首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
应用生态位模型研究外来入侵物种生态位漂移   总被引:4,自引:0,他引:4  
由于基础生态位和实际生态位的改变,外来入侵物种在入侵地成功定殖、扩散后常会发生生态位漂移,而物种生态位漂移往往很难直接证明。生态位模型在假设入侵物种的生态位需求保守的前提下,以物种在其原产地的生态位需求为基础,预测其在入侵地的潜在分布,通过比较预测分布与实际分布的差异可以从一定程度上得到外来入侵物种的生态位是否发生漂移的间接证据。以我国入侵杂草胜红蓟在原产地的生态位需求为基础,应用生态位模型预测其在其他地区的潜在分布。研究结果表明,生态位模型可以很好地预测胜红蓟在亚太平洋地区和非洲地区的分布,但在我国,其预测分布与实际分布存在较大差别。胜红蓟在我国预测分布主要为云南、海南、台湾部分地区,而胜红蓟入侵我国后现已广泛分布于长江以南地区,其实际分布比预测分布广泛得多,由此推测胜红蓟在入侵我国后其生态位已经产生了漂移。  相似文献   

2.
Four North American trees are becoming invasive species in Western Europe: Acer negundo, Prunus serotina, Quercus rubra, and Robinia pseudoacacia. However, their present and future potential risks of invasion have not been yet evaluated. Here, we assess niche shifts between the native and invasive ranges and the potential invasion risk of these four trees in Western Europe. We estimated niche conservatism in a multidimensional climate space using niche overlap Schoener's D, niche equivalence, and niche similarity tests. Niche unfilling and expansion were also estimated in analogous and nonanalogous climates. The capacity for predicting the opposite range between the native and invasive areas (transferability) was estimated by calibrating species distribution models (SDMs) on each range separately. Invasion risk was estimated using SDMs calibrated on both ranges and projected for 2050 climatic conditions. Our results showed that native and invasive niches were not equivalent with low niche overlap for all species. However, significant similarity was found between the invasive and native ranges of Q. rubra and R. pseudoacacia. Niche expansion was lower than 15% for all species, whereas unfilling ranged from 7 to 56% when it was measured using the entire climatic space and between 5 and 38% when it was measured using analogous climate only. Transferability was low for all species. SDMs calibrated over both ranges projected high habitat suitability in Western Europe under current and future climates. Thus, the North American and Western European ranges are not interchangeable irrespective of the studied species, suggesting that other environmental and/or biological characteristics are shaping their invasive niches. The current climatic risk of invasion is especially high for R. pseudoacacia and A. negundo. In the future, the highest risks of invasion for all species are located in Central and Northern Europe, whereas the risk is likely to decrease in the Mediterranean basin.  相似文献   

3.
Aim There is increasing evidence that the quality and breadth of ecological niches vary among individuals, populations, evolutionary lineages and therefore also across the range of a species. Sufficient knowledge about niche divergence among clades might thus be crucial for predicting the invasion potential of species. We tested for the first time whether evolutionary lineages of an invasive species vary in their climate niches and invasive potential. Furthermore, we tested whether lineage‐specific models show a better performance than combined models. Location Europe. Methods We used species distribution models (SDMs) based on climatic information at native and invasive ranges to test for intra‐specific niche divergence among mitochondrial DNA (mtDNA) clades of the invasive wall lizard Podarcis muralis. Using DNA barcoding, we assigned 77 invasive populations in Central Europe to eight geographically distinct evolutionary lineages. Niche similarity among lineages was assessed and the predictive power of a combination of clade‐specific SDMs was compared with a combined SDM using the pooled records of all lineages. Results We recorded eight different invasive mtDNA clades in Central Europe. The analysed clades had rather similar realized niches in their native and invasive ranges, whereas inter‐clade niche differentiation was comparatively strong. However, we found only a weak correlation between geographic origin (i.e. mtDNA clade) and invasive occurrences. Clades with narrow realized niches still became successful invaders far outside their native range, most probably due to broader fundamental niches. The combined model using data for all invasive lineages achieved a much better prediction of the invasive potential. Conclusions Our results indicate that the observed niche differentiation among evolutionary lineages is mainly driven by niche realization and not by differences in the fundamental niches. Such cryptic niche conservatism might hamper the success of clade‐specific niche modelling. Cryptic niche conservatism may in general explain the invasion success of species in areas with apparently unsuitable climate.  相似文献   

4.
Aim To investigate relative niche stability in species responses to various types of environmental pressure (biotic and abiotic) on geological time‐scales using the fossil record. Location The case study focuses on Late Ordovician articulate brachiopods of the Cincinnati Arch in eastern North America. Methods Species niches were modelled for a suite of fossil brachiopod species based on five environmental variables inferred from sedimentary parameters using GARP and Maxent . Niche stability was assessed by comparison of (1) the degree of overlap of species distribution models developed for a time‐slice and those generated by projecting niche models of the previous time‐slice onto environmental layers of a second time‐slice using GARP and Maxent , (2) Schoener’s D statistic, and (3) the similarity of the contribution of each environmental parameter within Maxent niche models between adjacent time‐slices. Results Late Ordovician brachiopod species conserved their niches with high fidelity during intervals of gradual environmental change but responded to inter‐basinal species invasions through niche evolution. Both native and invasive species exhibited similar levels of niche evolution in the invasion and post‐invasion intervals. Niche evolution was related mostly to decreased variance within the former ecological niche parameters rather than to shifts to new ecospace. Main conclusions Although the species examined exhibited morphological stasis during the study interval, high levels of niche conservatism were observed only during intervals of gradual environmental change. Rapid environmental change, notably inter‐basinal species invasions, resulted in high levels of niche evolution among the focal taxa. Both native and invasive species responded with similar levels of niche evolution during the invasion interval and subsequent environmental reorganization. The assumption of complete niche conservatism frequently employed in ecological niche modelling (ENM) analyses to forecast or hindcast species geographical distributions is more likely to be accurate for climate change studies than for invasive species analyses over geological time‐scales.  相似文献   

5.
6.
Shifts between native and alien climatic niches pose a major challenge for predicting biological invasions. This is particularly true for insular species because geophysical barriers could constrain the realization of their fundamental niches, which may lead to underestimates of their invasion potential. To investigate this idea, we estimated the frequency of shifts between native and alien climatic niches and the magnitude of climatic mismatches using 80,148 alien occurrences of 46 endemic insular amphibian, reptile, and bird species. Then, we assessed the influence of nine potential predictors on climatic mismatches across taxa, based on species' characteristics, native range physical characteristics, and alien range properties. We found that climatic mismatch is common during invasions of endemic insular birds and reptiles: 78.3% and 55.1% of their respective alien records occurred outside of the environmental space of species' native climatic niche. In comparison, climatic mismatch was evident for only 16.2% of the amphibian invasions analyzed. Several predictors significantly explained climatic mismatch, and these varied among taxonomic groups. For amphibians, only native range size was associated with climatic mismatch. For reptiles, the magnitude of climatic mismatch was higher for species with narrow native altitudinal ranges, occurring in topographically complex or less remote islands, as well as for species with larger distances between their native and alien ranges. For birds, climatic mismatch was significantly larger for invasions on continents with higher phylogenetic diversity of the recipient community, and when the invader was more evolutionarily distinct. Our findings highlight that apparently common niche shifts of insular species may jeopardize our ability to forecast their potential invasions using correlative methods based on climatic variables. Also, we show which factors provide additional insights on the actual invasion potential of insular endemic amphibians, reptiles, and birds.  相似文献   

7.
中国外来植物入侵风险评估研究   总被引:1,自引:0,他引:1  
李惠茹  严靖  杜诚  闫小玲 《生态学报》2022,42(16):6451-6463
对外来植物开展入侵风险评估是防止外来植物入侵最经济有效的措施,能够极大的节约外来种管理的经济和时间成本。研究简述了国内外入侵风险评估系统,从外来物种基础信息缺乏、外来植物的适生区分析不完善、风险评估体系构建不客观、对新近外来种的关注度不够4个方面阐述了我国外来植物风险评估存在的主要问题。并针对存在的问题提出了以下建议:(1)构建外来植物基础信息数据库是风险评估的基础,加强外来植物本底资料的调查与考证,并将外来植物表型数据的积累和分析纳入数据库,使得风险评估有据可依。(2)运用生态位模型进行生态风险分析是风险评估的重点,并将人类活动指标纳入预测模型,揭示人类活动对入侵植物分布格局的影响。(3)建立科学的风险评估系统是核心,包括通过选择风险指标和设置权重来提高评估系统的科学性、构建特定区域或特定生态类型的风险评估体系、根据评估对象的生物学与生态学特征建立符合实际要求的评估标准,实行差别化的风险评估等。(4)加强新近外来植物的管理是关键,应定期野外监测新近外来种的种群动态,定期审查风险评估结果,对高风险的新近外来种进行预警研究将为中国外来植物风险评估体系构建提供重要参考,为入侵植物防控措施的制定提供理论依据。  相似文献   

8.
In the current context of ongoing global change, the understanding of how the niches of invasive species may change between different geographical areas or time periods is extremely important for the early detection and control of future invasions. We evaluated the effect of climate and non‐climate variables and the sensitivity to various spatial resolutions (i.e. 1 and 20 km) on niche changes during the invasion of Taraxacum officinale and Ulex europaeus in South America. We estimated niche changes using a combination of principal components analyses (PCA) and reciprocal Ecological Niche Modelling (rENM). We further investigated future invasion dynamics under a severe warming scenario for 2050 to unravel the role of niche shifts in the future potential distribution of the species. We observed a clear niche expansion for both species in South America towards higher temperature, precipitation and radiation relative to their native ranges. In contrast, the set of environmental conditions only occupied in the native ranges (i.e. niche unfilling) were less relevant. The magnitude of the niche shifts did not depend on the resolution of the variables. Models calibrated with occurrences from native range predicted large suitable areas in South America (outside of the Andes range) where T. officinale and U. europaeus are currently absent. Additionally, both species could increase their potential distributions by 2050, mostly in the southern part of the continent. In addition, the niche unfilling suggests high potential to invade additional regions in the future, which is extremely relevant considering the current impact of these species in the Southern Hemisphere. These findings confirm that invasive species can occupy new niches that are not predictable from knowledge based only on climate variables or information from the native range.  相似文献   

9.
To protect native biodiversity and habitats from the negative impacts of biological invasions, comprehensive studies and measures to anticipate invasions are required, especially across countries in a transfrontier context. Species distribution models (SDMs) can be particularly useful to integrate different types of data and predict the distribution of invasive species across borders, both for current conditions and under scenarios of future environmental changes. We used SDMs to test whether predicting invasions and potential spatial conflicts with protected areas in a transfrontier context, under current and future climatic conditions, would provide additional insights on the patterns and drivers of invasion when compared to models obtained from predictions for individual regions/countries (different modelling strategies). The framework was tested with the invasive alien plant Acacia dealbata in North of Portugal/NW Spain Euro-region, where the species is predicted to increase its distribution under future climatic conditions. While SDMs fitted in a transfrontier context and using “the national strategy (with Portugal calibration data) presented similar patterns, the distribution of the invasive species was higher in the former. The transfrontier strategy expectedly allowed to capture a more complete and accurate representation of the species’ niche. Predictions obtained in a transfrontier context are therefore more suitable to support resource prioritisation for anticipation and monitoring impacts of biological invasions, while also providing additional support for international cooperation when tackling issues of global change. Our proposed framework provided useful information on the potential patterns of invasion by A. dealbata in a transfrontier context, with an emphasis on protected areas. This information is crucial for decision-makers focusing on the prevention of invasions by alien species inside protected areas in a transfrontier context, opening a new way for collaborative management of invasions.  相似文献   

10.
横断山区为全球生物多样性热点地区之一, 也是全国生态屏障的重要组成部分。新建川藏铁路雅安至昌都段横跨横断山核心地区, 铁路建设形成的交通网络将沿线生物多样性热点区域与外界相连, 导致生物入侵风险陡增。为获得区域内外来入侵植物的种类及分布特征信息, 为即将开始的铁路工程建设、生态保护及生态修复等工作提供参考, 我们在雅安-昌都段内选择43个位点各进行长度1 km、宽度20 m的样线调查。研究结果显示: 雅安-昌都段共发现外来入侵植物58种, 隶属于18科42属, 其中出现频度最高的种类依次是牛膝菊(Galinsoga parviflora)、秋英(Cosmos bipinnatus)和鬼针草(Bidens pilosa)。从危害等级来看, 其中10种为恶性入侵种, 16种为严重入侵种, 8种为局部入侵种, 15种为一般入侵种, 9种为有待观察种, 超过半数种类具有明显入侵性。原产地分析结果显示美洲是该区域外来入侵植物的主要原产地。基于海拔及主要河流区段的比较研究发现: 入侵植物的种类数量呈现出明显的由东向西、由低海拔向高海拔逐渐递减的趋势, 该分布格局是环境因子和人类活动共同作用的结果。结合铁路沿线入侵现状和生境特征, 本文分析了铁路建设可能造成的外来植物入侵风险, 并针对入侵的防范提出了相应的建议。  相似文献   

11.
随着全球经济一体化的发展,外来入侵生物的危害日益加重。我国针对当前各类重大外来生物的入侵,按照基础研究、共性关键技术与重大产品研发、典型应用示范3个层面,部署了一系列项目,并取得了一定成果:揭示了入侵生物的入侵特性和入侵机理,以及入侵植物与脆弱生态系统的相互作用机制;研发了重大新发农业入侵物种风险评估及防控技术,建立了生物威胁数据库和生物入侵突发事件可视化智能决策支持平台,以及重大入侵动植物的治理模式和技术体系;建立了主要入侵生物标本资源库。今后应以跨境动植物有害生物为主要目标,开展入侵扩散与成灾机制、早期预防预警、快速检测监测、识别追踪溯源、点面拦截狙击、区域防灾减灾等技术研究。  相似文献   

12.
Arthropods make up the largest group of invasive alien species (IAS) worldwide. Although invasion research has been biased towards alien plants and vertebrates, it has suggested potential mechanisms for the success of IAS and provided a theoretical framework for further investigation. Here we address key concepts from invasion biology that are essential to our understanding of the success of invasive alien arthropod predators and parasitoids including human intervention, environmental characteristics, propagule pressure, biological traits, and biological interactions. To gain a greater understanding of the factors most likely to influence the different stages of invasion (arrival, establishment, and spread) for alien arthropod predators and parasitoids, we use a comparative approach to compare and contrast the differential success of invasions by alien phytophagous and carnivorous arthropods. Insights gained from this comparison suggest that future research will require a multitrophic approach in order to enhance our understanding of invasions at higher trophic levels.  相似文献   

13.
[目的]探讨影响河北省外来物种入侵的社会经济因素,以期能够为河北省外来物种的防控提供可行性建议对策.[方法]通过查阅期刊、专著和数据库等分析了河北省外来入侵物种情况,对2003、2007、2011、2015、2019年5个时间节点的进口贸易、旅游人数、境内公路公里数3个社会经济变量与外来入侵物种量进行相关性分析,明确影...  相似文献   

14.
Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species’ native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species’ native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger’s I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species’ dynamics in the invaded range.  相似文献   

15.
Although of crucial importance for invasion biology and impact assessments of climate change, it remains widely unknown how species cope with and adapt to environmental conditions beyond their currently realized climatic niches (i.e., those climatic conditions existing populations are exposed to). The African clawed frog Xenopus laevis, native to southern Africa, has established numerous invasive populations on multiple continents making it a pertinent model organism to study environmental niche dynamics. In this study, we assess whether the realized niches of the invasive populations in Europe, South, and North America represent subsets of the species’ realized niche in its native distributional range or if niche shifts are traceable. If shifts are traceable, we ask whether the realized niches of invasive populations still contain signatures of the niche of source populations what could indicate local adaptations. Univariate comparisons among bioclimatic conditions at native and invaded ranges revealed the invasive populations to be nested within the variable range of the native population. However, at the same time, invasive populations are well differentiated in multidimensional niche space as quantified via n‐dimensional hypervolumes. The most deviant invasive population are those from Europe. Our results suggest varying degrees of realized niche shifts, which are mainly driven by temperature related variables. The crosswise projection of the hypervolumes that were trained in invaded ranges revealed the south‐western Cape region as likely area of origin for all invasive populations, which is largely congruent with DNA sequence data and suggests a gradual exploration of novel climate space in invasive populations.  相似文献   

16.
Distribution data are central to many invasion science applications. The shortage of good information on the distribution of alien species and their spatial dynamics is largely attributable to the cost, effort and expertise required to monitor these species over large areas. Virtual globes, particularly Google Earth, are free and user-friendly software which provide high-resolution aerial imagery for the entire globe. We suggest this has enormous potential for invasion science. We provide suggestions and tools for gathering data on the distribution and abundance of invasive alien trees using visual interpretation of Google Earth imagery, and propose how these data may be used for a number of purposes, including calculating useful metrics of invasions, prioritising species or areas for management and predicting potential distributions of species. We also suggest various practical uses of Google Earth, such as providing a tool for early detection of emerging invasions, monitoring invasions over time, and to help researchers and managers identify suitable field study sites. Virtual globes such as Google Earth are not without limitations and we provide guidance on how some of these can be overcome, or when imagery from Google Earth may not be fit for invasion science purposes. Because of Google Earth’s huge popularity and ease of use, we also highlight possibilities for awareness-raising and information sharing that it provides. Finally, we provide the foundations and guidelines for a virtual global network of sentinel sites for early detection, monitoring and data gathering of invasive alien trees, which we propose should be developed as part of a “citizen science” effort. There has been limited use of virtual globes by invasion scientists and managers; it is our hope that this paper will stimulate their greater use, both within the field of invasion science and within ecology generally.  相似文献   

17.
Aim Two core assumptions of species distribution models (SDMs) do not hold when modelling invasive species. Invasives are not in equilibrium with their environment and niche quantification and transferability in space and time are limited. Here, we test whether combining global‐ and regional‐scale data in a novel framework can overcome these limitations. Beyond simply improving regional niche modelling of non‐native species, the framework also makes use of the violation of regional equilibrium assumptions, and aims at estimating the stage of invasion, range filling and risk of spread in the near future for 27 invasive species in the French Alps. Innovation For each invader we built three sets of SDMs using a committee averaging method: one global model and two regional models (a conventional model and one using the global model output to weight pseudo‐absences). Model performances were compared using the area under the receiver operating characteristic curve, the true skill statistic, sensitivity and specificity scores. Then, we extracted the predictions for observed presences and compared them to global and regional models. This comparison made it possible to identify whether invasive species were observed within or outside of their regional and global niches. Main conclusions This study provides a novel methodological framework for improving the regional modelling of invasive species, where the use of a global model output to weight pseudo‐absences in a regional model significantly improved the predictive performance of regional SDMs. Additionally, the comparison of the global and regional model outputs revealed distinct patterns of niche estimates and range filling among the species. These differences allowed us to draw conclusions about the stage of invasion and the risk of spread in the near future, which both correspond to experts' expectations. This framework can be easily applied to a large number of species and is therefore useful for control of biological invasions and eradication planning.  相似文献   

18.
The subphylum Crustacea includes the most successful species among aquatic alien invaders. The impacts of invasive alien crustaceans (IAC) are often substantial, due to the complex trophic role of most of these species leading to cascading effects throughout the invaded ecosystems. IAC also have the potential to cause a shift in the ‘keystone’ ecosystem functions, changing energy flux and nutrient cycles which together affect critical ecosystem services such as biodiversity, fisheries yield and water quality. Although no individual trait appears to be a good predictor of invasion success, a combination of some characteristics such as eurytolerance, omnivory and certain r-selected life-history traits results in a high probability of alien crustacean species becoming invasive. Both environmental factors, such as habitat heterogeneity in the invaded ecosystems, and evolutionary factors, such as adaptations to new environmental conditions, also play important roles during establishment. Therefore, individual environmental niche models, including genetic algorithm, have the highest likelihood of providing useful predictive information about invasion success and spread of alien Crustacea. Attempts to control IAC through biocides or mechanical removal have had mixed success in the past but a strategic combination of different methods may lead to some success in the future.  相似文献   

19.
提高生态位模型转移能力来模拟入侵物种 的潜在分布   总被引:5,自引:0,他引:5  
生态位模型利用物种分布点所关联的环境变量去推算物种的生态需求, 模拟物种的分布。在模拟入侵物种分布时, 经典生态位模型包括模型构建于物种本土分布地, 然后将其转移并投射至另一地理区域, 来模拟入侵物种的潜在分布。然而在模型运用时, 出现了模型的转移能力较低、模拟的结果与物种的实际分布不相符的情况, 由此得出了生态位漂移等不恰当的结论。提高生态位模型的转移能力, 可以准确地模拟入侵物种的潜在分布, 为入侵种的风险评估提供参考。作者以入侵种茶翅蝽(Halyomorpha halys)和互花米草(Spartina alterniflora)为例, 从模型的构建材料(即物种分布点和环境变量)入手, 全面阐述提高模型转移能力的策略。在构建模型之前, 需要充分了解入侵物种的生物学特性、种群平衡状态、本土地理分布范围及物种的生物历史地理等方面的知识。在模型构建环节上, 物种分布点不仅要充分覆盖物种的地理分布和生态空间的范围, 同时要降低物种采样点偏差; 环境变量的选择要充分考虑其对物种分布的限制作用、各环境变量之间的空间相关性, 以及不同地理种群间生态空间是否一致, 同时要降低环境变量的空间维度; 模型构建区域要真实地反映物种的地理分布范围, 并考虑种群的平衡状态。作者认为, 在生态位保守的前提下, 如果模型是构建在一个合理方案的基础上, 生态位模型的转移能力是可以保证的, 在以模型转移能力较低的现象来阐述生态位分化时需要引起注意。  相似文献   

20.

Aim

We estimate and compare niche position, marginality and breadth of Iberian inland fishes at three geographical extents (regional, restricted to the species’ range and global) to understand the effect of spatial scale on niche metrics. Furthermore, we investigate differences in niche metrics between native and alien fish, and test for associations with introduction date of alien species and niche characterization to better understand their invasion process.

Location

Iberian Peninsula and global.

Time period

2000–2020.

Major taxa studied

Fifty-one native and 17 alien inland fish species from the Iberian Peninsula.

Methods

Outlying mean index (OMI) analyses were used to estimate the niche position, marginality and breadth of Iberian inland fishes. Climatic OMI analyses were computed at three different scales (regional, restricted to the species’ range and global). Permutational analyses of variance (PERMANOVAs) were used to test for differences in niche position, marginality and breath among native and alien species.

Results

Niche metrics differed depending on the geographical extent of the investigation, as well as with respect to species origin (native versus alien). Differences in climatic niche position between native and alien species observed at the global scale were non-existent at the regional scale. The niche breadth of widely distributed alien species was highly underestimated when only considering the invaded region, and further influenced by the first date of of species introduction.

Main conclusions

Estimating niches of freshwater species, especially of alien invaders, should carefully consider the geographical extent of the investigation. We suggest that analyses that jointly consider regional and global scales will improve the estimation of niche metrics of widely distributed organisms, particularly regarding species climatic niche, and the assessment of the invasive potential of species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号