首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
Nonnative plants alter the composition of native plant communities, with concomitant effects on arthropods. However, plant invasions may not be the only disturbance affecting native communities, and multiple disturbances can have compounding effects. We assessed the effects of invasion and drought on plant and arthropod communities by comparing grasslands dominated by nonnative Old World bluestem grasses (OWBs, Dichanthium annulatum) to grasslands dominated by native plants during a period of decreasing drought severity (2011–2013). Native plant communities had more species of plants and arthropods (/m2) than areas dominated by OWBs during extreme drought, but richness was comparable as drought severity decreased. Abundance of arthropods was greater in native plant communities than in OWB communities during extreme drought, but OWB communities had more arthropods during moderate and non-drought conditions. We observed a shift in the arthropod community from one dominated by detritivores to one dominated by herbivores following plant invasion; the magnitude of this shift increased as drought severity decreased. Both plant communities were dominated by nonnative arthropods. A nonnative leafhopper (Balclutha rubrostriata) and native mites (Mochlozetidae) dominated OWB communities as drought severity decreased, and OWBs may serve as refugia for both taxa. Nonnative woodlice (Armadillidium vulgare) dominated native plant communities during extreme and non-drought conditions and abundance of this species may be associated with an increase in plant litter and available nutrients. Given the importance of arthropods for ecosystem services, incorporating arthropod data into conservation studies may demonstrate how changes in arthropod diversity alter ecosystem function where nonnative plants are dominant.  相似文献   

2.
Invasive species significantly contribute to biological change and threaten biodiversity, with a growing body of evidence that plant invasions affect higher trophic levels. We explored the relative importance of plant invasion and forest structure on aerial arthropod abundance, diversity, and composition on Robinson Crusoe Island, Chile. We used flight intercept traps to sample aerial arthropods within distinct canopy strata of native and invaded forests over 3-mo periods in 2006 and 2007. Arthropod abundance and diversity were higher in native than invaded forest, and arthropod communities were distinct between forest types. In both forest types, arthropod abundance was highest in the lower canopy, and canopy strata exhibited some differences in arthropod community composition. Several morphospecies were distinctly associated with each forest type. The strong differences in aerial arthropod communities associated with the invasion of native forest by non-native plants may affect other trophic levels, such as insectivorous birds. Steps to stop invasive plant spread and to restore native forest composition and structure are needed to safeguard the integrity of native communities, from plants to higher-level consumers.  相似文献   

3.
The arthropod communities are influenced by both local conditions and features of the surrounding landscape. Landscape complexity and stand factors may both influence arthropod communities in poplar forests, but the multiscale effects of these factors on poplar defoliators and natural enemies are still poorly understood. We collected poplar arthropods at 30 sampling sites within five forest landscapes in Xinjiang, China, and assessed whether landscape complexity and stand factors influence species abundance and diversity of poplar arthropods. Landscape complexity was quantified by several independent metrics of landscape composition, configuration, and connectivity at three spatial scales. We also determined the most powerful explanatory variables and the scale effect of each arthropod. Results found that landscape complexity and stand factors had different effects on different poplar arthropod communities. Landscape complexity promoted natural enemies at different spatial scales, but it inhibited the population of poplar defoliators at the scale of 200 m. Specifically, the abundance and diversity of all defoliators decreased with increasing proportion of nonhost plants. Landscape diversity only had a negative effect on defoliator abundance. The shape complexity of habitat patches increased the abundance of carabid beetles but reduced the abundance of green leafhoppers and migratory locusts. The abundance and diversity of predators increased with increasing structural connectivity of forest landscape. Additionally, both the abundance and diversity of all defoliators were positively correlated with the average height of herbaceous plants. Diversity of all defoliators increased with increasing size of host trees. The distance from sampling site to the nearest village positively influenced the abundance and diversity of all predators. Arthropod abundance and diversity in poplar forests were driven by stand factors and landscape complexity. Therefore, maintaining complex shape and structural connectivity of habitat patches and keeping poplar stands away from the village are crucial for management of forest landscape to enhance natural enemies. And in order to reduce the abundance of defoliators in poplar forest, the diversity of surrounding habitat types should be promoted within 200 m radii.  相似文献   

4.
Nonnative ungulates can alter the structure and function of forest ecosystems. Feral pigs in particular pose a substantial threat to native plant communities throughout their global range. Hawaiian forests are exceptionally vulnerable to feral pig activity because native vegetation evolved in the absence of large mammalian herbivores. A common approach for conserving and restoring forests in Hawaii is fencing and removal of feral pigs. The extent of native plant community recovery and nonnative plant invasion following pig removal, however, is largely unknown. Our objective was to quantify changes in native and nonnative understory vegetation over a 16 yr period in adjacent fenced (pig‐free) vs. unfenced (pig‐present) Hawaiian montane wet forest. Native and nonnative understory vegetation responded strongly to feral pig removal. Density of native woody plants rooted in mineral soil increased sixfold in pig‐free sites over 16 yr, whereas establishment was almost exclusively restricted to epiphytes in pig‐present sites. Stem density of young tree ferns increased significantly (51.2%) in pig‐free, but not pig‐present sites. Herbaceous cover decreased over time in pig‐present sites (67.9%). In both treatments, number of species remained constant and native woody plant establishment was limited to commonly occurring species. The nonnative invasive shrub, Psidium cattleianum, responded positively to release from pig disturbance with a fivefold increase in density in pig‐free sites. These results suggest that while common native understory plants recover within 16 yr of pig removal, control of nonnative plants and outplanting of rarer native species are necessary components of sustainable conservation and restoration efforts in these forests.  相似文献   

5.
Vegetation complexity is characterized by two major traits, i.e., plant chemical and plant structural complexity. Plant species diversity strongly determines these traits. Furthermore, plant structures affect microclimatic conditions, which in turn influence the emission and dispersion of plant volatiles (e.g., chemical complexity). Plant volatile chemical complexity may significantly affect orientation of herbivorous and carnivorous arthropods. Therefore, the way in which plant chemical and plant structural complexity act “in concert” may influence foraging and mating success of arthropods, and thus, finally, community composition. This review emphasizes an integrative view on the relationship between plant species diversity, plant structural complexity, plant volatiles (chemical complexity) and their effects on arthropods. Three new hypotheses are raised, which predict possible relations between plant volatile complexity and plant species diversity: (1) saturation-, (2) step-by-step, (3) incoherence-hypothesis. We conclude that arthropod orientation in natural environments is strongly determined by the relationship between plant volatile diversity and plant species diversity. Furthermore, we emphasize that structural complexity of the vegetation affects plant volatile diversity and thus, arthropod orientation.We review available information on how insects actually respond to complexity during olfactory and visual search and ask for both laboratory and field studies to further unravel the mechanisms of interactions between vegetation traits and their impact on arthropod orientation.  相似文献   

6.
We study how endemic, native and introduced arthropod species richness, abundance, diversity and community composition vary between four different habitat types (native forest, exotic forest of Cryptomeria japonica, semi-natural pasture and intensive pasture) and how arthropod richness and abundance change with increasing distance from the native forest in adjacent habitat types in Santa Maria Island, the Azores. Arthropods were sampled in four 150 m long transects in each habitat type. Arthropods were identified to species level and classified as Azorean endemic, single-island endemic (SIE), native, or introduced. The native forest had the highest values for species richness of Azorean endemics, SIEs and natives; and also had highest values of Azorean endemic diversity (Fisher’s alpha). In contrast, the intensive pasture had the lowest values for endemic and native species richness and diversity, but the highest values of total arthropod abundance and introduced species richness and diversity. Arthropod community composition was significantly different between the four habitat types. In the semi-natural pasture, the number of SIE species decreased with increasing distance from the native forest, and in the exotic forest the abundance of both Azorean endemics and SIEs decreased with increasing distance from the native forest. There is a gradient of decreasing arthropod richness and abundance from the native forest to the intensive pasture. Although this study demonstrates the important role of the native forest in arthropod conservation in the Azores, it also shows that unmanaged exotic forests have provided alternative habitat suitable for some native species of forest specialist arthropods, particularly saproxylic beetles.  相似文献   

7.
Some understory insectivorous birds manage to persist in tropical forest fragments despite significant habitat loss and forest fragmentation. Their persistence has been related to arthropod biomass. In addition, forest structure has been used as a proxy to estimate prey availability for understory birds and for calculating prey abundance. We used arthropod biomass and forest structural variables (leaf area index [LAI] and aerial leaf litter biomass) to explain the abundance of White‐breasted Wood‐Wrens (Henicorhina leucosticta), tropical understory insectivorous birds, in six forests in the Caribbean lowlands of Costa Rica. To estimate bird abundance, we performed point counts (100‐m radius) in two old‐growth forests, two second‐growth forests, and two selectively logged forests. Arthropod abundance was the best predictor of wood‐wren abundance (wi = 0.75). Wood‐wren abundance increased as the number of arthropods increased, and the estimated range of bird abundance obtained from the model varied from 0.51 (0.28 – 0.93 [95%CI]) to 3.70 (1.68 – 5.20 [95%CI]) within sites. LAI was positively correlated to prey abundance (P = 0.01), and explained part of the variation in wood‐wren abundance. In forests with high LAI, arthropods have more aerial leaf litter as potential habitat so more potential prey are available for wood‐wrens. Forests with a greater abundance of aerial leaf litter arthropods were more likely to sustain higher densities of wood‐wrens in a fragmented tropical landscape.  相似文献   

8.
Abstract: Northern bobwhite (Colinus virginianus) populations have experienced severe declines for several decades, and declines have been particularly precipitous in the southern United States. These declines are partially attributable to large-scale conversions of potential habitat to short-rotation pine (Pinus spp.) forests managed for wood fiber production and fire exclusion in pine-dominated landscapes. We used standard arthropod sampling techniques, human-imprinted bobwhite chicks, and vegetation response to evaluate effects of different understory vegetation management practices on brood habitat quality within a commercially managed pine forest in Louisiana, USA, during 2002–2005. Specifically, we evaluated effects of mowing, prescribed fire during the growing season, prescribed fire in combination with imazapyr application, and no vegetation management on arthropod abundance and diversity, vegetation response, and the probability of bobwhite chicks successfully capturing an arthropod. Bobwhite chicks were more successful at capturing arthropods, and arthropod abundance and diversity were greatest, in plant communities managed using prescribed fire and imazapyr. Forest stands managed using a combination of fire and imazapyr were managed primarily to benefit the federally endangered red-cockaded woodpecker (Picoides borealis; RCW). Our findings suggest that management directed toward improving forest condition for RCWs improves habitat quality for brooding bobwhites. However, bobwhite chicks in our study area were less successful at capturing arthropods than were chicks in other studies in the southeastern United States. Brood-rearing habitat in pine forests similar to those we studied may be of generally poor quality, and could be related to precipitous declines of bobwhites in the West Gulf Coastal Plain. Managers should recognize that creating high-quality brood habitat in forests similar to those we studied will require more intensive management of understory vegetation than we studied.  相似文献   

9.
Understanding the mechanisms regulating the diversity and distribution of arthropods is essential to understanding food web interactions and ecosystem functioning. Local arthropod diversity is known to be linked to features of surrounding landscapes, including the area of human‐developed land. Yet, how such landscape moderation of diversity affects processes within local sites remains understudied. We report on a study that 1) measured the impacts of human development surrounding old‐field habitats of arthropods on arthropod food web structure within those habitats and 2) determined if these shifts were associated with cascading impacts on the plant community. We sampled the arthropod community in 16 old‐fields that span an urban‐rural gradient throughout southern New England, USA. In each field, we also established paired mesocosms enclosing vegetation, one of which allowed arthropod herbivory while the other excluded such interactions, to isolate impacts of arthropod herbivory on three functional groups of plants: grasses, goldenrod and non‐goldenrod forbs. Biomass of both herbivorous and predatory arthropods were positively related to the proportion of natural area surrounding a field early in the growing season (June). This relationship persisted later into the season for predatory arthropods (through July), but not for herbivorous arthropods. We found no evidence that the biomass of predators was related to the abundance of herbivorous arthropods in a field; or that biomass of herbivores was correlated to change in plant biomass between the two types of mesocosms. We did, however, find that in fields with low predator abundance there was greater herbivory on grasses (nutritious host), but that in high predator fields goldenrod was increasingly impacted (safe host), as is predicted by past work in old‐field ecosystems. The findings support the generalizability of landscape moderated biodiversity to non‐agricultural systems and suggests that observed shifts in food webs have implications for community and ecosystem dynamics.  相似文献   

10.
Dryland forests, those characterised as having low precipitation and soil nutrients, account for over a quarter of forests globally. Increasing their productivity often relies on irrigation and fertilisation, but the impacts on the wider habitat are largely unknown. Understory invertebrates, in particular, play key roles in forest systems (e.g. nutrient cycling), but their responses to dryland forest management practices are untested. We investigated the impacts of irrigation, fertilisation and a combination of both on soil chemistry, understory vegetation, tree growth and understory arthropod communities in a Eucalyptus plantation to establish linkages between dryland management and ecosystem responses. Fertilisation increased all soil nutrients (N, NO3N, P and K) with similar effects on the chemical composition of understory grasses. Fertilisation also caused declines in foliar silicon concentrations, an important herbivore defence in grasses. Irrigation increased growth of both understory plants (+90%) and trees (+68%). Irrigation increased the abundance of ground‐dwelling arthropods by over 480% relative to control plots, but depressed higher level taxon arthropod diversity by 15%, declining by a further 7% (?22%) in combined treatment plots. Irrigation also caused a surge in the abundance of Collembola (+1300%) and Isopoda (+323%). Fertilisation drove increases in the abundance of Isopoda (+196%) and Diptera (+63%), whereas fertilisation combined with irrigation increased populations of Thysanoptera (+166%) and Acarina (+328%). Airborne arthropods were less affected, but fertilisation increased the abundance of Apocrita (+95%) and depressed populations of Thysanoptera (?77%). Diptera abundance was positively related to understory vegetation growth, whereas the abundance of other groups (Collembola, Isopoda, Thysanoptera and Acarina) correlated positively with tree growth. We proposed that the large increases in populations of key detritivores, Collembola and Isopoda, were linked to increased leaf litter from enhanced tree growth in irrigated and combined treatment plots. Our findings suggest that dryland management can increase both plant productivity and abundance of arthropods, but cause arthropod diversity at the higher taxon level to decline overall.  相似文献   

11.
Both arthropods and large grazing herbivores are important components and drivers of biodiversity in grassland ecosystems, but a synthesis of how arthropod diversity is affected by large herbivores has been largely missing. To fill this gap, we conducted a literature search, which yielded 141 studies on this topic of which 24 simultaneously investigated plant and arthropod diversity. Using the data from these 24 studies, we compared the responses of plant and arthropod diversity to an increase in grazing intensity. This quantitative assessment showed no overall significant effect of increasing grazing intensity on plant diversity, while arthropod diversity was generally negatively affected. To understand these negative effects, we explored the mechanisms by which large herbivores affect arthropod communities: direct effects, changes in vegetation structure, changes in plant community composition, changes in soil conditions, and cascading effects within the arthropod interaction web. We identify three main factors determining the effects of large herbivores on arthropod diversity: (i) unintentional predation and increased disturbance, (ii) decreases in total resource abundance for arthropods (biomass) and (iii) changes in plant diversity, vegetation structure and abiotic conditions. In general, heterogeneity in vegetation structure and abiotic conditions increases at intermediate grazing intensity, but declines at both low and high grazing intensity. We conclude that large herbivores can only increase arthropod diversity if they cause an increase in (a)biotic heterogeneity, and then only if this increase is large enough to compensate for the loss of total resource abundance and the increased mortality rate. This is expected to occur only at low herbivore densities or with spatio‐temporal variation in herbivore densities. As we demonstrate that arthropod diversity is often more negatively affected by grazing than plant diversity, we strongly recommend considering the specific requirements of arthropods when applying grazing management and to include arthropods in monitoring schemes. Conservation strategies aiming at maximizing heterogeneity, including regulation of herbivore densities (through human interventions or top‐down control), maintenance of different types of management in close proximity and rotational grazing regimes, are the most promising options to conserve arthropod diversity.  相似文献   

12.
Many contemporary landscapes have vast areas of production land-uses within landscape mosaics, which may impact species dispersal and occurrence. Here, we determined the extent to which commercial exotic plantation forests affect arthropod diversity associated with natural Afrotemperate forests in the southern Cape Afrotemperate landscape mosaic, South Africa. Natural forests and fynbos vegetation naturally coexist here, with the addition of exotic plantation forests to form a heterogeneous landscape. Epigaeic arthropods were collected by means of pitfall trapping at stations along transects from inside natural Afrotemperate forest, across the edge and into the surrounding land use, which included natural fynbos vegetation, mature forestry plantation blocks (Pinus radiata) and areas where plantations have been clear-felled. Stations were set at 5, 10, 20, 30 and 50 m to both sides of the forest edge with the addition of 100 m stations situated in the natural forest. Arthropod assemblages were distinct in all land-use types. Natural edge effect between forest and fynbos, as measured by arthropod compositional changes, was 20 m into natural forests, yet when bordered by plantations this edge increased up to 30 m into the forest. Once plantations were clear-felled, edge effects increased up to 50 m into natural forests. Responses in terms of assemblage composition and species richness were however taxon specific. Results show that (1) pine plantations are not alternative habitat for native Afrotemperate forest arthropods, (2) there were stark changes in arthropod assemblage composition at edges between these land-use types and (3) that the effects of timber plantation practices (re: clear-felling) also penetrate deep into surrounding natural forests and need to be considered in regional landscape planning. The need for an effective rehabilitation strategy of clear-felled areas is identified as key priority for bordering natural forests. Ongoing monitoring in both the disturbed area and the adjoining natural forest should be undertaken to ensure sufficient recovery.  相似文献   

13.
Tropical rain forest fragmentation affects biotic interactions in distinct ways. Little is known, however, about how fragmentation affects animal trophic guilds and their patterns of interactions with host plants. In this study, we analyzed changes in biotic interactions in forest fragments by using a multitrophic approach. For this, we classified arthropods associated with Heliconia aurantiaca herbs into broad trophic guilds (omnivores, herbivores and predators) and assessed the topological structure of intrapopulation plant-arthropod networks in fragments and continuous forests. Habitat type influenced arthropod species abundance, diversity and composition with greater abundance in fragments but greater diversity in continuous forest. According to trophic guilds, coleopteran herbivores were more abundant in continuous forest and overall omnivores in fragments. Continuous forest showed a greater diversity of interactions than fragments. Only in fragments, however, did the arthropod community associated with H aurantiaca show a nested structure, suggesting novel and/or opportunistic host-arthropod associations. Plants, omnivores and predators contributed more to nestedness than herbivores. Therefore, Heliconia-arthropod network properties do not appear to be maintained in fragments mainly caused by the decrease of herbivores. Our study contributes to the understanding of the impact of fragmentation on the structure and dynamics of multitrophic arthropod communities associated with a particular plant species of the highly biodiverse tropical forests. Nevertheless, further replication of study sites is needed to strengthen the conclusion that forest fragmentation negatively affects arthropod assemblages.  相似文献   

14.
Arthropods play a key role in the functioning of forest ecosystems and contribute to biological diversity. However, the influence of current silvicultural practices on arthropod communities is little known in jack pine (Pinus banksiana) forests, a forest type comprising a major portion of the Canadian boreal forest. In this study, the effects of silvicultural treatments on arthropod communities were compared to identify those treatments that minimize ecological impacts on arthropods. The influence of harvesting techniques and mechanical site preparations on insect family richness and abundance of arthropods (total, by orders and by trophic groups) was examined in young (three-year-old) jack pine plantations of northern Ontario. Each of the following treatments were conducted in three plots: (1) tree length harvest and trenching; (2) full tree harvest and trenching; (3) full tree harvest and blading; and (4) full tree harvest and no site preparation. Arthropods were collected using sweepnets and pitfall traps over two years. Blading significantly reduced insect family richness, the total abundance of arthropods, abundance of Orthoptera, Heteroptera, Hymenoptera, Diptera, insect larvae, and plant feeders when compared to the other treatments. The use of either full tree or tree length harvesting had similar short-term effects on family richness and the abundance of arthropods. Arthropod diversity declined with increasing post-harvest site disturbance. These results suggest that arthropod communities in the understory and on the ground are reduced most on sites mechanically prepared by blading, but are similar under conditions immediately following either full tree or tree length harvesting. The implications for regenerating jack pine in the boreal forest are discussed.  相似文献   

15.
Vincetoxicum rossicum is an invasive alien vine introduced from Europe in the late 1800s that is now an emerging pest in upstate New York and eastern Ontario. The plant can form dense, monotypic stands in woodlots and old fields, and may be displacing native vegetation. As a consequence, V. rossicum may be displacing arthropod fauna associated with native vegetation. In June and August 2002, we sampled V. rossicum and three other old field plants (Asclepias syriaca, Solidago altissima, and mixed graminoids) for arthropods using pitfall traps and by sampling individual plants. A total of 7868 arthropods were counted on plants and 18,195 individuals were trapped; these were sorted by feeding guild. Overall, stands of V. rossicum supported the lowest abundance of both stem- and ground-dwelling individuals, as well as the lowest number of arthropods in most phytophagous guilds. Some feeding guilds are entirely absent: V. rossicum stands are completely devoid of gall-makers and miners, and support few pollinators. This study suggests that arthropod diversity will decline if V. rossicum displaces native old-field plants.  相似文献   

16.
Abstract. The Argentine Chaco is a mosaic of grassland and open forest habitats maintained by natural disturbance activities such as fire. Since the introduction of domestic livestock and other human activities, the balance of this mosaic has been significantly altered, both in plant species and structural composition. This study focuses on the impact of such changes on the diversity of ground-dwelling arthropods within semi-arid Chaco forest. Quantitative measures of habitat structure and arthropod diversity were taken in forest areas previously subjected to grazing, logging and ploughing. Results indicated that arthropod diversity was smaller on sites with reduced structural complexity, with marked changes in arthropod family composition. The habitat components relating to plant architectural and vertical diversity were particularly influential on arthropod diversity. The guild size ratio of predatory to non-predatory arthropods also differed significantly between habitats suggesting a change in the resource base available to some groups. The latter suggests a shift in the functional organisation of the forest ecosystem which could have important repercussions for the diversity of other trophic levels.  相似文献   

17.
施用有机肥和林下抚育(植被去除)是人工林重要的管理措施;土壤节肢动物物种丰富,是土壤生态系统的重要组成成分,对环境变化敏感,可以作为森林管理的指示生物。人工林植被去除和施肥管理影响土壤性质、资源输入量及微生物多样性,从而影响土壤节肢动物多样性,但是相关研究还十分缺乏。以沿海地区杨树人工林为对象,研究了施用有机肥和林下植被去除对土壤节肢动物的数量和多样性的影响。结果表明,有机肥和植被去除管理对不同土壤层土壤节肢动物的数量和多样性指标影响不一致。有机肥增加0-10 cm深度土壤节肢动物总数量、蜱螨目数量,降低土壤节肢动物群落物种丰富度、均匀度和Shannon多样性指数;植被去除减少0-10 cm深度土壤节肢动物总数量和弹尾目数量,降低均匀度指数。两种处理对10-20 cm深度土壤节肢动物群落的数量和各多样性指标影响不显著。总体来说(0-20 cm),有机肥处理土壤节肢动物的数量显著增加,优势类群前气门亚目(Prostigmata)的数量增长为对照的4倍,但是土壤节肢动物群落的均匀度和Shannon多样性指数显著降低,这可能是土壤节肢动物优势类群前气门亚目密度急剧增加,而物种丰富度没有变化所导致;此外,施用有机肥增加了土壤有机质、总氮、有效磷的含量,降低土壤pH值,并且与前气门亚目密度显著相关。林下植被去除没有影响0-20 cm深度土壤节肢动物的数量和各多样性指标。  相似文献   

18.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

19.
The canopy of forests has been considered “the last biotic frontier,” and study of its elements is very important in explaining the global functionality in ecosystems. Epiphytic plants and arthropods are essential elements in canopy habitats, and their relationships have been studied in order to understand the high diversity in tropical forests. Nevertheless, there are few studies on this development in temperate forests. The arthropod community was studied during the rainy and dry seasons at two altitudes, and a total of 240 T. violacea plants of three sizes were collected from Abies religiosa and Quercus spp. host trees. A total of 163,043 arthropods were collected and about 200 morphospecies identified. The highest abundance was obtained during the dry season, while high diversity was found during the rainy season. There was a significant effect of plant size, host trees and collecting season on abundance and diversity, and there were seasonal variations in community composition. The community hosted on A. religiosa epiphytes showed higher abundance and density than that of Quercus.  相似文献   

20.
Trees as templates for tropical litter arthropod diversity   总被引:2,自引:0,他引:2  
Increased tree species diversity in the tropics is associated with even greater herbivore diversity, but few tests of tree effects on litter arthropod diversity exist. We studied whether tree species influence patchiness in diversity and abundance of three common soil arthropod taxa (ants, gamasid mites, and oribatid mites) in a Panama forest. The tree specialization hypothesis proposes that tree-driven habitat heterogeneity maintains litter arthropod diversity. We tested whether tree species differed in resource quality and quantity of their leaf litter and whether more heterogeneous litter supports more arthropod species. Alternatively, the abundance–extinction hypothesis states that arthropod diversity increases with arthropod abundance, which in turn tracks resource quantity (e.g., litter depth). We found little support for the hypothesis that tropical trees are templates for litter arthropod diversity. Ten tree species differed in litter depth, chemistry, and structural variability. However, the extent of specialization of invertebrates on particular tree taxa was low and the more heterogeneous litter between trees failed to support higher arthropod diversity. Furthermore, arthropod diversity did not track abundance or litter depth. The lack of association between tree species and litter arthropods suggests that factors other than tree species diversity may better explain the high arthropod diversity in tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号