首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Great attention has been paid to N2O emissions from paddy soils under summer rice-winter wheat double-crop rotation, while less focus was given to the NO emissions. Besides, neither mechanism is completely understood. Therefore, this study aimed at evaluating the relative importance of nitrification and denitrification to N2O and NO emissions from the two soils at different soil moisture contents

Methods

N2O and NO emissions during one winter wheat season were simultaneously measured in situ in two rice-wheat based field plots at two different locations in Jiangsu Province, China. One soil was neutral in pH with silt loam texture (NSL), the other soil alkaline in pH with a clay texture (AC). A 15?N tracer incubation experiment was conducted in the laboratory to evaluate the relative importance of nitrification and denitrification for N2O and NO emissions at soil moisture contents of 40 % water holding capacity (WHC), 65 % WHC and 90 % WHC.

Results

Higher N2O emission rates in the AC soil than in the NSL soil were found both in the field and in the laboratory experiments; however, the differences in N2O emissions between AC soil and NSL soil were smaller in the field than in the laboratory. In the latter experiment, nitrification was observed to be the more important source of N2O emissions (>70 %) than denitrification, regardless of the soils and moisture treatments, with the only exception of the AC soil at 90 % WHC, at which the contributions of nitrification and denitrification to N2O emissions were comparable. The ratios of NO/N2O also supported the evidence that the nitrification process was the dominant source of N2O and NO both in situ and in the laboratory. The proportion of nitrified N emitted as N2O (P N2O ) in NSL soil were around 0.02 % in all three moisture treatments, however, P N2O in the AC soil (0.04 % to 0.10 %) tended to decrease with increasing soil moisture content.

Conclusions

Our results suggest that N2O emission rates obtained from laboratory incubation experiments are not suitable for the estimation of the true amount of N2O fluxes on a field scale. Besides, the variations of P N2O with soil property and soil moisture content should be taken into account in model simulations of N2O emission from soils.  相似文献   

2.
Monoculture croplands are a major source of global anthropogenic emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to ozone depletion. Agroforestry has the potential to reduce N2O emissions. Presently, there is no systematic comparison of soil N2O emissions between cropland agroforestry and monoculture systems in Central Europe. We investigated the effects of converting the monoculture cropland system into the alley cropping agroforestry system on soil N2O fluxes at three sites (each site has paired agroforestry and monoculture) in Germany, where agroforestry combined crop rows and poplar short-rotation coppice (SRC). We measured soil N2O fluxes monthly over 2 years (March 2018–January 2020) using static vented chambers. Annual soil N2O emissions from agroforestry ranged from 0.21 to 2.73 kg N ha−1 year−1, whereas monoculture N2O emissions ranged from 0.34 to 3.00 kg N ha−1 year−1. During the rotation of corn crop, with high fertilization rates, agroforestry reduced soil N2O emissions by 9% to 56% compared to monocultures. This was mainly caused by low soil N2O emissions from the unfertilized agroforestry tree rows. Soil N2O fluxes were predominantly controlled by soil mineral N in both agroforestry and monoculture systems. Our findings suggest that optimized fertilizer input will further enhance the potential of agroforestry for mitigating N2O emissions.  相似文献   

3.

Background and aims

Elevated atmospheric CO2 (eCO2) and tropospheric O3 (eO3) can alter soil microbial processes, including those underlying N2O emissions, as an indirect result of changes in plant inputs. In this study, effects of eCO2 and eO3 on sources of N2O in a soybean (Glycine max (L.) Merr.) agroecosystem in Illinois (SoyFACE) were investigated. We hypothesized that increases in available C and anaerobic microhabitat under eCO2 would stimulate N2O emissions, with a proportionally larger increase in denitrification derived N2O (N2OD) compared to nitrification plus nitrifier denitrification derived N2O (N2ON+ND). We expected opposite effects under eO3.

Methods

Isotopically labeled 15NH 4 14 NO3 and 14NH 4 15 NO3 were used to evaluate mineral N transformations, N2OD, and N2ON+ND in a 12-day incubation experiment.

Results

We observed minimal effects of eCO2 and eO3 on N2O emissions, movement of 15?N through mineral N pools, soil moisture content and C availability. Possibly, altered C and N inputs by eCO2 and eO3 were small relative to the high soil organic C content and N-inputs via biological N2-fixation, minimizing potential effects of eCO2 and eO3 on N-cycling.

Conclusion

We conclude that eCO2 and eO3 did not affect N2O emissions in the short term. However, it remains to be tested whether N2O emissions in SoyFACE will be unaltered by eCO2 and eO3 on a larger temporal scale under field conditions.  相似文献   

4.
土壤冻融期间的温室气体排放量会显著增加,并在全年总排放量中占有重要的份额。但目前开展的土壤冻融循环模拟实验大多是在土壤冻结之前调节土壤水分含量,而忽视了雪被在整个土壤冻融过程中的作用,因此导致室内模拟研究的结果与野外原位观测的结果差异较大。为探索开展室内模拟土壤冻融实验的优化方案,采用人工浇水和覆雪两种方式调节土壤水分含量,研究了雪被和土壤水分对内蒙古典型半干旱草原土壤冻融过程中CO2和N2O排放的影响。结果表明,浇水和覆雪两种处理对冻融循环过程中土壤CO2排放影响的差异不显著,CO2排放量在消融期都会明显增加并随着冻融循环次数的增加而逐渐减小。当土壤孔隙含水率达50%左右时,浇水处理中的N2O排放量在第1次土壤冻融循环中最高并随冻融循环次数增加而降低,但在覆雪处理中,N2O在第1次冻融循环中的排放较小,而在后两次冻融循环中的排放量更为显著。造成两种处理N2O排放规律出现显著不同的原因可能是土壤剖面水分动态变化过程和微生物性状等方面的差异。土壤冻融过程中CO2和N2O排放量随土壤含水量升高而增加,但N2O在土壤含水量较低时排放不明显,这表明可能只有当土壤含水量达到一定阈值时,冻融作用才会对N2O的排放产生显著影响。这些结果显示,雪被和土壤水分显著影响土壤冻融过程中的CO2和N2O排放,室内模拟土壤冻融实验应进一步优化。  相似文献   

5.
The objective of this study was to investigate how changes in soil pH affect the N2O and N2 emissions, denitrification activity, and size of a denitrifier community. We established a field experiment, situated in a grassland area, which consisted of three treatments which were repeatedly amended with a KOH solution (alkaline soil), an H2SO4 solution (acidic soil), or water (natural pH soil) over 10 months. At the site, we determined field N2O and N2 emissions using the 15N gas flux method and collected soil samples for the measurement of potential denitrification activity and quantification of the size of the denitrifying community by quantitative PCR of the narG, napA, nirS, nirK, and nosZ denitrification genes. Overall, our results indicate that soil pH is of importance in determining the nature of denitrification end products. Thus, we found that the N2O/(N2O + N2) ratio increased with decreasing pH due to changes in the total denitrification activity, while no changes in N2O production were observed. Denitrification activity and N2O emissions measured under laboratory conditions were correlated with N fluxes in situ and therefore reflected treatment differences in the field. The size of the denitrifying community was uncoupled from in situ N fluxes, but potential denitrification was correlated with the count of NirS denitrifiers. Significant relationships were observed between nirS, napA, and narG gene copy numbers and the N2O/(N2O + N2) ratio, which are difficult to explain. However, this highlights the need for further studies combining analysis of denitrifier ecology and quantification of denitrification end products for a comprehensive understanding of the regulation of N fluxes by denitrification.Denitrification is the microbial reduction of NO3 via NO2 to gaseous NO, N2O, and N2, which are then lost into the atmosphere (36). It therefore results in considerable loss of nitrogen, one of the most limiting nutrients for crop production in agriculture (20). Denitrification is also of environmental concern since, together with nitrification, it is the main biological process responsible for N2O emissions (7). N2O is a potent greenhouse gas which has a global warming potential about 320 times greater than that of CO2 and has a lifetime of approximately 120 years (32). In the stratosphere, N2O can also react with O2 to produce NO, which induces the destruction of stratospheric ozone (8). N2O can be released into the atmosphere by incomplete denitrification due to the effect of environmental conditions on the regulation of the different denitrification reductases (14, 41, 51), but it has recently been suggested that it could also be due to lack of nitrous oxide reductase in some denitrifiers (19, 41). Since N2O is an intermediate in the denitrification pathway, both the amount of N2O produced and the N2O/(N2O + N2) ratio are important in understanding and predicting N2O fluxes from soils.The main environmental factors known to influence the N2O/(N2O + N2) ratio are pH, organic carbon and NO3 availability, water content, and O2 partial pressure (50). Soil pH is one of the most important factors influencing both denitrification and N2O production (43). In general, the denitrification rate increases with increasing pH values (up to the optimum pH) while, in contrast, the N2O/(N2O + N2) ratio decreases (50). This relationship has been characterized in laboratory experiments (9, 45), but it is not clear whether the same relationships exist in the field because of methodological limitations of in situ measurement of N2 emissions (16). Nevertheless, 15N tracing experiments based on the addition of a labeled denitrification substrate to soil offer a useful tool to quantify emissions of both N2O and N2 in situ (47, 49). Soil pH is also an important factor influencing denitrifier community composition (35, 39), which can be an important driver of denitrification activity and N2O emissions (5, 21). A recent study reported a negative relationship between the proportion of bacteria genetically capable of reducing N2O within the total bacterial community and the N2O/(N2O + N2) ratio, with both being strongly correlated with soil pH (38).The objective of the present study was to explore the effect of changes in soil pH on in situ N2O and N2 emissions, denitrifying enzyme activity (DEA), and potential N2O production. In addition, we also investigated whether differences in N fluxes could be related to changes in the size of the microbial community possessing the different denitrification genes. A field experiment was conducted using replicated grassland plots in which the soil pH was modified by addition of either acid or hydroxide to the soil. A 15N tracer method was used to provide information on N emissions. In addition to measuring potential denitrification activity, the size of the denitrifier community was determined by real-time PCR quantification of the denitrification genes.  相似文献   

6.
Temporal trends of N2O fluxes across the soil–atmosphere interface were determined using continuous flux chamber measurements over an entire growing season of a subsurface aerating macrophyte (Phalaris arundinacea) in a nonmanaged Danish wetland. Observed N2O fluxes were linked to changes in subsurface N2O and O2 concentrations, water level (WL), light intensity as well as mineral‐N availability. Weekly concentration profiles showed that seasonal variations in N2O concentrations were directly linked to the position of the WL and O2 availability at the capillary fringe above the WL. N2O flux measurements showed surprisingly high temporal variability with marked changes in fluxes and shifts in flux directions from net source to net sink within hours associated with changing light conditions. Systematic diurnal shifts between net N2O emission during day time and deposition during night time were observed when max subsurface N2O concentrations were located below the root zone. Correlation (P < 0.001) between diurnal variations in O2 concentrations and incoming photosynthetically active radiation highlighted the importance of plant‐driven subsoil aeration of the root zone and the associated controls on coupled nitrification/denitrification. Therefore, P. arundinacea played an important role in facilitating N2O transport from the root zone to the atmosphere, and exclusion of the aboveground biomass in flux chamber measurements may lead to significant underestimations on net ecosystem N2O emissions. Complex interactions between seasonal changes in O2 and mineral‐N availability following near‐surface WL fluctuations in combination with plant‐mediated gas transport by P. arundinacea controlled the subsurface N2O concentrations and gas transport mechanisms responsible for N2O fluxes across the soil–atmosphere interface. Results demonstrate the necessity for addressing this high temporal variability and potential plant transport of N2O in future studies of net N2O exchange across the soil–atmosphere interface.  相似文献   

7.
Legumes have the potential to alter nitrous oxide (N2O) emissions in grass-legume mixtures via changes in soil N availability, but the influence of legume abundance on N2O fluxes in grazed multi-species grasslands has faced little attention to date. In this paper, a combination of 15N-labelled fertilizer application and automatic chamber measurements was used to investigate N2O fluxes and soil-plant N transfers for high- and low-density clover patches in an intensively-managed, upland pasture (Auvergne, France) over the course of one growing season. During the six-month study period, N2O fluxes were highly variable. Maximum daily N2O emission was 52 g N2O-N ha?1, and was associated with fertilizer application early in the growing season. Smaller peaks of N2O emission occured in response to cutting events and fertilizer application later in the growing season. Nitrous oxide fluxes derived from 15N-labelled fertilizer peaked at 40% shortly after fertilizer application, but the dominant source of N2O fluxes was the soil N pool. Contrary to expectations, clover density had no significant effects on N content or patterns of 15N recovery in plant or soil mineral N pools. Nevertheless, we found a tendency for increased N2O-N losses from the low clover treatment. Furthermore, 15N recovery in N2O was higher in the low- compared to the high-density clover treatment during favorable growing conditions, suggesting transient shifts in plant/soil competition for N depending on legume abundance. Multiple regression analysis revealed that water-filled pore space (WFPS) and clover dry mass were the main factors driving cumulative N2O emissions in the high clover treatment, whereas variation in cumulated N2O emissions in the low clover treatment was best explained by WFPS and grass mass. We hypothesize that clover density had indirect effects on the sensitivity of N2O emissions to abiotic and biotic factors possibly via changes in soil pH. Overall, our results suggest that spatial heterogeneity in clover abundance may have relatively little impact on field-scale N2O emissions in fertilized grasslands.  相似文献   

8.
Agricultural soils are important sources of atmospheric N2O and CO2. However, in boreal agro-ecosystems the contribution of the winter season to annual emissions of these gases has rarely been determined. In this study, soil N2O and CO2 fluxes were measured for 6 years in a corn-soybean-wheat rotation in northeast China to quantify the contribution of wintertime N2O and CO2 fluxes to annual emissions. The treatments were chemical fertilizer (NPK), chemical fertilizer plus composted pig manure (NPKOM), and control (Cont.). Mean soil N2O fluxes among all three treatments in the winter (November–March), when soil temperatures are below −7°C for extended periods, were 0.89–3.01 µg N m−2 h−1, and in between the growing season and winter (October and April), when freeze-thaw events occur, 1.73–5.48 µg N m−2 h−1. The cumulative N2O emissions were on average 0.27–1.39, 0.03–0.08 and 0.03–0.11 kg N2ON ha−1 during the growing season, October and April, and winter, respectively. The average contributions of winter N2O efflux to annual emissions were 6.3–12.1%. In all three seasons, the highest N2O emissions occurred in NPKOM, while NPK and Cont. emissions were similar. Cumulative CO2 emissions were 2.73–4.94, 0.13–0.20 and 0.07–0.11 Mg CO2-C ha−1 during growing season, October and April, and winter, respectively. The contribution of winter CO2 to total annual emissions was 2.0–2.4%. Our results indicate that in boreal agricultural systems in northeast China, CO2 and N2O emissions continue throughout the winter.  相似文献   

9.
Soil faunal activity can be a major control of greenhouse gas (GHG) emissions from soil. Effects of single faunal species, genera or families have been investigated, but it is unknown how soil fauna diversity may influence emissions of both carbon dioxide (CO2, end product of decomposition of organic matter) and nitrous oxide (N2O, an intermediate product of N transformation processes, in particular denitrification). Here, we studied how CO2 and N2O emissions are affected by species and species mixtures of up to eight species of detritivorous/fungivorous soil fauna from four different taxonomic groups (earthworms, potworms, mites, springtails) using a microcosm set‐up. We found that higher species richness and increased functional dissimilarity of species mixtures led to increased faunal‐induced CO2 emission (up to 10%), but decreased N2O emission (up to 62%). Large ecosystem engineers such as earthworms were key drivers of both CO2 and N2O emissions. Interestingly, increased biodiversity of other soil fauna in the presence of earthworms decreased faunal‐induced N2O emission despite enhanced C cycling. We conclude that higher soil fauna functional diversity enhanced the intensity of belowground processes, leading to more complete litter decomposition and increased CO2 emission, but concurrently also resulting in more complete denitrification and reduced N2O emission. Our results suggest that increased soil fauna species diversity has the potential to mitigate emissions of N2O from soil ecosystems. Given the loss of soil biodiversity in managed soils, our findings call for adoption of management practices that enhance soil biodiversity and stimulate a functionally diverse faunal community to reduce N2O emissions from managed soils.  相似文献   

10.
Nitrogen (N) deposition has increased significantly globally since the industrial revolution. Previous studies on the response of gaseous emissions to N deposition have shown controversial results, pointing to the system-specific effect of N addition. Here we conducted an N addition experiment in a temperate natural forest in northeastern China to test how potential changes in N deposition alter soil N2O emission and its sources from nitrification and denitrification. Soil N2O emission was measured using closed chamber method and a separate incubation experiment using acetylene inhibition method was carried out to determine denitrification fluxes and the contribution of nitrification and denitrification to N2O emissions between Jul. and Oct. 2012. An NH4NO3 addition of 50 kg N/ha/yr significantly increased N2O and N2 emissions, but their “pulse emission” induced by N addition only lasted for two weeks. Mean nitrification-derived N2O to denitrification-derived N2O ratio was 0.56 in control plots, indicating higher contribution of denitrification to N2O emissions in the study area, and this ratio was not influenced by N addition. The N2O to (N2+N2O) ratio was 0.41–0.55 in control plots and was reduced by N addition at one sampling time point. Based on this short term experiment, we propose that N2O and denitrification rate might increase with increasing N deposition at least by the same fold in the future, which would deteriorate global warming problems.  相似文献   

11.
Spatial variability in hydrological flowpaths and nitrate-removal processes complicates the overall assessment of riparian buffer zone functioning in terms of water quality improvement as well as enhancement of the greenhouse effect by N2O emissions. In this study, we evaluated denitrification and nitrous oxide emission in winter and summer along two groundwater flowpaths in a nitrate-loaded forested riparian buffer zone and related the variability in these processes to controlling soil factors. Denitrification and emissions of N2O were measured using flux chambers and incubation experiments. In winter, N2O emissions were significantly higher (12.4 mg N m−2 d−1) along the flowpath with high nitrate removal compared with the flowpath with low nitrate removal (2.58 mg N m−2 d−1). In summer a reverse pattern was observed, with higher N2O emissions (13.6 mg N m−2 d−1) from the flowpath with low nitrate-removal efficiencies. Distinct spatial patterns of denitrification and N2O emission were observed along the high nitrate-removal transect compared to no clear pattern along the low nitrate-removal transect, where denitrification activity was very low. Results from this study indicate that spots with high nitrate-removal efficiency also contribute significantly to an increased N2O emission from riparian zones. Furthermore, we conclude that high variability in N2O:N2 ratio and weak relationships with environmental conditions limit the value of this ratio as a proxy to evaluate the environmental consequences of riparian buffer zones.  相似文献   

12.
N2O gas is involved in global warming and ozone depletion. The major sources of N2O are soil microbial processes. Anthropogenic inputs into the nitrogen cycle have exacerbated these microbial processes, including nitrification. Ammonia-oxidizing archaea (AOA) are major members of the pool of soil ammonia-oxidizing microorganisms. This study investigated the isotopic signatures of N2O produced by soil AOA and associated N2O production processes. All five AOA strains (I.1a, I.1a-associated and I.1b clades of Thaumarchaeota) from soil produced N2O and their yields were comparable to those of ammonia-oxidizing bacteria (AOB). The levels of site preference (SP), δ15Nbulk and δ18O -N2O of soil AOA strains were 13–30%, −13 to −35% and 22–36%, respectively, and strains MY1–3 and other soil AOA strains had distinct isotopic signatures. A 15N-NH4+-labeling experiment indicated that N2O originated from two different production pathways (that is, ammonia oxidation and nitrifier denitrification), which suggests that the isotopic signatures of N2O from AOA may be attributable to the relative contributions of these two processes. The highest N2O production yield and lowest site preference of acidophilic strain CS may be related to enhanced nitrifier denitrification for detoxifying nitrite. Previously, it was not possible to detect N2O from soil AOA because of similarities between its isotopic signatures and those from AOB. Given the predominance of AOA over AOB in most soils, a significant proportion of the total N2O emissions from soil nitrification may be attributable to AOA.  相似文献   

13.
China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long‐term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate‐induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH‐control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils.  相似文献   

14.
Nitrous oxide (N2O) is one of the three main biogenic greenhouse gases (GHGs) and agriculture represents close to 30 % of the total N2O net emissions. In agricultural soils, N2O is emitted by two main microbial processes, nitrification and denitrification, both of which can convert synthetic nitrogen fertilizer into N2O. Legume-rhizobia symbiosis could be an effective and environmental-friendly alternative to nitrogen fertilization and hence, to mitigate soil N2O emissions. However, legume crops also contribute to N2O emissions. A better understanding of the environmental factors involved in the emission of N2O from nodules would be instrumental for mitigating the release of this GHG gas. In this work, in vivo N2O emissions from nodulated soybean roots in response to nitrate (0, 1, 2 and 4 mM) and flooding have been measured. To investigate the contribution of rhizobial denitrification in N2O emission from nodules, plants were inoculated with B. japonicum USDA110 and napA and nosZ denitrification mutants. The results showed that nitrate was essential for N2O emissions and its concentration enhanced N2O fluxes showing a statistical linear correlation, being the highest N2O fluxes obtained with 4 mM nitrate. When inoculated plants grown with 4 mM nitrate were subjected to flooding, a 150- and 830-fold induction of N2O emission rates from USDA110 and nosZ nodulated roots, respectively, was observed compared to non-flooded plants, especially during long-term flooding. Under these conditions, N2O emissions from detached nodules produced by the napA mutant were significantly lower (p?<?0.05) than those produced by the wild-type strain (382 versus 1120 nmol N2O h?1 g?1 NFW, respectively). In contrast, nodules from plants inoculated with the nosZ mutant accumulated statistically higher levels of N2O compared to wild-type nodules (2522 versus nmol 1120 N2O h?1 g?1 NFW, p?<?0.05). These results demonstrate that flooding is an important environmental factor for N2O emissions from soybean nodules and that B. japonicum denitrification is involved in such emission.  相似文献   

15.
Grazing ruminants urinate and deposit N onto pastoral soils at rates up to 1,000 kg ha?1, with most of this deposited N present as urea. In urine patches, nitrous oxide (N2O) emissions can increase markedly. Soil derived CO2 fluxes can also increase due to priming effects.While N2O fluxes are affected by temperature, no studies have examined the interaction of pasture plants, urine and temperature on N2O fluxes and the associated CO2 fluxes. We postulated the response of N2O emissions to bovine urine application would be affected by plants and temperature. Dairy cattle urine was collected, labelled with 15N, and applied at 590 kg N ha?1 to a sub-tropical soil,with and without pasture plants at 11°, 19°, and 23°C. Over the experimental period (28 days), 0.2% (11°C with plants) to 2.2% (23°C with plants) of the applied N was emitted as N2O. At 11°C, plants had no effect on cumulative N2O-N fluxes, whereas at 23°C, the presence of plants significantly increased the flux, suggesting plant-derived C supply affected the N2O producing microbes. In contrast, a significant urine application effect on the cumulative CO2 flux was not affected by varying temperature from 11?C23°C or by growing plants in the soil. This study has shown that plants and their responses to temperature affect N2O emissions from ruminant urine deposition. The results have significant implications for forecasting and understanding the effect of elevated soil temperatures on N2O emissions and CO2 fluxes from grazed pasture systems.  相似文献   

16.
Restored forested wetlands reduce N loads in surface discharge through plant uptake and denitrification. While removal of reactive N reduces impact on receiving waters, it is unclear whether enhanced denitrification also enhances emissions of the greenhouse gas N2O, thus compromising the water-quality benefits of restoration. This study compares denitrification rates and N2O:N2 emission ratios from Sharkey clay soil in a mature bottomland forest to those from an adjacent cultivated site in the Lower Mississippi Alluvial Valley. Potential denitrification of forested soil was 2.4 times of cultivated soil. Using intact soil cores, denitrification rates of forested soil were 5.2, 6.6 and 2.0 times those of cultivated soil at 70, 85 and 100% water-filled pore space (WFPS), respectively. When NO3 was added, N2O emissions from forested soil were 2.2 times those of cultivated soil at 70% WFPS. At 85 and 100% WFPS, N2O emissions were not significantly different despite much greater denitrification rates in the forested soil because N2O:N2 emission ratios declined more rapidly in forested soil as WFPS increased. These findings suggest that restoration of forested wetlands to reduce NO3 in surface discharge will not contribute significantly to the atmospheric burden of N2O.  相似文献   

17.
Peatland buffer zones with sedimentation ponds are established with the intention of capturing solids and nutrients liberated in drained forestry catchments. As noted in earlier fertilization experiments, added nitrogen (N) immediately increases nitrous oxide (N2O) emissions in such buffers, and we expected the same to happen after disturbances in the catchment caused by clear-cutting, soil preparation, and ditch cleaning. We measured N2O fluxes, water table dynamics, and vegetation cover from a wetland one year before and two years after the clear-cut and buffer establishment. The low pre-harvest emissions did not increase, but N2O emissions from the sedimentation pond exceeded those from humic lakes with a high N load. In the soil profile, N2O concentrations were high, indicating a potential to produce N2O in the buffer. In one sub-site the soil N2O concentration was below the atmospheric level, which was in accordance with the high concentrations of carbon dioxide (CO2) and methane (CH4). The change in vegetation along the overland flow paths could be explained by a shift in the species thriving in wet conditions but not in those requiring higher nutrient levels. In spite of the apparent potential of soil to produce N2O, the fluxes to the atmosphere remained low. Transformation of N2O to unobserved N2 may explain some of the low N emissions, together with the low concentrations entering the buffer.  相似文献   

18.
Urban land-use change has the potential to affect local to global biogeochemical carbon (C) and nitrogen (N) cycles and associated greenhouse gas (GHG) fluxes. We conducted a meta-analysis to (1) assess the effects of urbanization-induced land-use conversion on soil nitrous oxide (N2O) and methane (CH4) fluxes, (2) quantify direct N2O emission factors (EFd) of fertilized urban soils used, for example, as lawns or forests, and (3) identify the key drivers leading to flux changes associated with urbanization. On average, urbanization increases soil N2O emissions by 153%, to 3.0 kg N ha−1 year−1, while rates of soil CH4 uptake are reduced by 50%, to 2.0 kg C ha−1 year−1. The global mean annual N2O EFd of fertilized lawns and urban forests is 1.4%, suggesting that urban soils can be regional hotspots of N2O emissions. On a global basis, conversion of land to urban greenspaces has increased soil N2O emission by 0.46 Tg N2O-N year−1 and decreased soil CH4 uptake by 0.58 Tg CH4-C year−1. Urbanization driven changes in soil N2O emission and CH4 uptake are associated with changes in soil properties (bulk density, pH, total N content, and C/N ratio), increased temperature, and management practices, especially fertilizer use. Overall, our meta-analysis shows that urbanization increases soil N2O emissions and reduces the role of soils as a sink for atmospheric CH4. These effects can be mitigated by avoiding soil compaction, reducing fertilization of lawns, and by restoring native ecosystems in urban landscapes.  相似文献   

19.
Sulfur dioxide (SO2) in the atmosphere has been demonstrated to have many adverse impacts on the environment and human health. In this study, deposition of SO2 ranging from 9.0 to 127.8 mg kg?1 with an average of 35.7 mg S kg?1 was found to substantially stimulate NO and N2O emissions from soils in the humid subtropical areas of Hainan, Fujian, Jiangxi, and Yunnan provinces of China under field conditions. Laboratory tests indicated that the stimulations were mediated biologically as the effects were not observed in sterilized soils. Acidification of soil resulting from SO2 deposition was not responsible for the stimulated NO and N2O emissions alone as the stimulation did not occur by acidifying soil with HNO3 treatment. By using the 15N tracing method, we found that the N2O emissions stimulated by SO2 deposition were from either denitrification, heterotrophic nitrification or both, but not from autotrophic nitrification. Therefore, atmospheric SO2 deposition would most likely stimulate NO and N2O emissions in acidic soils in which heterotrophic nitrification dominates NO and N2O production and waterlogged soils in which denitrification dominates NO and N2O production.  相似文献   

20.
Castaldi  Simona  Smith  Keith A. 《Plant and Soil》1998,199(2):229-238
N2O emissions from two slightly alkaline sandy soils, from arable land and a woodland, were determined in a laboratory experiment in which the soils were incubated with different sources of nitrogen, with or without glucose, and with 0, 1 and 100 mL C2H2 L-1. Large differences in the rate of N2O production were observed between the two soils and between the different N treatments. The arable soil showed very low N2O emissions derived from reduced forms of N as compared with the N2O which was produced when the soil was provided with NO 2 - or NO 3 - and a C source, suggesting a very active denitrifier population. In contrast, the woodland soil showed a very low denitrification activity and a much higher N2O production derived from the oxidation of NH 4 + and reduction of NO 2 - by some processes probably mediated by autotrophic or heterotrophic nitrifiers or dissimilatory NO 2 - reducers. In both soils, the highest N2O emissions were induced by NO 2 - addition. Those emissions were demonstrated to have a biological origin, as no significant N2O emissions were measured when the soil was autoclaved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号