共查询到18条相似文献,搜索用时 15 毫秒
1.
2.
CHARLES A. NOCK PATRICK J. BAKER WOLFGANG WANEK ALBRECHT LEIS MICHAEL GRABNER SARAYUDH BUNYAVEJCHEWIN PETER HIETZ 《Global Change Biology》2011,17(2):1049-1063
Rising atmospheric carbon dioxide [CO2] can accelerate tree growth by stimulating photosynthesis and increasing intrinsic water‐use efficiency (iWUE). Little evidence exists, however, for the long‐term growth and gas‐exchange responses of mature trees in tropical forests to the combined effects of rising [CO2] and other global changes such as warming. Using tree rings and stable isotopes of carbon and oxygen, we investigated long‐term trends in the iWUE and stem growth (basal area increment, BAI) of three canopy tree species in a tropical monsoon forest in western Thailand (Chukrasia tabularis, Melia azedarach, and Toona ciliata). To do this, we modelled the contribution of ontogenetic effects (tree diameter or age) and calendar year to variation in iWUE, oxygen isotopes, and BAI using mixed‐effects models. Although iWUE increased significantly with both tree diameter and calendar year in all species, BAI at a given tree diameter was lower in more recent years. For one species, C. tabularis, differences in crown dominance significantly influence stable isotopes and growth. Tree ring Δ18O increased with calendar year in all species, suggesting that increasing iWUE may have been driven by relatively greater reductions in stomatal conductance – leading to enrichment in Δ18O – than increases in photosynthetic capacity. Plausible explanations for the observed declines in growth include water stress resulting from rising temperatures and El Niño events, increased respiration, changes in allocation, or more likely, a combination of these factors. 相似文献
3.
Lelong Yin Xiaohong Liu Xiaomin Zeng Ziyi Wang Guobao Xu Liangju Zhao Qiangqiang Lu Lingnan Zhang Xiaoyu Xing 《Journal of Plant Ecology》2024,17(1):0
二氧化碳浓度增加和气候变暖导致太白山林线树木生长与氮有效性关系减弱全球气候变暖、大气二氧化碳浓度(Ca)升高和氮有效性正对全球森林生态系统产生深远影响,尤其是在高海拔林线地区。本研究结合树木生长指标和树轮稳定同位素指标,探讨了太白山林线树种太白红杉(Larix chinensis)对环境胁迫的生理生态响应。研究结果表明,近60年来太白红杉的生长速度显著增加,且该林线树木生长对春季温度特别敏感。太白红杉的潜在水分利用效率(iWUE)的持续上升与大气二氧化碳浓度升高和气候变暖紧密相关,共同促进了树木的生长。1851-1964年,树轮δ15N随树木生长速度的加快逐渐增大;1964年之后转变为不显著的下降,打破了原有的碳-氮平衡。分析结果表明,自20世纪60年代以来气候变暖和iWUE的迅速增加已经取代氮有效性成为树木生长的主要驱动因子。随着树木持续加速生长,氮有效性在未来可能会显著下降甚至供不应求。本研究深入揭示了植物对生长环境变化响应的生理生态机制,这将提高我们预测未来高海拔地区森林生态系统演变的能力。 相似文献
4.
STEVEN L. VOELKER FREDERICK C. MEINZER BARBARA LACHENBRUCH J. RENÉE BROOKS RICHARD P. GUYETTE 《Plant, cell & environment》2014,37(3):766-779
Tree‐ring characteristics are commonly used to reconstruct climate variables, but divergence from the assumption of a single biophysical control may reduce the accuracy of these reconstructions. Here, we present data from bur oaks (Quercus macrocarpa Michx.) sampled within and beyond the current species bioclimatic envelope to identify the primary environmental controls on ring‐width indices (RWIs) and carbon stable isotope discrimination (Δ13C) in tree‐ring cellulose. Variation in Δ13C and RWI was more strongly related to leaf‐to‐air vapour pressure deficit (VPD) at the centre and western edge of the range compared with the northern and wettest regions. Among regions, Δ13C of tree‐ring cellulose was closely predicted by VPD and light responses of canopy‐level Δ13C estimated using a model driven by eddy flux and meteorological measurements (R2 = 0.96, P = 0.003). RWI and Δ13C were positively correlated in the drier regions, while they were negatively correlated in the wettest region. The strength and direction of the correlations scaled with regional VPD or the ratio of precipitation to evapotranspiration. Therefore, the correlation strength between RWI and Δ13C may be used to infer past wetness or aridity from paleo wood by determining the degree to which carbon gain and growth have been more limited by moisture or light. 相似文献
5.
The dependence of the carbon concentrating mechanism of Palmaria palmata (L.) Kuntze on the growth light level was examined 1) to determine whether or not there is a threshold photon flux density (PFD) at which the inorganic carbon uptake mechanism can operate and 2) to attempt to quantify the relative energetic costs of acclimation to the two different limiting factors, PFD and dissolved inorganic carbon (DIC) concentration. Plants were grown at six PFDs: 5, 25, 50, 75, 95, and 125 μmol photons. m?2.s?1. Growth rates increased with increasing PFD from 5 to 50 μmol photons. m?2. s?1 and were light-saturated at 75, 95, and 125 μmol photons. m?2. s?1 Values of δ13C increased continuously with increasing growth PFD and did not saturate over the range of light levels tested. Time-resolved fluorescence characteristics indicated a progressive photoacclimation below 50 μmol photons. m?2. s?1. Analysis of chlorophyll fluorescence induction showed three levels of light use efficirncy associated with growth at 5 or 25, 50, and >75 μmol photons. m?2. s?1. The light-haruesting efficiency was inversely proportional to the effectiveness of DIC acquisition in plants grown at the six PFDs. These data were interpreted to indicate that there is a physiological tradeoff between photosynthetic efficiency and bicarbonate use in this species. 相似文献
6.
Abstract Mortality, growth, gas exchange and biomass distribution were measured in the seedlings of 12 Chilean temperate rainforest angiosperm trees in two contrasting artificial light environments (150 and 12 μmoles m?2 s?1), in order to explore life history diversity in this forest type, and examine the physiological and/or morphological traits associated with interspecific variation in seedling performance. Gas exchange traits were measured only in the high‐light treatment (150 μmoles m?2 s?1), owing to the very small size of leaves in the low‐light treatment. Relative growth rates (RGR) in high light were strongly correlated with photosynthetic capacity (P< 0.0001). Mortality rates in low light had a strong positive correlation with light compensation point (P = 0.007) and photosynthetic capacity (P = 0.004). Furthermore, high‐light RGR was strongly positively correlated with low‐light mortality (P = 0.001). Biomass distribution traits showed little relationship with mortality or growth within either light level, except for a marginally significant positive correlation (P = 0.04) between leaf area ratio and mortality in low light. In view of the large interspecific differences in final size, the weak relationships between biomass distribution parameters and plant performance could be partially attributable to ontogenetic drift in these traits. Among taxa with high mortality rates in low light, short‐lived species (e.g. Aristotelia chilensis) had lower light compensation points, had greater phenotypic plasticity and grew much faster in both light environments than did longer‐lived species (Nothofagus dombeyi, Weinmannia trichosperma, Eucryphia cordifolia). Results support the view that survival of first‐year seedlings in low light is not enhanced by morphological traits that maximize growth potential (e.g. high leaf area ratio), and that leaf‐level gas exchange traits have an important role as determinants of interspecific variation in seedling performance. However, the limited range of interspecific variation observed in light compensation points indicates that other traits apart from those that we measured (e.g. carbon storage) must also be involved in seedling shade tolerance differences. The weak relationship between longevity and shade tolerance level among our 12 species suggests that it may not be feasible to ordinate life histories of Chilean temperate rainforest trees on a single axis of trait variation. 相似文献
7.
Manuel Bernal-Escobar;Daniel Zuleta;Kenneth J. Feeley; 《Ecography》2022,2022(9):e06298
According to the ‘fitness-suitability' hypothesis, ongoing changes in climate are expected to affect habitat suitability and hence species' fitness. In trees, differences in fitness may manifest as changes in growth rates, which will alter carbon uptake. Using tree-ring data, we calculated > 1.5 million annual stem growth rate estimates (standardized for tree size) for 15 677 trees representing 37 species from 558 populations throughout eastern North America. We used collections data and species distribution models to estimate each population's climatic suitability from 1900 to 2010. We then assessed the relationships between growth, suitability and time using linear mixed-effects models. We found that stem growth rates decreased significantly through time independent of changes in climate suitability and that relationships between growth rates and climate suitability were highly variable across species. Contrary to expectations, we found that growth rates were negatively correlated with species' climate suitability, a relationship that was consistent over time for gymnosperms and became more negative through time for angiosperms. These results may suggest that stem growth rates are not a good proxy for fitness and/or that unidentified factors may be slowing tree growth and outweighing any potential benefits of climate change and increasing atmospheric CO2 concentrations. Regardless of the cause, this finding indicates that we should not count on the increased growth of eastern North American trees to help offset anthropogenic carbon emissions. 相似文献
8.
Xin Wang Jin Wu Min Chen Xiangtao Xu Zhenhua Wang Bin Wang Chengzhang Wang Shilong Piao Weili Lin Guofang Miao Meifeng Deng Chunlian Qiao Jing Wang Shan Xu Lingli Liu 《Global Change Biology》2018,24(10):4983-4992
Theoretical and eddy covariance studies demonstrate that aerosol‐loading stimulates canopy photosynthesis, but field evidence for the aerosol effect on tree growth is limited. Here, we measured in situ daily stem growth rates of aspen trees under a wide range of aerosol‐loading in China. The results showed that daily stem growth rates were positively correlated with aerosol‐loading, even at exceptionally high aerosol levels. Using structural equation modeling analysis, we showed that variations in stem growth rates can be largely attributed to two environmental variables covarying with aerosol loading: diffuse fraction of radiation and vapor pressure deficit (VPD). Furthermore, we found that these two factors influence stem growth by influencing photosynthesis from different parts of canopy. Using field observations and a mechanistic photosynthesis model, we demonstrate that photosynthetic rates of both sun and shade leaves increased under high aerosol‐loading conditions but for different reasons. For sun leaves, the photosynthetic increase was primarily attributed to the concurrent lower VPD; for shade leaves, the positive aerosol effect was tightly connected with increased diffuse light. Overall, our study provides the first field evidence of increased tree growth under high aerosol loading. We highlight the importance of understanding biophysical mechanisms of aerosol‐meteorology interactions, and incorporating the different pathways of aerosol effects into earth system models to improve the prediction of large‐scale aerosol impacts, and the associated vegetation‐mediated climate feedbacks. 相似文献
9.
Changes in net photosynthesis and growth of Pinus eldarica seedlings in response to atmospheric CO2 enrichment 总被引:3,自引:2,他引:1
Pinus eldarica L. trees, rooted in the natural soil of an agricultural field at Phoenix, Arizona, were grown from the seedling stage in clear-plastic-wall open-top enclosures maintained at four different atmospheric CO2 concentrations for 15 months. Light response functions were determined for one tree from each treatment by means of whole-tree net CO2 exchange measurements at the end of this period, after which rates of carbon assimilation of an ambient-treatment tree were measured across a range of atmospheric CO2 concentrations. The first of these data sets incorporates the consequences of both the CO2-induced enhancement of net photosynthesis per unit needle area and the CO2-induced enhancement of needle area itself (due primarily to the production of more needles), whereas the second data set reflects only the first of these effects. Hence the division of the normalized results of the first data set by the normalized results of the second set yields a representation of the increase in whole-tree net photosynthesis due to enhanced needle production caused by atmospheric CO2 enrichment. In the solitary trees we studied, the relative contribution of this effect increased rapidly with the CO2 concentration of the air to increase whole-tree net photosynthesis by nearly 50% at a CO2 concentration approximately 300 μmol mol−1 above ambient. 相似文献
10.
Peng Fu Katherine Meacham-Hensold Kaiyu Guan Jin Wu Carl Bernacchi 《Plant, cell & environment》2020,43(5):1241-1258
The lack of efficient means to accurately infer photosynthetic traits constrains understanding global land carbon fluxes and improving photosynthetic pathways to increase crop yield. Here, we investigated whether a hyperspectral imaging camera mounted on a mobile platform could provide the capability to help resolve these challenges, focusing on three main approaches, that is, reflectance spectra-, spectral indices-, and numerical model inversions-based partial least square regression (PLSR) to estimate photosynthetic traits from canopy hyperspectral reflectance for 11 tobacco cultivars. Results showed that PLSR with inputs of reflectance spectra or spectral indices yielded an R2 of ~0.8 for predicting V cmax and J max, higher than an R2 of ~0.6 provided by PLSR of numerical inversions. Compared with PLSR of reflectance spectra, PLSR with spectral indices exhibited a better performance for predicting V cmax (R2 = 0.84 ± 0.02, RMSE = 33.8 ± 2.2 μmol m−2 s−1) while a similar performance for J max (R2 = 0.80 ± 0.03, RMSE = 22.6 ± 1.6 μmol m−2 s−1). Further analysis on spectral resampling revealed that V cmax and J max could be predicted with ~10 spectral bands at a spectral resolution of less than 14.7 nm. These results have important implications for improving photosynthetic pathways and mapping of photosynthesis across scales. 相似文献
11.
Unprecedented rates of climate warming over the past century have resulted in increased forest stress and mortality worldwide. Decreased tree growth in association with increasing temperatures is generally accepted as a signal of temperature‐induced drought stress. However, variations in tree growth alone do not reveal the physiological mechanisms behind recent changes in tree growth. Examining stable carbon isotope composition of tree rings in addition to tree growth can provide a secondary line of evidence for physiological drought stress. In this study, we examined patterns of black spruce growth and carbon isotopic composition in tree rings in response to climate warming and drying in the boreal forest of interior Alaska. We examined trees at three nested scales: landscape, toposequence, and a subsample of trees within the toposequence. At each scale, we studied the potential effects of differences in microclimate and moisture availability by sampling on northern and southern aspects. We found that black spruce radial growth responded negatively to monthly metrics of temperature at all examined scales, and we examined ?13C responses on a subsample of trees as representative of the wider region. The negative ?13C responses to temperature reveal that black spruce trees are experiencing moisture stress on both northern and southern aspects. Contrary to our expectations, ?13C from trees on the northern aspect exhibited the strongest drought signal. Our results highlight the prominence of drought stress in the boreal forest of interior Alaska. We conclude that if temperatures continue to warm, we can expect drought‐induced productivity declines across large regions of the boreal forest, even for trees located in cool and moist landscape positions. 相似文献
12.
Benedict M. Long Nur H. A. Bahar Lasantha K. Weerasinghe Danielle Creek John R. Evans Peter B. Reich Owen K. Atkin 《Global Change Biology》2017,23(7):2783-2800
Understanding of the extent of acclimation of light‐saturated net photosynthesis (An) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T‐dependent changes in photosynthetic capacity in 10 wet‐forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth): temperate – 15, 20 and 25 °C; tropical – 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose‐1,5‐bisphosphate) carboxylation (Vcmax) and electron transport (Jmax) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS‐PAGE gels were used to determine abundance of the CO2‐fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth, An at current atmospheric CO2 partial pressure was Rubisco‐limited. Across all species, LMA decreased with increasing Tgrowth. Similarly, area‐based rates of Vcmax at a measurement T of 25 °C (Vcmax25) linearly declined with increasing Tgrowth, linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth‐mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet‐forest tree species. A new model is proposed that accounts for the effect of Tgrowth‐mediated declines in Vcmax25 on An, complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of Vcmax25. 相似文献
13.
Hiroshi Shiraishi Hideaki Okamoto Hiromitsu Hara Hiroki Yoshida 《Biochimica et Biophysica Acta (BBA)/General Subjects》2010
Background
Various forms of cell death, such as apoptotic, autophagic and non-lysosomal types, are implicated in normal physiological processes. Apoptotic protease activating factor 1 (Apaf1) is an important component of the intrinsic apoptotic pathway. Deficiency of Apaf1 results in an accumulation of neural progenitor cells (NPCs) in the developing central nervous system and thus, in perinatal lethality. A small percentage of the mutant mice, however, are viable and grow to maturity. The occurrence of such normal mutants implicates alternative cell death pathways during neurogenesis.Methods
NPCs prepared from wild-type or Apaf1-deficient embryos were cultured in growth factor-deprived medium and examined for cell death, caspase activation and morphological alterations. Generation of reactive oxygen species (ROS) and the effects of antioxidants were examined.Results
Wild-type NPCs underwent apoptosis within 24 hours of withdrawal of epidermal growth factor (EGF) or insulin, whereas Apaf1-deficient NPCs underwent cell death but showed no signs of apoptosis. Autophagy was not necessarily accompanied by cell death. Cell death of the Apaf1-deficient NPCs resembled necroptosis—necrosis-like programmed cell death. The necroptosis inhibitor necrostatin-1, however, failed to inhibit the cell death. ROS accumulation was detected in NPCs deprived of growth factors, and an antioxidant partially suppressed the non-apoptotic cell death of Apaf1-deficient NPCs.Conclusions
These data indicate that after withdrawal EGF or insulin withdrawal, the Apaf1-deficient cells underwent non-apoptotic cell death. ROS generation may partially participate in the cell death.General Significance
Non-apoptotic cell death in NPCs may be a compensatory mechanism in the developing CNS of Apaf1-deficient embryos. 相似文献14.
Paget disease of bone (PDB) is a skeletal disorder common in Western Europe but extremely rare in the Indian subcontinent and Far East. The condition has a strong genetic element with mutations affecting the SQSTM1 gene, encoding the p62 protein, frequently identified. Recently SQSTM1 mutations have also been reported in a small number of patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), neurodegenerative disorders in which significant coexistence with PDB has not been previously recognized. Although several SQSTM1 mutations are common to both ALS/FTLD and PDB, many are ALS/FTLD-specific. The p62 protein regulates various cellular processes including NF-κB signaling and autophagy pathways. Here we consider how knowledge of the impact of PDB-associated SQSTM1 mutations (several of which are now known to be relevant for ALS/FTLD) on these pathways, as well as the locations of the mutations within the p62 primary sequence, may provide new insights into ALS/FTLD disease mechanisms. 相似文献
15.
Anna A. Kashevarova Lyudmila P. Nazarenko Nikolay A. Skryabin Olga A. Salyukova Nataliya N. Chechetkina Ekaterina N. Tolmacheva Elena A. Sazhenova Pamela Magini Claudio Graziano Giovanni Romeo Vaidutis Kučinskas Igor N. Lebedev 《Gene》2014
The use of array comparative genomic hybridization (array CGH) as a diagnostic tool in molecular genetics has facilitated the identification of many new microdeletion/microduplication syndromes (MMSs). Furthermore, this method has allowed for the identification of copy number variations (CNVs) whose pathogenic role has yet to be uncovered. Here, we report on our application of array CGH for the identification of pathogenic CNVs in 79 Russian children with intellectual disability (ID). Twenty-six pathogenic or likely pathogenic changes in copy number were detected in 22 patients (28%): 8 CNVs corresponded to known MMSs, and 17 were not associated with previously described syndromes. In this report, we describe our findings and comment on genes potentially associated with ID that are located within the CNV regions. 相似文献
16.
Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery 总被引:1,自引:0,他引:1
Mária A. Deli 《生物化学与生物物理学报:生物膜》2009,1788(4):892-910
The epithelial and endothelial barriers of the human body are major obstacles for drug delivery to the systemic circulation and to organs with unique environment and homeostasis, like the central nervous system. Several transport routes exist in these barriers, which potentially can be exploited for enhancing drug permeability. Beside the transcellular pathways via transporters, adsorptive and receptor-mediated transcytosis, the paracellular flux for cells and molecules is very limited. While lipophilic molecules can diffuse across the cellular plasma membranes, the junctional complexes restrict or completely block the free passage of hydrophilic molecules through the paracellular clefts. Absorption or permeability enhancers developed in the last 40 years for modifying intercellular junctions and paracellular permeability have unspecific mode of action and the effective and toxic doses are very close. Recent advances in barrier research led to the discovery of an increasing number of integral membrane, adaptor, regulator and signalling proteins in tight and adherens junctions. New tight junction modulators are under development, which can directly target tight or adherens junction proteins, the signalling pathways regulating junctional function, or tight junction associated lipid raft microdomains. Modulators acting directly on tight junctions include peptides derived from zonula occludens toxin, or Clostridium perfringens enterotoxin, peptides selected by phage display that bind to integral membrane tight junction proteins, and lipid modulators. They can reversibly increase paracellular transport and drug delivery with less toxicity than previous absorption enhancers, and have a potential to be used as pharmaceutical excipients to improve drug delivery across epithelial barriers and the blood-brain barrier. 相似文献
17.
18.
The identification of proteins aberrantly expressed in malignant B-cells can potentially be used to develop new diagnostic, prognostic or therapeutic targets. Proteomic studies of B-cell malignancies have made significant progress, but further studies are needed to increase our coverage of the B-cell malignant proteome. To achieve this goal we stress the advantages of using sub-cellular fractionation, protein separation, quantitation and affinity purification techniques to identify hitherto unidentified signalling and regulatory proteins. For example, proteomic analysis of B-cell plasma membranes isolated from patients with mantle cell lymphoma (MCL) identified the voltage-gated proton channel (HVCN1,[1]). This protein has now been characterised as a key modulator of B-cell receptor (BCR) signalling and abrogation of HVCN1 function could have a role in the treatment of B-cell malignancies dependent on maintained BCR signalling [2]. Similarly, proteomic studies on cell lysates from prognostic subtypes of CLL, distinguished by the absence (UM-CLL) or presence (M-CLL) of somatic hypermutation of the immunoglobulin heavy chain locus identified nucleophosmin 1 (NMP1) as a potential prognostic marker [3,4]. Thus, targeted proteomic analysis on selected organelles or sub-cellular compartments can identify novel proteins with unexpected localisation or function in malignant B-cells that could be developed for clinical purposes. 相似文献