共查询到20条相似文献,搜索用时 0 毫秒
1.
Elia Lo Parrino;Mattia Falaschi;Raoul Manenti;Gentile Francesco Ficetola; 《Ecography》2023,2023(2):e06432
Species distribution models are often used to predict the potential distributions of invasive species outside their native ranges and rely on the assumption of realized niche conservatism. Analyses observed that freshwater invasive species often show high degrees of niche expansion, suggesting limited reliability of species distribution models. However, observed niche shifts can arise because of both actual niche shifts, determined by biological factors, and apparent shifts, due to methodological issues. We compared metrics of niche dynamics calculated using different sets of variables to identify factors that could influence the rate of niche shifts. We collected presence-only data for 40 freshwater invasive animal species, then measured niche shift dynamics using 14 different combinations of environmental variables. Shifts were assessed measuring niche overlap, expansion and unfilling, and testing for niche conservatism. We then built generalized linear mixed models relating niche shifts to methodological choices and biological features. Our results showed that methodological choices strongly affected all the considered niche dynamics metrics, while the effects of biological features were less prominent. Moreover, different niche dynamic measures sometimes provided contradictory assessments of niche conservatism. Niche analyses are powerful tools to predict areas at risk of invasion, but inappropriate methodological choices can lead to apparent niche shifts, questioning niche model reliability and biological interpretation. The high rate of niche expansion observed in freshwater invasive species highlights the importance of delineating objective criteria to determine the set of variables to be used in niche dynamic assessments. 相似文献
2.
3.
Tarek Hattab Carol X. Garzón‐López Michael Ewald Sandra Skowronek Raf Aerts Hélène Horen Boris Brasseur Emilie Gallet‐Moron Fabien Spicher Guillaume Decocq Hannes Feilhauer Olivier Honnay Pieter Kempeneers Sebastian Schmidtlein Ben Somers Ruben Van De Kerchove Duccio Rocchini Jonathan Lenoir 《Diversity & distributions》2017,23(7):806-819
4.
Antônio B. Anderson Jodir Pereira da Silva Raquel Sorvilo Carlo Leopoldo B. Francini Sergio R. Floeter João P. Barreiros 《Journal of fish biology》2020,97(2):362-373
Human-mediated species invasions are recognized as a leading cause of global biotic homogenization and extinction. Studies on colonization events since early stages, establishment of new populations and range extension are scarce because of their rarity, difficult detection and monitoring. Chromis limbata is a reef-associated and non-migratory marine fish from the family Pomacentridae found in depths ranging between 3 and 45 m. The original distribution of the species encompassed exclusively the eastern Atlantic, including the Azores, Madeira and the Canary Islands. It is also commonly reported from West Africa between Senegal and Pointe Noire, Congo. In 2008, vagrant individuals of C. limbata were recorded off the east coast of Santa Catarina Island, South Brazil (27° 41′ 44″ S, 48° 27′ 53″ W). This study evaluated the increasing densities of C. limbata populations in Santa Catarina State shoreline. Two recent expansions, northwards to São Paulo State and southwards to Rio Grande do Sul State, are discussed, and a niche model of maximum entropy (MaxEnt) was performed to evaluate suitable C. limbata habitats. Brazilian populations are established and significantly increasing in most sites where the species has been detected. The distributional boundaries predicted by the model are clearly wider than their known range of occurrence, evidencing environmental suitability in both hemispheres from areas where the species still does not occur. Ecological processes such as competition, predation and specially habitat selectivity may regulate their populations and overall distribution range. A long-term monitoring programme and population genetics studies are necessary for a better understanding of this invasion and its consequences to natural communities. 相似文献
5.
外来生物入侵导致全球生物多样性下降,极大地威胁着生态系统健康,已造成很大的生态损失与经济损失。近年来,随着生物入侵的加剧,全球对生物入侵的研究力度不断加大。外来入侵生物的生态危害与风险评估可以为人们提供对入侵可能性和入侵方式更直接的信息,从而为管理者制定管理策略提供依据。基于最近20年间(1995—2014年)科学文献数据库Web of Science的科学引文索引数据库扩展版(SCI-E)中数据,对外来入侵生物的生态危害与风险评估方面的研究进行了文献计量分析,旨在了解当前国际研究现状,以便推动中国的生物入侵相关研究。为了全面掌握全球外来生物入侵生态危害与风险评估方面的研究,采用Bibexcel与TDA文献计量工具,对Web of Science数据库中相关文献进行了分析,去重后共获取5492篇文献。结果表明:近20年(1995—2014年)入侵生物的生态危害与风险评估方面的研究刊文量呈现前缓后剧增的趋势,2008—2014年进入了快速发展阶段,文献数量急剧增加,2014年达到最高(511篇);美国发文量远超其它国家,占据主导地位,中国刊文量排名第5。美国、澳大利亚、法国、英国、德国的研究论文影响力较大。刊文量最多的研究机构为美国农业部(USDA),中国科学院发文量排名第10位。研究学科主要为昆虫学、农艺学、植物科学、生态学,研究热点集中在生物防治、风险评估、粮食作物和经济作物的病虫害防治、杂草防控,以及生物入侵与气候变化的关系等方面。有关外来入侵生物的生态危害与风险评估的研究多集中于北美、澳大利亚和欧洲,未来要加强亚洲地区,特别是中国外来生物入侵风险评估的研究;要加强气候变化对外来生物物种特性的影响研究,更多关注入侵生物的生态控制与生态恢复方面的研究,以便更好地为今后长期有效地防控入侵生物提供理论与技术指导。 相似文献
6.
- Exotic cladoceran Daphnia lumholtzi is a highly invasive species in the north and south American continents and can potentially also invade European freshwaters and outcompete native Daphnia populations. However, European waterbodies are frequently dominated by less edible filamentous cyanobacteria including also invaders such as Raphidiopsis raciborskii, which might affect the fitness of D. lumholtzi. Furthermore, temperature may influence the sensitivity of D. lumholtzi to R. raciborskii filaments.
- In this study, we determined whether the presence of R. raciborskii could obstruct the invasion of Europe by D. lumholtzi, through reducing its fitness, and whether this depends on temperature. We compared the population growth rate (r) and the somatic growth rate of D. lumholtzi maintained at two temperatures (20 or 26°C) and fed with two diets: green microalgae alone or green microalgae mixed with filaments of R. raciborskii. Three clones of D. lumholtzi were used to evaluate potential variation in response to the treatments among different clones.
- At 20°C, the population growth rate of D. lumholtzi fed with cyanobacterial filaments declined sharply. This reduction was caused by increased egg abortion, egg degeneration, and mortality of newborn daphnids. At 26°C, R. raciborskii lost its harmful effect on the population growth of D. lumholtzi. The presence of cyanobacteria did reduce the somatic growth rate of D. lumholtzi at both temperatures and in all three clones except for one that had a similar somatic growth rate on both diets at 26°C.
- The presence of filamentous cyanobacteria does affect growth in D. lumholtzi and may thereby substantially reduce its invasive potential, but only at lower temperatures. Therefore, the presence of filamentous cyanobacteria may not present an obstacle to the invasion of Europe by D. lumholtzi in a warmer future climate.
7.
8.
Courchamp F Chapuis JL Pascal M 《Biological reviews of the Cambridge Philosophical Society》2003,78(3):347-383
The invasion of ecosystems by exotic species is currently viewed as one of the most important sources of biodiversity loss. The largest part of this loss occurs on islands, where indigenous species have often evolved in the absence of strong competition, herbivory, parasitism or predation. As a result, introduced species thrive in those optimal insular ecosystems affecting their plant food, competitors or animal prey. As islands are characterised by a high rate of endemism, the impacted populations often correspond to local subspecies or even unique species. One of the most important taxa concerning biological invasions on islands is mammals. A small number of mammal species is responsible for most of the damage to invaded insular ecosystems: rats, cats, goats, rabbits, pigs and a few others. The effect of alien invasive species may be simple or very complex, especially since a large array of invasive species, mammals and others, can be present simultaneously and interact among themselves as well as with the indigenous species. In most cases, introduced species generally have a strong impact and they often are responsible for the impoverishment of the local flora and fauna. The best response to these effects is almost always to control the alien population, either by regularly reducing their numbers, or better still, by eradicating the population as a whole from the island. Several types of methods are currently used: physical (trapping, shooting), chemical (poisoning) and biological (e.g. directed use of diseases). Each has its own set of advantages and disadvantages, depending on the mammal species targeted. The best strategy is almost always to combine several methods. Whatever the strategy used, its long-term success is critically dependent on solid support from several different areas, including financial support, staff commitment, and public support, to name only a few. In many cases, the elimination of the alien invasive species is followed by a rapid and often spectacular recovery of the impacted local populations. However, in other cases, the removal of the alien is not sufficient for the damaged ecosystem to revert to its former state, and complementary actions, such as species re-introduction, are required. A third situation may be widespread: the sudden removal of the alien species may generate a further disequilibrium, resulting in further or greater damage to the ecosystem. Given the numerous and complex population interactions among island species, it is difficult to predict the outcome of the removal of key species, such as a top predator. This justifies careful pre-control study and preparation prior to initiating the eradication of an alien species, in order to avoid an ecological catastrophe. In addition, long-term monitoring ofthe post-eradication ecosystem is crucial to assess success and prevent reinvasion. 相似文献
9.
Yehezkel Buba;Moshe Kiflawi;Melodie A. McGeoch;Jonathan Belmaker; 《Global Ecology and Biogeography》2024,33(8):e13859
Reducing the rate of alien species introductions is a major conservation aim. However, accurately quantifying the rate at which species are introduced into new regions remains a challenge due to the confounding effect of observation efforts on discovery records. Despite the recognition of this issue, most analyses are still based on raw discovery records, leading to biased inferences. In this study, we evaluate different models for estimating introduction rates, including new models that use auxiliary data on observation effort, and identify their strengths and weaknesses. 相似文献
10.
Eduardo Arlé;Tiffany Marie Knight;Marina Jiménez-Muñoz;Dino Biancolini;Jonathan Belmaker;Carsten Meyer; 《Ecology and evolution》2024,14(2):e11060
Ecological Niche Models (ENMs) are often used to project species distributions within alien ranges and in future climatic scenarios. However, ENMs depend on species-environment equilibrium, which may be absent for actively expanding species. We present a novel framework to estimate whether species have reached environmental equilibrium in their native and alien ranges. The method is based on the estimation of niche breadth with the accumulation of species occurrences. An asymptote will indicate exhaustive knowledge of the realised niches. We demonstrate the CNA framework for 26 species of mammals, amphibians, and birds. Possible outcomes of the framework include: (1) There is enough data to quantify the native and alien realised niches, allowing us to calculate niche expansion between the native and alien ranges, also indicating that ENMs can be reliably projected to new environmental conditions. (2) The data in the native range is not adequate but an asymptote is reached in the alien realised niche, indicating low confidence in our ability to evaluate niche expansion in the alien range but high confidence in model projections to new environmental conditions within the alien range. (3) There is enough data to quantify the native realised niche, but not enough knowledge about the alien realised niche, hindering the reliability of projections beyond sampled conditions. (4) Both the native and alien ranges do not reach an asymptote, and thus few robust conclusions about the species’ niche or future projections can be made. Our framework can be used to detect species’ environmental equilibrium in both the native and alien ranges, to quantify changes in the realised niche during the invasion processes, and to estimate the likely accuracy of model projections to new environmental conditions. 相似文献
11.
12.
Eric Goberville Grégory Beaugrand Nina‐Coralie Hautekèete Yves Piquot Christophe Luczak 《Ecology and evolution》2015,5(5):1100-1116
Ecological Niche Models (ENMs) are increasingly used by ecologists to project species potential future distribution. However, the application of such models may be challenging, and some caveats have already been identified. While studies have generally shown that projections may be sensitive to the ENM applied or the emission scenario, to name just a few, the sensitivity of ENM‐based scenarios to General Circulation Models (GCMs) has been often underappreciated. Here, using a multi‐GCM and multi‐emission scenario approach, we evaluated the variability in projected distributions under future climate conditions. We modeled the ecological realized niche (sensu Hutchinson) and predicted the baseline distribution of species with contrasting spatial patterns and representative of two major functional groups of European trees: the dwarf birch and the sweet chestnut. Their future distributions were then projected onto future climatic conditions derived from seven GCMs and four emissions scenarios using the new Representative Concentration Pathways (RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC) AR5 report. Uncertainties arising from GCMs and those resulting from emissions scenarios were quantified and compared. Our study reveals that scenarios of future species distribution exhibit broad differences, depending not only on emissions scenarios but also on GCMs. We found that the between‐GCM variability was greater than the between‐RCP variability for the next decades and both types of variability reached a similar level at the end of this century. Our result highlights that a combined multi‐GCM and multi‐RCP approach is needed to better consider potential trajectories and uncertainties in future species distributions. In all cases, between‐GCM variability increases with the level of warming, and if nothing is done to alleviate global warming, future species spatial distribution may become more and more difficult to anticipate. When future species spatial distributions are examined, we propose to use a large number of GCMs and RCPs to better anticipate potential trajectories and quantify uncertainties. 相似文献
13.
Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human‐made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species‐rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively. 相似文献
14.
15.
16.
17.
18.
生物入侵是指某种生物从原来的分布区域扩展到一个新的(通常也是遥远的)地区,在新的区域里,其后代可以繁殖、扩散并持续维持下去,生物入侵成功的原因,即与入侵者本身的生物学,生态学特征有关,也与群落的脆弱性有关,入侵者可能较本地种的竞争能力强,更适应当地的环境,有的入侵者还可以改变环境,使之对已有利,而不利于本地种。缺乏天敌制约。群落的稳定性低和异常的环境扰动往往导致生物入侵,生物入侵的预测包括哪一种外来种会变成入侵种?哪些生态系统区域会被入侵?影响程度如何?入侵种的扩散态势如何等内容,对有关的理论和模型作了评介。 相似文献
19.
Abstract. The common waxbill Estrilda astrild was first introduced to Portugal from Africa in 1964, and has spread across much of the country and into Spain. We modelled the expansion of the common waxbill on a 20 × 20 km UTM grid in 4‐year periods from 1964 to 1999. The time variation of the square root of the occupied area shows that this expansion process is stabilizing in Portugal, and reasons for this are discussed. Several methods used to model biological expansions are not appropriate for the present case, because little quantitative data are available on the species ecology and because this expansion has been spatially heterogeneous. Instead, colonization on a grid was modelled as a function of several biophysical and spatio‐temporal variables through the fitting of a multivariate autologistic equation. This approach allows examination of the underlying factors affecting the colonization process. In the case of the common waxbill it was associated positively with its occurrence in adjacent cells, and affected negatively by altitude and higher levels of solar radiation. 相似文献
20.
《生物多样性》编辑部 《生物多样性》2014,22(1):112
<正>2013年度,以下专家为《生物多样性》审阅稿件,在此向大家致以深切的谢意!正是有了各位专家认真、细致、及时地审阅稿件,才保障了刊物的学术质量,缩短了稿件的处理周期,从而帮助刊物赢得更多读者和作者的信赖。 相似文献