共查询到20条相似文献,搜索用时 0 毫秒
1.
Zoe E. Squires Bob B.M. Wong Mark D. Norman Devi Stuart‐Fox 《Biological journal of the Linnean Society. Linnean Society of London》2015,116(2):277-287
Differential sperm usage from consecutive matings, or sperm precedence, is vital in determining male reproductive success and the outcome of sperm competition for many organisms. Sperm precedence also has significant consequences for mating system dynamics, including both male and female adaptations for increasing reproductive success and avoiding the costs of mating. Despite sexual selection being a strong driver of reproductive behaviour and morphology in cephalopods, surprisingly few studies have investigated sperm dynamics in this group. To redress this gap, we experimentally quantified sperm precedence patterns in the dumpling squid, Euprymna tasmanica, controlling for recent male mating history (first vs. second mating), mating position, and mating frequency. We found that the last male to mate gains an advantage in this system, with the second mating male siring up to 75% of offspring at the beginning of the laying period. The proportion of offspring attributable to the second mating male decreases to 54% by the end of the laying period, potentially as a result of changes in the velocity or number of sperm released from spermatangia over time. There is also significant variation among females in patterns of sperm precedence. This variation was not associated with whether it was the male's first or second mating, male mass, the duration of copulation or the number of pumps (sperm removal behaviour) by the second male. If widespread in cephalopods, last male sperm precedence could help to explain the evolution of mate guarding (or long copulation duration) and sperm removal behaviour in this group. 相似文献
2.
Sperm precedence, defined as nonrandom differential fertilizationsuccess among mating males, is an important postmating componentof sexual selection. This study examined the relationship betweenpremating and postmating components of sexual selection in malesof the flour beetle (Tribolium castanewn). Male olfactory attractivenessto females was positively correlated with a male's subsequentfertilization success: more attractive males achieved highersecond-male sperm precedence when allowed to mate with previouslyinseminated females. Attractive males may achieve compoundedgains in their reproductive success through enhanced matingopportunities as well as through greater fertilization success.Thus, the relationship between these reproductive fitness componentsmay augment differences in reproductive success among males.Female fecundity, estimated as the number of adult progeny produced,increased significantly with multiple malings. This result supportsincreased female reproductive success as a direct benefit ofmultiple mating in T. caslaneum and suggests that progeny productionis partially limited by sperm availability. Total progeny productionby doubly mated females remained constant at all levels of second-malesperm precedence. However, higher sperm precedence was associatedwith a decline in firstmale progeny and a concomitant increasein second-male progeny. This pattern of progeny production suggeststhat more attractive males may achieve higher fertilizationsuccess through a combination of displacement of previouslystored sperm, transfer of greater sperm quantities, or females'preferential use of sperm of attractive males for fertilizations. 相似文献
3.
Jutta M. Schneider Kristiani Lesmono 《Proceedings. Biological sciences / The Royal Society》2009,276(1670):3105-3111
Courtship is well known for its positive effects on mating success. However, in polyandrous species, sexual selection continues to operate after copulation. Cryptic female choice is expected under unpredictable mating rates in combination with sequential mate encounters. However, there are very few accounts of the effects of courtship on cryptic female choice, and the available evidence is often correlative.Mature Argiope bruennichi females are always receptive and never attack or reject males before mating, although sexual cannibalism after mating occurs regularly. Still, males usually perform an energetic vibratory display prior to copulation. We tested the hypothesis that beneficial effects of courtship arise cryptically, during or after mating, resulting in increased paternity success under polyandry. Manipulating courtship duration experimentally, we found that males that mated without display had a reduced paternity share even though no differences in post-copulatory cannibalism or copulation duration were detected. This suggests that the paternity advantage associated with courtship arose through female-mediated processes after intromission, meeting the definition of cryptic female choice. 相似文献
4.
5.
Yesbol Manat Katrine K. Lund-Hansen Georgios Katsianis Jessica K. Abbott 《Biology letters》2021,17(3)
Intralocus sexual conflict arises when the expression of shared alleles at a single locus generates opposite fitness effects in each sex (i.e. sexually antagonistic alleles), preventing each sex from reaching its sex-specific optimum. Despite its importance to reproductive success, the relative contribution of intralocus sexual conflict to male pre- and post-copulatory success is not well-understood. Here, we used a female-limited X-chromosome (FLX) evolution experiment in Drosophila melanogaster to limit the inheritance of the X-chromosome to the matriline, eliminating possible counter-selection in males and allowing the X-chromosome to accumulate female-benefit alleles. After more than 100 generations of FLX evolution, we studied the effect of the evolved X-chromosome on male attractiveness and sperm competitiveness. We found a non-significant increase in attractiveness and decrease in sperm offence ability in males expressing the evolved X-chromosomes, but a significant increase in their ability to avoid displacement by other males'' sperm. This is consistent with a trade-off between these traits, perhaps mediated by differences in body size, causing a small net reduction in overall male fitness in the FLX lines. These results indicate that the X-chromosome in D. melanogaster is subject to selection via intralocus sexual conflict in males. 相似文献
6.
Increased postcopulatory sexual selection reduces the intramale variation in sperm design 总被引:1,自引:0,他引:1
Immler S Calhim S Birkhead TR 《Evolution; international journal of organic evolution》2008,62(6):1538-1543
Sperm competition is an important force driving the evolution of sperm design and function. Inter- and intraspecific variation in sperm design are strongly influenced by the risk of sperm competition in many taxa. In contrast, the variation among sperm of one male (intramale variation) is less well understood. We investigated intramale variation in sperm design in passerine birds and found that risk of sperm competition is negatively associated with intramale variation. This result is the first clear evidence that variation among sperm within an individual male is influenced by postcopulatory sexual selection. Our finding has important implications for male traits under pre- and postcopulatory sexual selection. 相似文献
7.
Suzanne H. Alonzo Tommaso Pizzari 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2013,368(1613)
Female remating rate dictates the level of sperm competition in a population, and extensive research has focused on how sperm competition generates selection on male ejaculate allocation. Yet the way ejaculate allocation strategies in turn generate selection on female remating rates, which ultimately influence levels of sperm competition, has received much less consideration despite increasing evidence that both mating itself and ejaculate traits affect multiple components of female fitness. Here, we develop theory to examine how the effects of mating on female fertility, fecundity and mortality interact to generate selection on female remating rate. When males produce more fertile ejaculates, females are selected to mate less frequently, thus decreasing levels of sperm competition. This could in turn favour decreased male ejaculate allocation, which could subsequently lead to higher female remating. When remating simultaneously increases female fecundity and mortality, females are selected to mate more frequently, thus exacerbating sperm competition and favouring male traits that convey a competitive advantage even when harmful to female survival. While intuitive when considered separately, these predictions demonstrate the potential for complex coevolutionary dynamics between male ejaculate expenditure and female remating rate, and the correlated evolution of multiple male and female reproductive traits affecting mating, fertility and fecundity. 相似文献
8.
Sonja H. Sbilordo Oliver Y. Martin 《Biological journal of the Linnean Society. Linnean Society of London》2014,112(1):67-75
To capture how sexual selection shapes male reproductive success across different stages of reproduction in Tribolium castaneum (Coleoptera, Tenebrionidae), we combined sequential sperm defence (P1) and sperm offence (P2) trials with additional trials where both males were added simultaneously to the female. We found a positive correlation between the relative paternity share in simultaneous male–male competition trials and the P2 trial. This suggests that males preferred by females as sires achieve superior fertilization success during sperm competition in the second male position. In simultaneous male–male competition trials, where pre‐, peri‐ and postcopulatory sexual selection were all allowed to act, the relative paternity share of preferred males was more than 20% higher than in P2 sperm competition trials where precopulatory female choice was disabled. Additional behavioural observations revealed that mating with more attractive males resulted significantly more frequently in offspring production than mating with less attractive males. Thus, by comparing male fertilization success in trials where precopulatory choice was turned off with more inclusive estimates of fertilization success where pre‐ and pericopulatory choice could occur, we show that female mate choice may effectively inhibit sperm competition. Female mate choice and sperm competition (P2) are positively correlated, which is consistent with directional sexual selection in this species. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112 , 67–75. 相似文献
9.
Morrow EH Stewart AD Rice WR 《Evolution; international journal of organic evolution》2005,59(12):2608-2615
In promiscuously mating species, there is strong selection on males to maximize their share of paternity through both defensive and offensive means. This has been most extensively examined using the Drosophila melanogaster model system. In these studies, sperm competition has been examined by mating a virgin female to two consecutive males and then determining the fertilization success of both the first male (defending, P1) and the second male (offending, P2). Recent evidence suggests that male defense may be influenced by female mating history (i.e., virgin versus nonvirgin). Here, by mating females to males with three different genotypes, we show that female mating history does not affect male defensive or offensive abilities in sperm competition. We also show that, although female lifetime fecundity was not correlated with the number of times that she mated, it was reduced by increased exposure to males. These data indicate that measures of P1 and P2 previously reported in D. melanogaster may be robust to the specific mating history of the females used in these studies. 相似文献
10.
Genetic variation among females is likely to influence the outcome of both pre- and post-copulatory sexual selection in Drosophila melanogaster. Here we use association testing to survey natural variation in 10 candidate female genes for their effects on female reproduction. Females from 91 chromosome two substitution lines were scored for phenotypes affecting pre- and post-copulatory sexual selection such as mating and remating rate, propensity to use sperm from the second male to mate, and measures of fertility. There were significant genetic contributions to phenotypic variation for all the traits measured. Resequencing of the 10 candidate genes in the 91 lines yielded 68 non-synonymous polymorphisms which were tested for associations with the measured phenotypes. Twelve significant associations (markerwise P<0.01) were identified. Polymorphisms in the putative serine protease homolog CG9897 and the putative odorant binding protein CG11797 associated with female propensity to remate and met an experimentwise significance of P<0.05. Several other associations, including those impacting both fertility and female remating rate suggest that sperm storage might be an important factor mitigating female influence on sexual selection. 相似文献
11.
Nontransitivity of sperm precedence in Drosophila 总被引:2,自引:0,他引:2
Clark AG Dermitzakis ET Civetta A 《Evolution; international journal of organic evolution》2000,54(3):1030-1035
Abstract.— Sperm competition is an important component of fitness in Drosophila , but we still do not have a clear understanding of the unit of selection that is relevant to sperm competition. Here we demonstrate that sperm competitive ability is not a property of the sperm haplotype, but rather of the diploid male's genotype. Then we test whether the relative sperm competitive ability of males can be ranked on a linear array or whether competitive ability instead depends on particular pairwise contests among males. Sperm precedence of six chromosome-extracted lines was tested against three different visible marker lines ( cn bw, bwD , and Cy ), and the rank order of the six lines differed markedly among the mutant lines. Population genetic theory has shown that departures from transitivity of sperm precedence may be important to the maintenance of polymorphism for genes that influence sperm competitive ability. The non-transitivity seen in sperm precedence should theoretically increase the opportunity for polymorphism in genes that influence this phenotype. 相似文献
12.
It is difficult to predict a priori how mating success translates into fertilization success in simultaneous hermaphrodites with internal fertilization. Whereas insemination decisions will be determined by male interests, fertilization will depend on female interests, possibly leading to discrepancies between insemination and fertilization patterns. The planarian flatworm Schmidtea polychroa, a simultaneous hermaphrodite in which mating partners trade sperm was studied. Sperm can be stored for months yet individuals mate frequently. Using microsatellites, maternity and paternity data were obtained from 748 offspring produced in six groups of 10 individuals during four weeks. Adults produced young from four mates on average. Reciprocal fertilization between two mates was found in only 41 out of 110 registered mate combinations, which is clearly less than what is predicted from insemination patterns. Multiple paternity was high: > 80% of all cocoons had two to five fathers for only three to five offspring per cocoon. Because animals were collected from a natural population, 28% of all hatchlings were sired by unknown sperm donors in the field, despite a 10-day period of acclimatization and within-group mating. This percentage decreased only moderately throughout the experiment, showing that sperm can be stored and used for at least a month, despite frequent mating and sperm digestion. The immediate paternity a sperm donor could expect to obtain was only about 25%. Male reproductive success increased linearly with the number of female partners, providing support for Bateman's principle in hermaphrodites. Our results suggest that hermaphrodites do not trade fertilizations when trading sperm during insemination, lending support to the view that such conditional sperm exchange is driven by exchange of resources. 相似文献
13.
N. Wedell 《Journal of evolutionary biology》2001,14(5):746-754
Female mating rate is fundamental to evolutionary biology as it determines the pattern of sexual selection and sexual conflict. Despite its importance, the genetic basis for female remating rate is largely unknown and has only been demonstrated in one species. In paternally investing species there is often a conflict between the sexes over female mating rate, as females remate to obtain male nutrient donations and males try to prevent female remating to ensure high fertilization success. Butterflies produce two types of sperm: fertilizing, eupyrene sperm, and large numbers of nonfertile, apyrene sperm. The function of apyrene sperm in the polyandrous, paternally investing green‐veined white butterfly, Pieris napi, is to fill the female’s sperm storage organ thereby reducing her receptivity. However, there is large variation in number of apyrene sperm stored. Here, I examine the genetic basis to this variation, and if variation in number of apyrene sperm stored is related to females’ remating rate. The number of apyrene sperm stored at the time of remating has a genetic component and is correlated with female remating tendency, whereas no such relationship is found for fertilizing sperm. The duration of the nonreceptivity period in P. napi also has a genetic component and is inversely related to the degree of polyandry. Sexual conflict over female remating rate appears to be present in this species, with males using their apyrene sperm to exploit a female system designed to monitor sperm in storage. Ejaculates with a high proportion of nonfertile sperm may have evolved to induce females to store more of these sperm, thereby reducing remating. As a counter‐adaptation, females have evolved a better detection system to regain control over their remating rate. Sexually antagonistic co‐evolution of apyrene sperm number and female sperm storage may be responsible for ejaculates with predominantly nonfertile sperm in this butterfly. 相似文献
14.
Craig W. Lamunyon 《Ecological Entomology》2001,26(4):388-394
1. Females of the noctuid moth Heliothis virescens F. mate more than once. Thus, sperm from two or more males normally compete for fertilisations within the female reproductive tract. The eggs are typically fertilised by sperm from only one male, either the female's last mate or an earlier mate. Twice‐mated females store only one ejaculate's worth of fertilising sperm (eupyrene) but nearly two ejaculates' worth of a nonfertilising sperm morph (apyrene), which is thought to play a role in sperm competition. 2. The mechanism of sperm use in H. virescens was investigated by examining factors that vary with paternity, which was assigned based on allozyme variation. The factors included male and female body masses and ages, male genital characters, the size of the sperm package, and the number of sperm stored by the female. 3. One male typically gained sperm precedence; this was nearly twice as likely to be the second male as it was to be the first. Two factors were found to vary significantly with paternity: female mass and male age. The second male to mate was more likely to gain sperm precedence if the female was larger and if the male was older than the female's first mate. 4. The significance of male age and female mass to several hypothetical models of the mechanism of sperm use is discussed. 相似文献
15.
Hirota T 《Journal of evolutionary biology》2005,18(6):1395-1402
Predispersal copulation and unpredictable environment facilitate the evolution of female-biased dispersal in species, where females are functionally monandrous. Females should migrate and reproduce over different habitats to spread their risks due to environmental fluctuation. On the other hand, males do not have to disperse because their risks are spread by their mating partners who produce their offspring in different habitats. However, when females are functionally polyandrous, it is expected that they will not contribute to spreading the male's risk extensively. Therefore, by simulation with the individual based model, the present study evaluated how female polyandry influences the sexual difference in dispersal timing. This model revealed that when females are polyandrous, the timing of female remating and sperm priority patterns have an important influence on the evolution of sex-biased dispersal. Particularly when female remating is not synchronized with dispersal or when last-male sperm precedence does not exist, female-biased dispersal is evolved. 相似文献
16.
Sexual conflict can promote rapid evolution of male and female reproductive traits. Males of many polyandrous butterflies transfer nutrients at mating that enhances female fecundity, but generates sexual conflict over female remating due to sperm competition. Butterflies produce both normal fertilizing sperm and large numbers of non-fertile sperm. In the green-veined white butterfly, Pieris napi, non-fertile sperm fill the females'' sperm storage organ, switching off receptivity and thereby reducing female remating. There is genetic variation in the number of non-fertile sperm stored, which directly relates to the female''s refractory period. There is also genetic variation in males'' sperm production. Here, we show that females'' refractory period and males'' sperm production are genetically correlated using quantitative genetic and selection experiments. Thus selection on male manipulation may increase the frequency of susceptible females to such manipulations as a correlated response and vice versa. 相似文献
17.
Polyandrous females provide sons with more competitive sperm: Support for the sexy‐sperm hypothesis in the rattlebox moth (Utetheisa ornatrix) 下载免费PDF全文
Andrea L. Egan Kristin A. Hook H. Kern Reeve Vikram K. Iyengar 《Evolution; international journal of organic evolution》2016,70(1):72-81
Given the costs of multiple mating, why has female polyandry evolved? Utetheisa ornatrix moths are well suited for studying multiple mating in females because females are highly polyandrous over their life span, with each male mate transferring a substantial spermatophore with both genetic and nongenetic material. The accumulation of resources might explain the prevalence of polyandry in this species, but another, not mutually exclusive, possibility is that females mate multiply to increase the probability that their sons will inherit more‐competitive sperm. This latter “sexy‐sperm” hypothesis posits that female multiple mating and male sperm competitiveness coevolve via a Fisherian runaway process. We tested the sexy‐sperm hypothesis by using competitive double matings to compare the sperm competition success of sons of polyandrous versus monandrous females. In accordance with sexy‐sperm theory, we found that in 511 offspring across 17 families, the male whose polyandrous mother mated once with each of three different males sired significantly more of all total offspring (81%) than did the male whose monandrous mother was mated thrice to a single male. Interestingly, sons of polyandrous mothers had a significantly biased sex ratio of their brood toward sons, also in support of the hypothesis. 相似文献
18.
Male Lepidoptera produce an ejaculate during copulation thatcontains both sperm and accessory gland nutrients and may functionas paternal investment and/or male mating effort Several studieshave examined how ejaculates function as paternal investment,but few have determined the influence of sperm competition onmale investment This study examines the effect of male bodysize on sperm precedence in the polyandrous butterfly Pierisnapi L. We used male body mass as an indicator of the size ofejaculate transferred and found that relative male size hada significant effect on paternity. The offspring of twice-matedfemales showed a low incidence of mixed paternity. Larger malesobtained the majority of fertilizations, and the degree of second-malesperm precedence was influenced by relative body size of matingmales. In general, second mates obtained fewer fertilizationsthe larger the size of the first mate. The interval betweenthe first and second mating was influenced by the size of thefirst male mate Females first mated to small males remated soonerthan females first mated to larger males Our results suggestthat large males may have a selective advantage over small maleswhen both a male's fertilization success and a female's refractoryperiod are influenced by the size of ejaculate transferred.Furthermore, the effect of male body size on the proportionof offspring sired lends support to the hypothesis that spermcompetition has played a major role in the evolution of ejaculatesize. 相似文献
19.
Old‐male mating advantage has been convincingly demonstrated in Bicyclus anynana butterflies. This intriguing pattern may be explained by two alternative hypotheses: (i) an increased aggressiveness and persistence of older males during courtship, being caused by the older males' low residual reproductive value; and (ii) an active preference of females towards older males what reflects a good genes hypothesis. Against this background, we here investigate postcopulatory sexual selection by double‐mating Bicyclus anynana females to older and younger males, thus allowing for sperm competition and cryptic mate choice, and by genotyping the resulting offspring. Virgin females were mated with a younger virgin (2–3 days old) and afterwards an older virgin male (12–13 days old) or vice versa. Older males had a higher paternity success than younger ones, but only when being the second (=last) mating partner, while paternity success was equal among older and younger males when older males were the first mating partner. Older males produced larger spermatophores with much higher numbers of fertile sperm than younger males. Thus, we found no evidence for cryptic female mate choice. Rather, the findings reported here seem to result from a combination of last‐male precedence and the number of sperm transferred upon mating, both increasing paternity success. 相似文献
20.
Sarah Althaus Alain Jacob Werner Graber Deborah Hofer Wolfgang Nentwig Christian Kropf 《Journal of morphology》2010,271(4):383-393
Mating plugs occluding the female gonopore after mating are a widespread phenomenon. In scorpions, two main types of mating plugs are found: sclerotized mating plugs being parts of the spermatophore that break off during mating, and gel‐like mating plugs being gelatinous fluids that harden in the female genital tract. In this study, the gel‐like mating plug of Euscorpius italicus was investigated with respect to its composition, fine structure, and changes over time. Sperm forms the major component of the mating plug, a phenomenon previously unknown in arachnids. Three parts of the mating plug can be distinguished. The part facing the outside of the female (outer part) contains sperm packages containing inactive spermatozoa. In this state, sperm is transferred. In the median part, the sperm packages get uncoiled to single spermatozoa. In the inner part, free sperm is embedded in a large amount of secretions. Fresh mating plugs are soft gelatinous, later they harden from outside toward inside. This process is completed after 3‐5 days. Sperm from artificially triggered spermatophores could be activated by immersion in insect Ringer's solution indicating that the fluid condition in the females' genital tract or females' secretions causes sperm activation. Because of the male origin of the mating plug, it has likely evolved under sperm competition or sexual conflict. As females refused to remate irrespective of the presence or absence of a mating plug, females may have changed their mating behavior in the course of evolution from polyandry to monandry. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc. 相似文献