首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ipomoea habeliana is an endemic, night‐flowering member of the Galápagos flora. Pollination experiments, flower‐visitor observations, nectar sampling, pollen transfer, and pollen to ovule ratio and pollen size studies were included in this project. The large, white flowers of this species set fruit via open pollination (55%), autonomous autogamy (51%), facilitated autogamy (91%), cross‐pollination (80%), diurnal open pollination (60%) and nocturnal open pollination (60%). Fruit set is pollen‐limited. Ants, beetles, crickets and hawk moths regularly visit the flowers. Ants are the most frequent visitors, but hawk moths are the only effective pollinators. Nectar is available throughout the night, but is most abundant early in the evening when hawk moth visits are most frequent. Experiments with fluorescent dust demonstrate intra‐ and inter‐plant pollen movement by hawk moths. Although this species is adapted for hawk moth pollination, it readily sets fruit via autonomous autogamy when no visits are made. Thus, it is concluded that it is facultatively xenogamous. Additional support for this conclusion is provided by the pollen to ovule ratio of 1407 and by the fact that the plants grow in a region that has few or no faithful pollinators. Conservation efforts for I. habeliana should include hand pollinations, which could significantly increase seed set. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 160 , 11–20.  相似文献   

2.
Pollination ecology of many crops is not fully known, especially in tropical and subtropical regions. Non-bee pollinators may contribute substantially to crop yield, even if they do not receive much attention. Although moth pollination has fascinated ecologists and evolutionary biologists since Darwin, crop pollination by moths has not been well investigated and experimentally examined. Hence, we explored the pollination ecology of four cucurbit crops with crepuscular or nocturnal flowers. Lagenaria siceraria (Molina) Standl., Luffa acutangula (L.) Roxb., Trichosanthes anguina L., and Trichosanthes kirilowii Maxim. all display floral traits suggestive of moth pollination, such as opening around dusk or in evenings and secreting ample dilute nectar. We demonstrated that these crops’ flowers attracted a wide range of moth species, especially hawkmoths. The assemblage of flower-visiting moths varied according to location and season. Pollination treatments and pollen load analysis confirmed the pollination of the four crops by moths, especially hawkmoths. Our results provide evidence for the value as wild pollinators for the four crops, for which domesticated bees cannot provide reliable pollination services in practice. This study lends support to the proposal to pay more attention to the value of non-bee pollinators and to leave some areas unexploited in rural landscapes for the conservation of wild pollinators, including moths.  相似文献   

3.
The pollination biology of a population of 250 Yucca elata (Liliaceae) plants was studied in southern New Mexico. Yucca elata and the prodoxid yucca moth Tegeticula yuccasella have a mutualistic association that is essential for the successful sexual reproduction of both species. However, a wide range of other invertebrate species visit flowers during the day and at night. Our aim was to quantify the role of yucca moths and other invertebrate visitors in pollination and fruit set, using manipulative field experiments. Inflorescences were bagged during the day or night (N=12 inflorescences) to restrict flower visitors to either nocturnal or diurnal groups. Yucca moths were active exclusively nocturnally during the flowering period and thus did not visit inflorescences that were unbagged during the day. None of the 4022 flowers exposed only to diurnal visitors set fruit, whereas 4.6% of the 4974 flowers exposed only to nocturnal visitors (including yucca moths) produced mature fruit. The proportion of flowers producing fruit in the latter treatment was not significantly different from unbagged control inflorescences. In a series of experimental manipulations we also determined that: (1) flowers opened at dusk and were open for two days on average, but were only receptive to pollen on the first night of opening; (2) pollen must be pushed down the stigmatic tube to affect pollination; and (3) most plants require out-cross pollination to produce fruit. The combination of these results strongly suggests that yucca moths are the only species affecting pollination in Y. elata, and that if another species was to affect pollination, it would be a rare event.  相似文献   

4.
The interaction between yucca moths (Tegeticula spp., Incurvariidae) and yuccas (Yucca spp., Agavaceae) is an obligate pollination/seed predation mutualism in which adult female yucca moths pollinate yuccas, and yucca moth larvae feed on yucca seeds. In this paper we document that individual yucca moths, which are capable of acting as mutualists, facultatively cheat by ovipositing in yucca pistils without attempting to transfer pollen. Additionally, a high proportion of flowers are unlikely to receive pollen even when pollination is attempted, because many yucca moths carry little or no pollen. The probability of occurrence of non-mutualistic behaviour is not affected by the amount of pollen a moth carries: moths with full pollen loads are just as likely to act non-mutualistically as moths carrying little or no pollen. We propose four hypotheses that could explain facultative non-mutualistic behaviour in yucca moths.Present address: Department of Biology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada  相似文献   

5.
We report a new obligate pollination mutualism involving the senita cactus, Lophocereus schottii (Cactaceae, Pachyceereae), and the senita moth, Upiga virescens (Pyralidae, Glaphyriinae) in the Sonoran Desert and discuss the evolution of specialized pollination mutualisms. L. schottii is a night-blooming, self-incompatible columnar cactus. Beginning at sunset, its flowers are visited by U. virescens females, which collect pollen on specialized abdominal scales, actively deposit pollen on flower stigmas, and oviposit a single egg on a flower petal. Larvae spend 6 days eating ovules before exiting the fruit and pupating in a cactus branch. Hand-pollination and pollinator exclusion experiments at our study site near Bahia Kino, Sonora, Mexico, revealed that fruit set in L. schottii is likely to be resource limited. About 50% of hand-outcrossed and open-pollinated senita flowers abort by day 6 after flower opening. Results of exclusion experiments indicated that senita moths accounted for 75% of open-pollinated fruit set in 1995 with two species of halictid bees accounting for the remaining fruit set. In 1996, flowers usually closed before sunrise, and senita moths accounted for at least 90% of open-pollinated fruit set. The net outcome of the senita/senita moth interaction is mutualistic, with senita larvae destroying about 30% of the seeds resulting from pollination by senita moths. Comparison of the senita system with the yucca/yucca moth mutualism reveals many similarities, including reduced nectar production, active pollination, and limited seed destruction. The independent evolution of many of the same features in the two systems suggests that a common pathway exists for the evolution of these highly specialized pollination mutualisms. Nocturnal flower opening, self-incompatible breeding systems, and resource-limited fruit production appear to be important during this evolution. Received: 19 August 1997 / Accepted: 24 November 1997  相似文献   

6.
Plant–insect interactions often are important for plant reproduction, but the outcome of these interactions may vary with environmental context. Pollinating seed predators have positive and negative effects on host plant reproduction, and the interaction outcome is predicted to vary with density or abundance of the partners. We studied the interaction between Silene stellata, an herbaceous perennial, and Hadena ectypa, its specialized pollinating seed predator. Silene stellata is only facultatively dependent upon H. ectypa for pollination because other nocturnal moth co‐pollinators are equally effective at pollen transfer. We hypothesized that for plants without conspecific neighbors, H. ectypa would have higher visitation rates compared to co‐pollinators, and the plants would experience lower levels of H. ectypa pollen deposition. We predicted similar oviposition throughout the study site but greater H. ectypa predation in the area without conspecific neighbors compared to plants embedded in a naturally high density area. We found that H. ectypa had consistently higher visitation than moth co‐pollinators in all host plant contexts. However, H. ectypa pollinator importance declined in areas with low conspecific density because of reduced pollen deposition, resulting in lower seed set. Conversely, oviposition was similar across the study site independent of host plant density. Greater likelihood of very high fruit predation combined with lower pollination by H. ectypa resulted in reduced S. stellata female reproductive success in areas with low conspecific density. Our results demonstrate local context dependency of the outcomes of pollinating seed predator interactions with conspecific host plant density within a population.  相似文献   

7.
橙花瑞香的繁殖特性研究   总被引:1,自引:0,他引:1  
瑞香属植物具有重要的药用和观赏价值,在中国资源丰富,但自然条件下低坐果率限制了该属植物的进一步开发和利用。该研究以橙花瑞香为对象,通过对其有性繁殖及传粉特性的研究,探索其自然坐果率低的原因,内容包括花部特征的测量分析,MTT染色法测定花粉活性,联苯胺-过氧化氢法测定柱头可授性,扫描电镜观察柱头、花粉的形态,传粉者观察,通过花粉胚珠比(P/O)和人工授粉实验推测橙花瑞香的繁育系统类型。结果表明:橙花瑞香的花部结构特殊,管状小花,花药两轮,雌雄蕊分离。花开后的花粉具有活性,柱头具有可授性,扫描电镜下,柱头和花粉的结构没有发育异常,且柱头上有花粉落置。橙花瑞香的传粉者主要是夜间访花的蛾类,访花频率低。P/O及人工授粉实验表明橙花瑞香的繁育系统为专性异交。橙花瑞香的坐果率非常低,自然坐果率为1.4%,人工异花授粉为23.3%,低坐果率可能是受其开花量大、异花花粉限制、资源限制以及花部结构等因素的影响。  相似文献   

8.
1. Moths are globally relevant as pollinators but nocturnal pollination remains poorly understood. Plant–pollinator interaction networks are traditionally constructed using either flower‐visitor observations or pollen‐transport detection using microscopy. Recent studies have shown the potential of DNA metabarcoding for detecting and identifying pollen‐transport interactions. However, no study has directly compared the realised observations of pollen‐transport networks between DNA metabarcoding and conventional light microscopy. 2. Using matched samples of nocturnal moths, we constructed pollen‐transport networks using two methods: light microscopy and DNA metabarcoding. Focussing on the feeding mouthparts of moths, we developed and provide reproducible methods for merging DNA metabarcoding and ecological network analysis to better understand species interactions. 3. DNA metabarcoding detected pollen on more individual moths, and detected multiple pollen types on more individuals than microscopy, although the average number of pollen types per individual was unchanged. However, after aggregating individuals of each species, metabarcoding detected more interactions per moth species. Pollen‐transport network metrics differed between methods because of variation in the ability of each to detect multiple pollen types per moth and to separate morphologically similar or related pollen. We detected unexpected but plausible moth–plant interactions with metabarcoding, revealing new detail about nocturnal pollination systems. 4. The nocturnal pollination networks observed using metabarcoding and microscopy were similar yet distinct, with implications for network ecologists. Comparisons between networks constructed using metabarcoding and traditional methods should therefore be treated with caution. Nevertheless, the potential applications of metabarcoding for studying plant–pollinator interaction networks are encouraging, especially when investigating understudied pollinators such as moths.  相似文献   

9.
Yuccas initiate far more flowers than they can mature as fruit, thereby providing opportunities for them to mature flowers of the highest quality. Flower quality in yuccas has both intrinsic and extrinsic components. Intrinsic components relate to flower morphology and inflorescence architecture. Yucca moths (Tegeticula spp., Incurvariidae), the sole pollinators and primary seed predators of most yuccas (Yucca spp., Agavaceae), mediate extrinsic components of flower quality through their ovipositions in flowers, and the quantity and quality of pollen that they transfer. In addition, intrinsic and extrinsic components interact as a function of flowering phenology and moth activity within inflorescences.
We investigated selective abscission of flowers in Y. kanabensis with respect to various combinations of intrinsic and extrinsic factors. First, we considered the effect of high and low pollen loads delivered to different subsets of flowers and in different presentation orders. In the absence of moth ovipositions, Y. kanabensis is sensitive to the amount of pollen that moths deliver and tends to retain high pollen flowers, even when all flowers receive sufficient pollen for full fertilization. However, pollen delivery sequence and the position of flowers with an inflorescence modify this high pollen effect. We then considered the interplay between high and low pollen combined with moth ovipositions and found that the number of ovipositions dominated the pollen effect. Finally, we considered number of ovipositions in conjunction with different flowers in the blooming sequence while controlling pollen levels and found that the clear effect of ovipositions on flower fate can be tempered by where the flower is in the blooming sequence.
These results have implications for the regulation of the mutualism between yuccas and yucca moths, indicating that yuccas are capable of regulating costs, retaining flowers of relative high quality and selectively abscising the rest. Yucca sensitivity to several intrinsic and extrinsic factors allows the plant to respond flexibly to the pollination environment and several species of moths.  相似文献   

10.
We investigated pollen dispersal in an obligate pollination mutualism between Yucca filamentosa and Tegeticula yuccasella. Yucca moths are the only documented pollinator of yuccas, and moth larvae feed solely on developing yucca seeds. The quality of pollination by a female moth affects larval survival because flowers receiving small amounts of pollen or self-pollen have a high abscission probability, and larvae die in abscised flowers. We tested the prediction that yucca moths primarily perform outcross pollinations by using fluorescent dye to track pollen dispersal in five populations of Y. filamentosa. Dye transfers within plants were common in all populations (mean ± 1 SE, 55 ± 3.0%), indicating that moths frequently deposit self-pollen. Distance of dye transfers ranged from 0 to 50 m, and the mean number of flowering plants between the pollen donor and recipient was 5 (median = 0), suggesting that most pollen was transferred among near neighbors. A multilocus genetic estimate of outcrossing based on seedlings matured from open-pollinated fruits at one site was 94 ± 6% (mean ± 1 SD). We discuss why moths frequently deposit self-pollen to the detriment of their offspring and compare the yucca-yucca moth interaction with other obligate pollinator mutualisms in which neither pollinator nor plant benefit from self-pollination.  相似文献   

11.
The pollination biology ofIxora platythyrsa (Rubiaceae) was studied in NW. Madagascar. The plant displayed cream-yellow, nocturnally fragrant, nectariferous, tubular and strongly protandrous flowers. These had an ixoroid secondary pollen presentation mechanism: prior to anthesis, anthers exhausted their pollen onto unripe stylar heads. From this position pollen of male-stage flowers later adhered to primarily the probosces of small visiting nocturnal noctuid and geometrid moths. — Pollen was subsequently raked off moths' probosces by receptive, copiously papillose stigmas of female-stage flowers. Principal pollination adaptation was probably to the noctuid moth subfam.Sarrothripinae.  相似文献   

12.
Limitations on pollen and resources may significantly affect plant reproduction in fragmented habitats. In this study, phenology and pollinator frequency and activity were investigated to estimate the role of pollinators in Zygophyllum xanthoxylum reproduction, and this species is ecologically important in northwest China. In addition, the relative impact of restrictive amounts of pollen and resources on the seed set per flower was evaluated. It was found that adding pollen boosted the size of the seed set per flower, but had no significant effect on the number of flowers. By contrast, the addition of resources increased flower numbers as well as had a slight impact on the seed set per flower. These results indicate the amount of available pollen is a limiting factor for reproductive success. Moreover, Apis mellifera was identified as the most effective pollinator of Z. xanthoxylum, and there were more overall pollinators and visitations in the control than in the fragmented habitats. Furthermore, the limitations in pollen were more restrictive in the fragmented area than in the control. This was due to increased pollinator visitations in the control that could ameliorate the effects of lower pollen levels. When there is a limited availability of suitable pollinators, self‐pollination is critical in fragmented habitats. Z. xanthoxylum has reproductive strategies that aid in adapting to harsh environments, including protogyny and delayed selfing.  相似文献   

13.
Knowledge of the factors that limit reproduction is critical to an understanding of plant ecology, and is particularly important for predicting population viability for threatened species. Here, we investigated the pollination biology of a globally threatened plant, Polemonium vanbruntiae, using hand-pollination experiments in four natural populations to determine the degree of pollen limitation. In addition, we investigated the mating system and extent to which plants can self-fertilize by comparing geitonogamously and autonomously self-fertilized plants with purely outcrossed and open-pollinated plants. In contrast to several of the more common species of Polemonium, we found no pollen limitation in any of the four populations of P. vanbruntiae over two years. The lack of pollen limitation was best explained by the capacity for P. vanbruntiae to both geitonogamously and autonomously self-fertilize, unlike some of its more common congeners. Geitonogamously selfed flowers set equivalent numbers of seeds when compared to purely outcrossed and open-pollinated flowers. However, autonomously selfed flowers produced significantly fewer seeds, demonstrating that pollinators play an important role as inter- and intra-plant pollen vectors in this system. Our results support the reproductive assurance hypothesis, whereby the ability to self assures fertilization for plants in small populations. Self-compatibility in Polemonium vanbruntiae may decrease extinction risk of isolated populations experiencing a stochastic pollinator pool within a restricted geographic range. In addition, a mixed-mating strategy, including the ability for clonal reproduction, may explain the ability for this rare species to persist in small, fragmented populations.  相似文献   

14.
Distyly is usually rare or not observed in species thriving on oceanic islands. The rarity of this breeding system is probably because of the difficulty of colonization for distylous plants and the paucity of pollinators on oceanic islands. However, the endemic and endangered tree Psychotria homalosperma has maintained its distylous nature in the oceanic Bonin Islands, Japan. To understand how the distylous breeding system of P. homalosperma has been maintained on these islands and to characterize the reproduction systems, we studied the pollination and reproductive biology of this species. Specifically, we observed current flower visitors and estimated their effects on plant reproduction. We also examined the floral traits and floral volatiles of P. homalosperma to infer its original pollinators, because plant–pollinator relationships in the Bonin Islands have recently been disrupted by anthropological activities. Finally, we examined the fruit set and pollen tube growth in the stigmas under hand and open pollination. Although original pollinators were presumed to be moths with long proboscises, the introduced honeybee, Apis mellifera, was the most common flower visitor. The honeybee carried pollen grains only unidirectionally, from the short‐ to long‐styled morphs, because it could not reach the hidden stigmas of the short‐styled flowers, and long‐styled flowers set fruits 1.7–38 times more than short‐styled ones. This case study indicates that the instability of pollinator fauna can cause distylous species to be rare on oceanic islands.  相似文献   

15.
Habitat fragmentation and disturbance are two of the most significant drivers of species extinctions in plant populations. The degree of impact of fragmentation on plant populations depends on the level of specificity of plant–animal interactions, as well as on the availability of suitable sites for seedling recruitment. In this study, we describe the population density and structure, pollen limitation and reproductive success of the endangered tropical orchid Myrmecophila christinae, an epiphytic species with a specialized pollination system. We surveyed a total of 14 populations located in a fragmented landscape. Seedling density was related to habitat disturbance and host plant density; while density of juveniles was related to density of adults. Adult and total individual densities were related to habitat affectation. We also found that fragments <1 ha had significantly fewer seedlings, as well as an over‐representation of large adults. On the other hand, fruit production was higher in fragments >10 ha, and fruit set was significantly lower in highly disturbed fragments. Hand pollination experiments showed that M. christinae was pollen limited in all the studied populations, suggesting that pollen limitation is unrelated to habitat disturbance. Overall, our results suggest that fragmentation has affected key demographic features of M. christinae, including reproduction and recruitment.  相似文献   

16.
Morphological adaptations to sphingophily and pollination by moths was studied in 5 South American Habenaria species. For H. gourlieana and H. hieronymi direct evidence of hawkmoth (Agrius cingulatus and Manduca sexta) and settling moth (Rachiplusia nu) pollination, respectively, by hemipollinaria attachment on the eyes, is presented. In two other species (H. paucofilia, H. rupicola) pollination by settling moths and eye attachment of the hemipollinaria can be inferred by indirect evidence (placement of scales and massulae on the flowers) and by flower structure. For the fifth species (H. montevidensis) pollination by small moths or mosquitoes with hemipollinaria attachment on the proboscis is postulated. A comparative study in floral features revealed clear morphological divergence between sphingophilous and phalaenophilous species. In addition to deeper spurs the former have slender, exerted, and upturned petal lobes (acting as mechanical guide to the hovering visitors), a much developed median rostellar lobe (acting as deflecting surface of the hawkmoths towards the viscidia), flexible and sinuous hemipollinarium caudicles (appropriate for frontal strikes against the stigma when hemipollinaria are brought by the hawkmoths dangling against the flower). Male efficiency was compared between 4 species with overlapping flowering time in the same area. Male efficiency factors were unexpectedly low in all species. Only in one species (H. hieronymi) each pollen donation accounted for more than one pollination. H. gourlieana is part of a more or less rich sphingophilous flora interacting with the same two long-tongued hawkmoth species. Interspecific competition for pollen placement on the pollinator's body surface is probably low on account of different pollination mechanisms.  相似文献   

17.
Nocturnal moths are important pollinators of plants. The clover cutworm, Hadula trifolii, is a long‐distance migratory nocturnal moth. Although the larvae of H. trifolii are polyphagous pests of many cultivated crops in Asia and Europe, the plant species pollinated by the adult are unclear. Pollen species that were attached to individual migrating moths of H. trifolii were identified based on pollen morphology and DNA to determine their host plants, geographic origin, and pollination areas. The moths were collected on their seasonal migration pathway at a small island, namely Beihuang, in the center of the Bohai Sea of China during 2014 to 2018. Pollen was detected on 28.60% of the female moths and 29.02% of the male, mainly on the proboscis, rarely on compound eyes and antennae. At least 92 species of pollen from 42 plant families, mainly from Asteraceae, Amaranthaceae, and Pinaceae, distributed throughout China were found on the test moths. Migratory H. trifolii moths visited herbaceous plants more than woody plants. Pollen of Macadamina integrifolia or M. tetraphylla was found on moths early in the migratory season. These two species are distributed in Guangdong, Yunnan, and Taiwan provinces in China, indicating that migratory moths probably traveled about 2000 km from southern China to the Beihuang Island in northern China. Here, by identifying plant species using pollen, we gained a better understanding of the interactions between H. trifolii moths and a wide range of host plants in China. This work provides valuable and unique information on the geographical origin and pollination regions for H. trifolii moths.  相似文献   

18.
Althoff DM  Segraves KA  Sparks JP 《Oecologia》2004,140(2):321-327
Yucca moths are most well known for their obligate pollination mutualism with yuccas, where pollinator moths provide yuccas with pollen and, in exchange, the moth larvae feed on a subset of the developing yucca seeds. The pollinators, however, comprise only two of the three genera of yucca moths. Members of the third genus, Prodoxus, are the bogus yucca moths and are sister to the pollinator moths. Adult Prodoxus lack the specialized mouthparts used for pollination and the larvae feed on plant tissues other than seeds. Prodoxus larvae feed within the same plants as pollinator larvae and have the potential to influence yucca reproductive success directly by drawing resources away from flowers and fruit, or indirectly by modifying the costs of the mutualism with pollinators. We examined the interaction between the scape-feeding bogus yucca moth, Prodoxus decipiens, and one of its yucca hosts, Yucca filamentosa, by comparing female reproductive success of plants with and without moth larvae. We determined reproductive success by measuring a set of common reproductive traits such as flowering characteristics, seed set, and seed germination. In addition, we also quantified the percent total nitrogen in the seeds to determine whether the presence of larvae could potentially reduce seed quality. Flowering characteristics, seed set, and seed germination were not significantly different between plants with and without bogus yucca moth larvae. In contrast, the percent total nitrogen content of seeds was significantly lower in plants with P. decipiens larvae, and nitrogen content was negatively correlated with the number of larvae feeding within the inflorescence scape. Surveys of percent total nitrogen at three time periods during the flowering and fruiting of Y. filamentosa also showed that larval feeding decreased the amount of nitrogen in fruit tissue. Taken together, the results suggest that although P. decipiens influences nitrogen distribution in Y. filamentosa, this physiological effect does not appear to impact the female components of reproductive success.  相似文献   

19.
We investigated the reproductive biology, including the floral biology, pollination biology, breeding system and reproductive success, of Pachira aquatica, a native and dominant tropical tree of fresh water wetlands, throughout the coastal plain of the Gulf of Mexico. The flowers present nocturnal anthesis, copious nectar production and sugar concentration (range 18–23%) suitable for nocturnal visitors such as bats and sphingid moths. The main nocturnal visitors were bats and sphingid moths while bees were the main diurnal visitors. There were no differences in legitimate visitation rates among bats, moths and honey bees. Bats and honey bees fed mainly on pollen while moths fed on nectar, suggesting resource partitioning. Eight species of bats carried pollen but Leptonycteris yerbabuenae is probably the most effective pollinator due to its higher pollen loads. The sphingid moths Manduca rustica, Cocytius duponchel and Eumorpha satellitia were recorded visiting flowers. Hand pollination experiments indicated a predominant outcrossing breeding system. Open pollination experiments resulted in a null fruit set, indicating pollen limitation; however, mean reproductive success, according to a seasonal census, was 17 ± 3%; these contrasting results could be explained by the seasonal availability of pollinators. We conclude that P. aquatica is an outcrossing species with a pollination system originally specialized for bats and sphingid moths, which could be driven to a multimodal pollination system due to the introduction of honey bees to tropical America.  相似文献   

20.
Interspecific interactions can affect population dynamics and the evolution of species traits by altering demographic rates such as reproduction and survival. The influence of mutualism on population processes is thought to depend on both the benefits and costs of the interaction. However, few studies have explicitly quantified both benefits and costs in terms of demographic rates; furthermore there has been little consideration as to how benefits and costs depend on the demographic effects of factors extrinsic to the interaction. I studied how benefits (pollination) and costs (larval fruit consumption) of pollinating seed-consumers (senita moths) affect the reproduction of senita cacti and how these effects may rely on extrinsic water limitation for reproduction. Fruit initiation was not limited by moth pollination, but survival of initiated fruit increased when moth eggs were removed from flowers. Watered cacti produced more flowers and initiated more fruit from hand-pollinated flowers than did unwatered cacti, but fruit initiation remained low despite excess pollen. Even though water, pollination and larvae each affected a component of cactus reproduction, when all of these factors were included in a factorial experiment, pollination and water determined rates of reproduction. Counter-intuitively, larval fruit consumption had a negligible effect on cactus reproduction. By quantifying both benefits and costs of mutualism in terms of demographic rates, this study demonstrates that benefits and costs can be differentially influential to population processes and that interpretation of their influences can depend on demographic effects of factors extrinsic to the interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号