We discuss the implications of this genetic constraint and emphasize the potential importance of ITC for our understanding of intrasexual dimorphisms.  相似文献   

15.
    
During the 1950s, the submerged vegetation of shallow lakes in north‐eastern Germany was dominated by nutrient tolerant species, with Ceratophyllum demersum and Myriophyllum sp. being most common. Almost one third of 300 investigated lakes had already lost their submerged macrophytes at that time. Very shallow lakes showed either high or low macrophyte abundance. Increasing depth resulted in medium macrophyte abundances, which may contribute to the stabilisation of local or temporary clearwater states. Forty years later, the percentage of lakes without macrophytes had dramatically increased. Between 55 and 85% of the investigated lakes showed a low abundance. The decline was most pronounced in very shallow lakes. The majority of the investigated lakes showed summer TP concentrations below 100 μg L–1, but no colonisation by submerged macrophytes, which indicates a resilience against re‐colonisation.  相似文献   

16.
1. The concepts of community assembly and succession are closely related, yet their foci differ slightly. Succession describes the trajectory of species replacements during the temporal development of the community, while assembly also allows that a locality can harbour different communities depending on the events in the near past of community development. 2. The aims of this study were (i) to examine the year‐to‐year variation in phytoplankton community assembly among basins of different trophy and disturbance in the large boreal Lake Hiidenvesi and (ii) to assess community persistence and diversity among basins in relation to prevailing environmental factors. 3. The results showed that the assembly did not follow similar trajectories each year. According to mean similarity analyses, there was a large degree of variability especially among the groups of samples collected in the same months of different years. Similarity between pairs of consecutive samples was highest in a cold year (1998) in all basins. Community assembly was most unpredictable in the basin of highest productivity, perhaps implying that the number of alternative stable states increased towards higher productivity. Our data also showed a strong unimodal relationship between phytoplankton species richness and grazing by cladoceran zooplankton in the basin of highest trophy. 4. This study showed that phytoplankton community assembly exhibited large variability among the years. This implies that different environmental conditions might be the strongest mechanism behind this pattern, given that the degree of community similarity paralleled the year‐to‐year variation in mean temperature. Unravelling the patterns in community assembly has a number of important implications, especially for the monitoring of ecological impacts based only on snapshots of biological assemblages.  相似文献   

17.
18.
19.
At macroscale, land–atmosphere exchange of energy and water in semiarid zones such as the Sahel constitutes a strong positive feedback between vegetation density and precipitation. At microscale, however, additional positive feedbacks between hydrology and vegetation such as increase of infiltration due to increase of vegetation, have been reported and have a large impact on vegetation distribution and spatial pattern formation. If both macroscale and microscale positive feedbacks are present in the same region, it is reasonable to assume that these feedback mechanisms are connected. In this study, we develop and analyse a soil‐vegetation‐atmosphere model coupling large‐scale evapotranspiration–precipitation feedback with a model of microscale vegetation–hydrology feedback to study the integration of these nonlinearities at disparate scales. From our results, two important conclusions can be drawn: (1) it is important to account for spatially explicit vegetation dynamics at the microscale in climate models (the strength of the precipitation feedback increased up to 35% by accounting for these microscale dynamics); (2) studies on resilience of ecosystems to climate change should always be cast within a framework of possible large‐scale atmospheric feedback mechanism (substantial changes in vegetation resilience resulted from incorporating macroscale precipitation feedback). Analysis of full‐coupled modelling shows that both type of feedbacks markedly influence each other and that they should both be accounted for in climate change models.  相似文献   

20.
Alternative stable states in shallow lakes have received much attention over the past decades, but less is known about transient dynamics of such lakes in the face of stochastic perturbations such as incidental extremes in water levels driven by climatic variability. Here, we report on the ecosystem dynamics of 70 lakes in the floodplains of the Lower Rhine in The Netherlands from 1999 to 2004. In any particular year, most lakes were either in a macrophyte-dominated clear state or in a contrasting state with turbid water and sparse submerged macrophyte cover. Macrophyte dominance was positively related to the occurrence of drawdown, and negatively to lake surface area and mean depth. We did not find a relation with nutrient levels. Remarkably, shifts between the two contrasting states were common, and episodes of low water levels appear to be an important external driver. A dry period before our study and the exceptionally dry summer of 2003 caused widespread drawdown of floodplain lakes, resulting in establishment of submerged macrophytes in the next year upon refill. In the 4 years without drawdown, many lakes returned to a macrophyte-poor turbid state. Although some lakes turned turbid again quickly, others took several years to shift into the turbid state. A model analysis suggests that such prolonged transient vegetated states may be explained by the fact that the system dynamics slow down in the vicinity of the “almost stable” macrophyte-dominated state. Such a “ghost” of an equilibrium causes the system to stick around that state relatively long before slipping into the only true stable state. Our results support the idea that transient dynamics rather than equilibrium may be the key to understanding the overall state of some ecosystems. A practical implication of our findings is that artificial stabilization of the water level in shallow lakes may have been an important factor aggravating the permanent loss of submerged macrophytes due to cultural eutrophication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号