首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation occurs when populations diverge and become reproductively isolated from each other. Natural selection is commonly accepted to play a large role in this process, and it has been widely assumed that reproductive isolation often results as a by‐product of divergence driven by adaptation in allopatry. When such populations come into secondary contact, reinforcement can act to strengthen reproductive isolation, but the frequency and importance of this process are still unknown. Here, we explored genomic signatures of selection in allopatry and sympatry for loci associated with reproductive isolation using a natural primate hybrid zone. By analysing reduced‐representation sequencing data, we quantified admixture and population structure across a howler monkey hybrid zone and examined the relationship between locus‐specific differentiation and introgression. We detected extensive admixture that was mostly limited to the narrow contact zone. Loci with reduced introgression into the heterospecific genomic background (the pattern expected for loci associated with reproductive isolation due to selection against hybrids) were significantly more differentiated between allopatric parental populations than loci with neutral and increased introgression, supporting the hypothesis that reproductive isolation is a by‐product of divergence in allopatry. Further, loci with reduced introgression showed greater differentiation in sympatry than in allopatry, suggesting a role for reinforcement. Thus, our results reflect multiple forms of selection that have shaped reproductive isolation in this system. We conclude that reproductive isolation may have initially been driven by divergence in allopatry, but later reinforced by divergent selection in sympatry.  相似文献   

2.
Nosil P  Sandoval CP 《PloS one》2008,3(4):e1907
The degree of phenotypic divergence and reproductive isolation between taxon pairs can vary quantitatively, and often increases as evolutionary divergence proceeds through various stages, from polymorphism to population differentiation, ecotype and race formation, speciation, and post-speciational divergence. Although divergent natural selection promotes divergence, it does not always result in strong differentiation. For example, divergent selection can fail to complete speciation, and distinct species pairs sometimes collapse ('speciation in reverse'). Widely-discussed explanations for this variability concern genetic architecture, and the geographic arrangement of populations. A less-explored possibility is that the degree of phenotypic and reproductive divergence between taxon pairs is positively related to the number of ecological niche dimensions (i.e., traits) subject to divergent selection. Some data supporting this idea stem from laboratory experimental evolution studies using Drosophila, but tests from nature are lacking. Here we report results from manipulative field experiments in natural populations of herbivorous Timema stick insects that are consistent with this 'niche dimensionality' hypothesis. In such insects, divergent selection between host plants might occur for cryptic colouration (camouflage to evade visual predation), physiology (to detoxify plant chemicals), or both of these niche dimensions. We show that divergent selection on the single niche dimension of cryptic colouration can result in ecotype formation and intermediate levels of phenotypic and reproductive divergence between populations feeding on different hosts. However, greater divergence between a species pair involved divergent selection on both niche dimensions. Although further replication of the trends reported here is required, the results suggest that dimensionality of selection may complement genetic and geographic explanations for the degree of diversification in nature.  相似文献   

3.
Recently diverged species typically have incomplete reproductive barriers, allowing introgression of genetic material from one species into the genomic background of the other. The role of natural selection in preventing or promoting introgression remains contentious. Because of genomic co-adaptation, some chromosomal fragments are expected to be selected against in the new background and resist introgression. In contrast, natural selection should favor introgression for alleles at genes evolving under multi-allelic balancing selection, such as the MHC in vertebrates, disease resistance, or self-incompatibility genes in plants. Here, we test the prediction that negative, frequency-dependent selection on alleles at the multi-allelic gene controlling pistil self-incompatibility specificity in two closely related species, Arabidopsis halleri and A. lyrata, caused introgression at this locus at a higher rate than the genomic background. Polymorphism at this gene is largely shared, and we have identified 18 pairs of S-alleles that are only slightly divergent between the two species. For these pairs of S-alleles, divergence at four-fold degenerate sites (K = 0.0193) is about four times lower than the genomic background (K = 0.0743). We demonstrate that this difference cannot be explained by differences in effective population size between the two types of loci. Rather, our data are most consistent with a five-fold increase of introgression rates for S-alleles as compared to the genomic background, making this study the first documented example of adaptive introgression facilitated by balancing selection. We suggest that this process plays an important role in the maintenance of high allelic diversity and divergence at the S-locus in flowering plant families. Because genes under balancing selection are expected to be among the last to stop introgressing, their comparison in closely related species provides a lower-bound estimate of the time since the species stopped forming fertile hybrids, thereby complementing the average portrait of divergence between species provided by genomic data.  相似文献   

4.
Liti G  Barton DB  Louis EJ 《Genetics》2006,174(2):839-850
Using the biological species definition, yeasts of the genus Saccharomyces sensu stricto comprise six species and one natural hybrid. Previous work has shown that reproductive isolation between the species is due primarily to sequence divergence acted upon by the mismatch repair system and not due to major gene differences or chromosomal rearrangements. Sequence divergence through mismatch repair has also been shown to cause partial reproductive isolation among populations within a species. We have surveyed sequence variation in populations of Saccharomyces sensu stricto yeasts and measured meiotic sterility in hybrids. This allows us to determine the divergence necessary to produce the reproductive isolation seen among species. Rather than a sharp transition from fertility to sterility, which may have been expected, we find a smooth monotonic relationship between diversity and reproductive isolation, even as far as the well-accepted designations of S. paradoxus and S. cerevisiae as distinct species. Furthermore, we show that one species of Saccharomyces--S. cariocanus--differs from a population of S. paradoxus by four translocations, but not by sequence. There is molecular evidence of recent introgression from S. cerevisiae into the European population of S. paradoxus, supporting the idea that in nature the boundary between these species is fuzzy.  相似文献   

5.
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.  相似文献   

6.
ABSTRACT: BACKGROUND: Genetic divergence during speciation with gene flow is heterogeneous across the genome, with some regions exhibiting stronger differentiation than others. Exceptionally differentiated regions are often assumed to experience reduced introgression, i.e., reduced flow of alleles from one population into another because such regions are affected by divergent selection or cause reproductive isolation. In contrast, the remainder of the genome can be homogenized by high introgression. Although many studies have documented variation across the genome in genetic differentiation, there are few tests of this hypothesis that explicitly quantify introgression. Here, we provide such a test using 38,304 SNPs in populations of Timema cristinae stick insects. We quantify whether loci that are highly divergent between geographically separated ('allopatric') populations exhibit unusual patterns of introgression in admixed populations. To the extent this is true, highly divergent loci between allopatric populations contribute to reproductive isolation in admixed populations. RESULTS: As predicted, we find a substantial association between locus-specific divergence between allopatric populations and locus-specific introgression in admixed populations. However, many loci depart from this relationship, sometimes strongly so. We also report evidence for selection against foreign alleles due to local adaptation. CONCLUSIONS: Loci that are strongly differentiated between allopatric populations sometimes contribute to reproductive isolation in admixed populations. However, geographic variation in selection and local adaptation, in aspects of genetic architecture (such as organization of genes, recombination rate variation, number and effect size of variants contributing to adaptation, etc.), and in stochastic evolutionary processes such as drift can cause strong differentiation of loci that do not always contribute to reproductive isolation. The results have implications for the theory of 'genomic islands of speciation'.  相似文献   

7.
Pruett CL  Winker K 《Molecular ecology》2005,14(5):1421-1434
Two genetic consequences are often considered evidence of a founder effect: substantial loss in genetic diversity and rapid divergence between source and founder populations. Single-step founder events have been studied for these effects, but with mixed results, causing continued controversy over the role of founder events in divergence. Experiments of serial bottlenecks have shown losses of diversity, increased divergence, and rapid behavioural changes possibly leading to reproductive isolation between source and final populations. The few studies conducted on natural, sequentially founded systems show some evidence of these effects. We examined a natural vertebrate system of sequential colonization among northwestern song sparrows (Melospiza melodia). This system has an effectively linear distribution, it was probably colonized within the last 10,000 years, there are morphological and behavioural differences among populations, and the westernmost populations occur in atypical habitats for the species. Eight microsatellite loci from eight populations in Alaska and British Columbia (n = 205) showed stepwise loss of genetic diversity, genetic evidence for strong population bottlenecks, and increased population divergence. The endpoint population on Attu Island has extremely low diversity (H(E) = 0.18). Our study shows that sequential bottlenecks or founder events can have powerful genetic effects in reducing diversity, possibly leading to rapid evolutionary divergence.  相似文献   

8.
The relative strength of different types of directional selection has seldom been compared directly in natural populations. A recent meta-analysis of phenotypic selection studies in natural populations suggested that directional sexual selection may be stronger in magnitude than directional natural selection, although this pattern may have partly been confounded by the different time scales over which selection was estimated. Knowledge about the strength of different types of selection is of general interest for understanding how selective forces affect adaptive population divergence and how they may influence speciation. We studied divergent selection on morphology in parapatric, natural damselfly (Calopteryx splendens) populations. Sexual selection was stronger than natural selection measured on the same traits, irrespective of the time scale over which sexual selection was measured. Visualization of the fitness surfaces indicated that population divergence in overall morphology is more strongly influenced by divergent sexual selection rather than natural selection. Courtship success of experimental immigrant males was lower than that of resident males, indicating incipient sexual isolation between these populations. We conclude that current and strong sexual selection promotes adaptive population divergence in this species and that premating sexual isolation may have arisen as a correlated response to divergent sexual selection. Our results highlight the importance of sexual selection, rather than natural selection in the adaptive radiation of odonates, and supports previous suggestions that divergent sexual selection promotes speciation in this group.  相似文献   

9.
The relative roles of gene flow and natural selection in maintaining species differentiation have been a subject of debate for some time. The traditional view is that gene flow constrains adaptive divergence and maintains species cohesiveness. Alternatively, ecological speciation posits that the reverse is true: that adaptive ecological differentiation constrains gene flow. In this study, we examine gene flow and population differentiation among populations of two species of the Hawaiian silversword alliance, Dubautia arborea and D. ciliolata. We compare divergence in putatively neutral microsatellite markers with divergence in leaf morphometric traits, which may be selectively important or physiologically linked to selectively important traits. Gene flow between populations was found to be significant in only one of the two species, D. arborea. Leaf morphometric differentiation between species was significant, though not among populations within species. No evidence of effective genetic introgression was observed between apparently 'pure' populations of these species. Gene flow as measured by microsatellites was not correlated with geographic distance between populations, but was correlated with the linear placement of the widest part of the leaf. Because these two species are interfertile, as demonstrated by the presence of active hybrid zone, the lack of genetic introgression and the maintenance of species boundaries may be associated with natural selection on differential habitat.  相似文献   

10.
Speciation is the process by which reproductively isolated lineages arise, and is one of the fundamental means by which the diversity of life increases. Whereas numerous studies have documented an association between ecological divergence and reproductive isolation, relatively little is known about the role of natural selection in genome divergence during the process of speciation. Here, we use genome-wide DNA sequences and Bayesian models to test the hypothesis that loci under divergent selection between two butterfly species (Lycaeides idas and L. melissa) also affect fitness in an admixed population. Locus-specific measures of genetic differentiation between L. idas and L. melissa and genomic introgression in hybrids varied across the genome. The most differentiated genetic regions were characterized by elevated L. idas ancestry in the admixed population, which occurs in L. idas-like habitat, consistent with the hypothesis that local adaptation contributes to speciation. Moreover, locus-specific measures of genetic differentiation (a metric of divergent selection) were positively associated with extreme genomic introgression (a metric of hybrid fitness). Interestingly, concordance of differentiation and introgression was only partial. We discuss multiple, complementary explanations for this partial concordance.  相似文献   

11.
Understanding the relationship between reproductive isolation and time since divergence is critical to our understanding of speciation. One group for which we know little about the relationship between hybridization/introgression and time since divergence is the marine broadcast spawners. Here, we investigate the distribution of closely related cryptic species of marine broadcast spawners (Type A and B Ciona intestinalis) in areas of potential sympatry to determine whether these two types occur together and if so, whether they show evidence of hybridization and introgression. Then we combine our data with other studies to investigate general patterns of reproductive isolation versus divergence in marine broadcast spawners. We found that Type A and B C. intestinalis occurred sympatrically in 2007, and that 21 individuals show evidence of introgression in sympatry (out of approximately 500). Type A and B C. intestinalis are 12.4% divergent at mitochondrial COI (mtCOI), and in comparison with other marine broadcast spawning species at mtCOI, these two types may be near the upper limit of the range of divergence values in which introgression is still possible. However, introgression at divergence levels similar to those found in Ciona does exist, prompting questions about the strength of postmating prezygotic reproductive barriers in marine broadcast spawners.  相似文献   

12.
The human and chimpanzee X chromosomes are less divergent than expected based on autosomal divergence. We study incomplete lineage sorting patterns between humans, chimpanzees and gorillas to show that this low divergence can be entirely explained by megabase-sized regions comprising one-third of the X chromosome, where polymorphism in the human-chimpanzee ancestral species was severely reduced. We show that background selection can explain at most 10% of this reduction of diversity in the ancestor. Instead, we show that several strong selective sweeps in the ancestral species can explain it. We also report evidence of population specific sweeps in extant humans that overlap the regions of low diversity in the ancestral species. These regions further correspond to chromosomal sections shown to be devoid of Neanderthal introgression into modern humans. This suggests that the same X-linked regions that undergo selective sweeps are among the first to form reproductive barriers between diverging species. We hypothesize that meiotic drive is the underlying mechanism causing these two observations.  相似文献   

13.
Firmly rooted as we are in the genomic era, it can seem incredible that as recently as 1974, Lewontin declared, 'we know virtually nothing about the genetic changes that occur in species formation'. To the contrary, we now know the genetic architecture of phenotypic differences and reproductive isolation between species for many diverse groups of plants, animals, and fungi. In recent years, detailed genetic analyses have produced a small but growing list of genes that cause reproductive isolation, several of which appear to have diverged by natural selection. Yet, a full accounting of the speciation process requires that we understand the reproductive and ecological properties of natural populations as they begin to diverge genetically, as well as the dynamics of newly evolved barriers to gene flow. One promising approach to this problem is the study of natural hybrid zones, where gene exchange between divergent populations can produce recombinant genotypes in situ . In such individuals, genomic variation might be shaped by introgression at universally adaptive or neutral loci, even as regions associated with local adaptation or reproductive isolation remain divergent. In Nolte et   al . (2009) , the authors take advantage of two independent, recently formed hybrid zones between sculpin species to investigate genome-wide patterns of reproductive isolation. Using a recently developed genomic clines method, the authors identify marker loci that are associated with isolation, and those that show evidence for adaptive introgression. Remarkably, Nolte et   al . (2009) find little similarity between the two hybrid zones in patterns of introgression, a fact that might reflect genetic variation within species or heterogeneous natural selection. In either case, their study system has the potential to provide insight into the early stages of speciation.  相似文献   

14.
Ecologically based divergent selection is a factor that could drive reproductive isolation even in the presence of gene flow. Population pairs arrayed along a continuum of divergence provide a good opportunity to address this issue. Here, we used a combination of mating trials, experimental crosses and population genetic analyses to investigate the evolution of reproductive isolation between two closely related species of lampreys with distinct life histories. We used microsatellite markers to genotype over 1000 individuals of the migratory parasitic river lamprey (Lampetra fluviatilis) and freshwater‐resident nonparasitic brook lamprey (Lampetra planeri) distributed in 10 sympatric and parapatric population pairs in France. Mating trials, parentage analyses and artificial fertilizations demonstrated a low level of reproductive isolation between species even though size‐assortative mating may contribute to isolation. Most parapatric population pairs were strongly differentiated due to the joint effects of geographic distance and barriers to migration. In contrast, we found variable levels of gene flow between sympatric populations ranging from panmixia to moderate differentiation, which indicates a gradient of divergence with some population pairs that may correspond to alternative morphs or ecotypes of a single species and others that remain partially isolated. Ecologically based divergent selection may explain these variable levels of divergence among sympatric population pairs, but incomplete genome swamping following secondary contact could have also played a role. Overall, this study illustrates how highly differentiated phenotypes can be maintained despite high levels of gene flow that limit the progress towards speciation.  相似文献   

15.
Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.  相似文献   

16.
Ecological speciation occurs when inherent reproductive barriers to gene flow evolve between populations as a result of divergent natural selection. Frequency dependent effects associated with intraspecific resource competition are thought to be one important source of divergent selection facilitating ecological speciation. Interspecific competition may also play an important role in promoting population divergence. Although evidence for interspecific competition in nature is ubiquitous, there is currently little empirical data supporting its role in the speciation process. Here, we discuss two general models in which interspecific competition among species can promote ecological speciation among populations within a species. In both models, interspecific competition is the source of divergent selection driving adaption to different portions of the resource distribution, generating ecological reproductive isolation from other conspecific populations. We propose that the biology of endoparasitoids that attack phytophagous insects make model systems for studying the role of interspecific competition in ecological speciation. We describe details for one such system, the community of endoparasitic braconid wasps attacking Rhagoletis fruit flies, as a potential model for investigating competitive speciation. We conclude by hypothesizing that a model in which interspecific competition forces an inferior competitor to alternative fly hosts may be a common theme contributing to parasitoid diversification in the Rhagoletis-parasitoid system.  相似文献   

17.
Hybrids between species provide information about the evolutionary processes involved in divergence. In addition to creating hybrids in the laboratory, biologists can take advantage of natural hybrid zones to understand the factors that shape gene flow between divergent lineages. In the early stages of speciation, most regions of the genome continue to flow freely between populations. Alternatively, the subset of the genome that confers reproductive barriers between nascent species is expected to reject introgression. Now enabled by advances in genomics, this perspective is motivating detailed comparisons of gene flow across genomic regions in hybrid zones. Here, I review methods for measuring and interpreting introgression at multiple loci in hybrid zones, focusing on the problem of identifying loci that contribute to reproductive isolation. Emerging patterns from multi-locus studies of hybrid zones are highlighted, including remarkable variance in introgression across the genome. Although existing methods have been useful, there is scope for development of new analytical approaches that better connect differential patterns of gene flow in hybrid zones with current knowledge of speciation mechanisms. I outline future prospects for differential introgression studies on a genomic scale.  相似文献   

18.
Minder AM  Widmer A 《Molecular ecology》2008,17(6):1552-1563
Little is known about the nature of species boundaries between closely related plant species and about the extent of introgression as a consequence of hybridization upon secondary contact. To address these topics we analyzed genome-wide differentiation between two closely related Silene species, Silene latifolia and S. dioica , and assessed the strength of introgression in sympatry. More than 300 AFLP markers were genotyped in three allopatric and three sympatric populations of each species. Outlier analyses were performed separately for sympatric and allopatric populations. Both positive and negative outlier loci were found, indicating that divergent and balancing selection, respectively, have shaped patterns of divergence between the two species. Sympatric populations of the two species were found to be less differentiated genetically than allopatric populations, indicating that hybridization has led to gene introgression. We conclude that differentiation between S. latifolia and S. dioica has been shaped by a combination of introgression and selection. These results challenge the view that species differentiation is a genome-wide phenomenon, and instead support the idea that genomes can be porous and that species differentiation has a genic basis.  相似文献   

19.
Most evidence for hybrid swarm formation stemming from anthropogenic habitat disturbance comes from the breakdown of reproductive isolation between incipient species, or introgression between allopatric species following secondary contact. Human impacts on hybridization between divergent species that naturally occur in sympatry have received considerably less attention. Theory predicts that reinforcement should act to preserve reproductive isolation under such circumstances, potentially making reproductive barriers resistant to human habitat alteration. Using 15 microsatellites, we examined hybridization between sympatric populations of alewife (Alosa pseudoharengus) and blueback herring (A. aestivalis) to test whether the frequency of hybridization and pattern of introgression have been impacted by the construction of a dam that isolated formerly anadromous populations of both species in a landlocked freshwater reservoir. The frequency of hybridization and pattern of introgression differed markedly between anadromous and landlocked populations. The rangewide frequency of hybridization among anadromous populations was generally 0–8%, whereas all landlocked individuals were hybrids. Although neutral introgression was observed among anadromous hybrids, directional introgression leading to increased prevalence of alewife genotypes was detected among landlocked hybrids. We demonstrate that habitat alteration can lead to hybrid swarm formation between divergent species that naturally occur sympatrically, and provide empirical evidence that reinforcement does not always sustain reproductive isolation under such circumstances.  相似文献   

20.
High gene flow, particularly as mediated by larval dispersal, has usually been viewed as sufficient to limit geographic isolation as a major source of population differentiation among marine species. Despite the general observation of relatively little geographic variation among populations of high dispersal marine species many cases of divergence have been observed and natural selection has usually been invoked to explain geographic divergence. Detailed study of several allozyme polymorphisms provided additional evidence that selection may be the predominant force that determines genetic divergence in marine systems. There is, however, growing evidence that marine species with high dispersal are more subdivided than originally thought. The use of multi-locus approaches and the application of molecular techniques have provided new insight into the nature of population divergence in marine species. I argue that (1) many species, which were formerly thought to be unstructured, are in fact subdivided into genetically discrete groups, (2) it is often the case that genetically subdivided populations have distinct evolutionary histories, (3) in many cases, natural selection is the consequence of introgression between these groups, and (4) the combination of molecular assays of both nuclear and mitochondrial DNA and allozyme loci provides the best approach to understanding the evolutionary dynamics of these interacting populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号