首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
This study aims to verify whether the inhibitory effect of Sirtuin 3 (SIRT3) on the formation of renal calcium oxalate crystals was mediated through promoting macrophages (Mϕs) polarization. Identification and quantification of M1 and M2 monocytes were performed using fluorescence-activated cell sorting analysis. SIRT3 protein level and forkhead box O1 (FOXO1) acetylation level were measured using western blot analysis. Cell apoptosis of HK-2 was detected by flow cytometry. Mouse kidney tissues were subjected to Von Kossa staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and immunohistochemical staining for detection of kidney crystals deposition, apoptosis, and expression of crystal-related molecules, respectively. The results showed that human peripheral blood monocytes from patients with kidney stone (KS) exhibited decreased M2 monocytes percentage and SIRT3 expression, whereas increased FOXO1 acetylation compared with the normal controls. In vitro assay revealed that SIRT3 overexpression in bone marrow-derived M0/M1/M2 Mϕs induced M2 polarization and decreased FOXO1 acetylation. Furthermore, FOXO1 knockdown reversed SIRT3-mediated induction of M2 polarization and inhibition of HK-2 (human proximal tubular cell line) apoptosis. Further in vivo experiments demonstrated that SIRT3-overexpressing Mϕs transfusion not only induced M2 polarization, but also alleviated inflammation, apoptosis, and crystals deposition in glyoxylate-induced KS mice. In conclusion, SIRT3 suppresses formation of renal calcium oxalate crystals through promoting M2 polarization via deacetylating FOXO1.  相似文献   

4.
Diabetes mellitus-accelerated atherosclerosis (DMAS) is one of the vascular complications of diabetes. Brain-derived neurotrophic factor (BDNF) plays a critical role in diabetes mellitus. However, the mechanism by which BDNF is involved in DMAS remains unknown. This study investigates the effect of BDNF on the progression of DMAS as well as the underlying mechanism of action. The levels of BDNF in serum and peripheral blood mononuclear cells (PBMCs) from patients with DMAS and health controls were measured as well as the expression of inflammatory cytokines (IL-1β, TNF-α, IL-10, TGF-β and IL-13). The effects of BDNF restoration on cytokine release, macrophage differentiation and the formation of atherosclerotic plaques were evaluated both in vitro and in vivo using the DMAS mouse model. Downregulation of BDNF was identified in the serum and PBMCs of patients with DMAS. Elevation of BDNF contributed to a reduction in the AS lesion area in low-density lipoprotein receptor−/− mice, inactivated the STAT3 pathway, decreased pro-inflammatory cytokines IL-1β and TNF-α, and increased IL-10, TGF-β and IL-13. BDNF overexpression also increased the proportion of M2 macrophages and alleviated atherosclerotic lesions. Our findings demonstrate that BDNF overexpression promotes M2 macrophage polarization, which represses the development of DMAS by inactivating the STAT3 pathway.  相似文献   

5.
6.
7.
Rosacea is a chronic inflammatory cutaneous disease which mainly affects central face, leading to cosmetic disfigurement and compromised social psychology in billions of rosacea patients. Though the exact etiology of rosacea remains elusive, accumulating evidence has highlighted the dysfunction of innate immunity and inflammation in rosacea pathogenesis. Disintegrin Metalloprotease ADAM-like Decysin-1 (ADAMDEC1) is an orphan ADAM-like metalloprotease which is believed to be closely related to inflammation. Here for the first time, we reported that Adamdec1 expression was significantly increased in the skin lesions of rosacea patients and LL37–induced rosacea-like mouse models. Immunofluorescence analysis revealed co-localization of ADAMDEC1 and macrophages in patient and mouse biopsies. In cellular experiment, the expression of ADAMDEC1 was prominently elevated in M1 but not M2 macrophages. Knocking down of ADAMDEC1 significantly blunted M1 polarization in macrophages induced from human monocytes and THP-1 cell lines. Furthermore, silencing of Adamdec1 in LL-37-induced mouse model also suppressed the expression of M1 signature genes such as IL-6, iNOS and TNF-α, resulting in attenuated rosacea-like phenotype and inflammation. Taken together, our results demonstrate that ADAMDEC1 plays a pro-inflammatory role in rosacea via modulating the M1 polarization of macrophages.  相似文献   

8.
Human alveolar macrophages activated by human rIFN-gamma inhibit the intracellular multiplication of Legionella pneumophila, an intracellular bacterial pathogen and the agent of Legionnaires' disease. Activation of alveolar macrophages with IFN-gamma is dose dependent; significant inhibition of L. pneumophila multiplication (mean 1.60 +/- 0.20 logs) is achieved consistently with concentrations of IFN-gamma of greater than or equal to 2 x 10(-2) micrograms/ml (220 U/ml). Activation of alveolar macrophages is also time dependent. In macrophages treated continuously after explantation, macrophages infected at 48 to 96 h after explantation are more inhibitory than macrophages infected at 24 h after explantation. In macrophages not treated continuously after explantation but treated for various lengths of time before infection, the longer their exposure to IFN-gamma before infection, the greater the inhibition of L. pneumophila multiplication (96 greater than 72 greater than 48 greater than 24 h). IFN-gamma-activated alveolar macrophages exhibit morphologic signs of activation, including increased size, spreading, and aggregation. This paper demonstrates that a human resident macrophage can be activated with IFN-gamma such that it exhibits enhanced antimicrobial activity against a relevant pathogen.  相似文献   

9.
Listeria monocytogenes is a facultative intracellular pathogen that infects a large diversity of host cells, including macrophages. To avoid the phagosome microbicidal environment, L. monocytogenes secretes a pore-forming toxin (listeriolysin O, LLO) that releases the bacterium into the cytoplasm. We hypothesized that the α-defensins (HNPs) and/or humanized θ-defensin (RC-1) peptides produced by human and non-human primate neutrophils, respectively, cooperate with macrophages to control L. monocytogenes infection. Our results establish that HNP-1 and RC-1 enable macrophages to control L. monocytogenes intracellular growth by inhibiting phagosomal escape, as a consequence, bacteria remain trapped in a LAMP-1-positive phagosome. Importantly, HNP-1 interaction with macrophages and RC-1 interaction with bacteria are required to prevent macrophage infection. In accordance with these results, RC-1 is a more potent anti-listerial peptide than HNP-1 and HNP-1 is acquired by macrophages and trafficked to the phagocytosed bacteria. Finally, HNP-1 and RC-1 antimicrobial activity is complemented by their ability to prevent LLO function through two mechanisms, blocking LLO-dependent perforation of macrophage membranes and the release of LLO from the bacteria. In conclusion, at the site of infection the cooperation between antimicrobial peptides, such as HNP-1, and macrophages likely plays a critical role in the innate immune defence against L. monocytogenes.  相似文献   

10.
BACKGROUNDAcute muscle injuries are one of the most common injuries in sports. Severely injured muscles are prone to re-injury due to fibrotic scar formation caused by prolonged inflammation. How to regulate inflammation and suppress fibrosis is the focus of promoting muscle healing. Recent studies have found that myoblasts and macrophages play important roles in the inflammatory phase following muscle injury; however, the crosstalk between these two types of cells in the inflammatory environment, particularly the exosome-related mechanisms, had not been well studied. AIMTo evaluate the effects of exosomes from inflammatory C2C12 myoblasts (IF-C2C12-Exos) on macrophage polarization and myoblast proliferation/differentiation.METHODSA model of inflammation was established in vitro by lipopolysaccharide stimulation of myoblasts. C2C12-Exos were isolated and purified from the supernatant of myoblasts by gradient centrifugation. Multiple methods were used to identify the exosomes. Gradient concentrations of IF-C2C12-Exos were added to normal macrophages and myoblasts. PKH67 fluorescence tracing was used to identify the interaction between exosomes and cells. Microscopic morphology, Giemsa stain, and immunofluorescence were carried out for histological analysis. Additionally, ELISA assays, flow cytometry, and western blot were conducted to analyze molecular changes. Moreover, myogenic proliferation was assessed by the BrdU test, scratch assay, and CCK-8 assay.RESULTSWe found that the PKH-67-marked C2C12-Exos can be endocytosed by both macrophages and myoblasts. IF-C2C12-Exos induced M1 macrophage polarization and suppressed the M2 phenotype in vitro. In addition, these exosomes also stimulated the inflammatory reactions of macrophages. Furthermore, we demonstrated that IF-C2C12-Exos disrupted the balance of myoblast proliferation/differentiation, leading to enhanced proliferation and suppressed fibrogenic/myogenic differentiation.CONCLUSIONIF-C2C12-Exos can induce M1 polarization, resulting in a sustained and aggravated inflammatory environment that impairs myoblast differentiation, and leads to enhanced myogenic proliferation. These results demonstrate why prolonged inflammation occurs after acute muscle injury and provide a new target for the regulation of muscle regeneration.  相似文献   

11.
Depending on the microenvironment, macrophages can acquire distinct functional phenotypes, referred to as classically activated M1 and M2. M1 macrophages are considered potent effector cells that kill intracellular pathogens, and M2 macrophages promote the resolution of wound healing. In this study, we are interested to know whether probiotic Bacillus amyloliquefaciens (Ba) can induce macrophages polarization. Real-time fluorescence PCR analysis demonstrated that the expression of IL-1β, iNOS, TNF-α and IL-6 genes for M1 macrophages was significantly increased at 1.5 h after probiotic Ba treatment compared to the probiotic Ba-free treatment (P < 0.01), whereas the expression of M2 macrophage marker genes (Arg1, Fizz1, MR, Ym1) was decreased (P < 0.05). Furthermore, the phagocytic activity was dramatically increased in the Ba-treated BMDMs using a FITC-dextran endocytosis assay. Together, these findings indicated that probiotic Ba facilitated polarization of M1 macrophages and enhanced its phagocytic capacity. The results expanded our knowledge about probiotic function-involved macrophage polarization.  相似文献   

12.
We found that the expression of microRNA (miRNA)-9a-5p decreased in inflammatory bowel diseases (IBD; ulcerative colitis and Crohn's disease). Further, we revealed the effects and mechanisms of miRNA-9a-5p for regulating IBD progression. In C57BL/6N mice, IBD was induced with dextran sodium sulfate (DSS), and the effects of endogenous miRNA-9a-5p were mimicked/antagonized through intraperitoneal injection of miRNA-9a-5p agomir and antagomir. In animal experimentation, agomir could inhibit intestinal inflammation and tissue damage, and reduce the mucosal barrier permeability. Antagomir, on the other hand, could promote barrier damage, whose effect was associated with the M1 macrophage polarization. This study finds that miRNA-9a-5p targets NOX4 to suppress ROS production, which plays an important role in mucosal barrier damage in IBD.  相似文献   

13.
Recent studies reported that Methyl-CpG–binding domain protein 2 (MBD2) promoted M2 macrophages accumulation to increase bleomycin-induced pulmonary fibrosis. However, the role and mechanism of action of MBD2 in macrophages differentiation and renal fibrosis remain largely unknown. In the current study, MBD2 not only promoted the differentiation of resting M0 macrophages to polarized M2 macrophages, but also induced them to polarized M1 macrophages and the transition of M2 to M1 macrophages. ChIP analysis demonstrated that MBD2 physically interacted with the promoter region of the CpG islands of G0S2 genes, and then activated their expression by inducing hypomethylation of the promoter region. Interestingly, the data demonstrated that the role of G0S2 in macrophages differentiation is consistent with MBD2. Furthermore, Co-culture of activated M1 macrophages and murine embryonic NIH 3T3 fibroblasts indicated that MBD2 mediated the M1-induction of ECM production by embryonic NIH 3T3 fibroblasts via promotion of G0S2. In addition, we also found that inhibition of MBD2 suppressed LPS induced the expression of p53 as well as activation and expression of stat3 in RAW264.7 macrophages. In vivo, MBD2 LysMcre attenuated unilateral ureteral obstruction (UUO) and ischemia/reperfusion (I/R)-induced renal fibrosis via downregulation of G0S2, which was demonstrated by the downregulation of fibronectin (FN), collagen I and IV, α-SMA, G0S2. These data collectively demonstrated that MBD2 in macrophages contributed to UUO and I/R-induced renal fibrosis through the upregulation of G0S2, which could be a target for treatment for chronic kidney disease.Subject terms: DNA methylation, DNA-binding proteins  相似文献   

14.
He  Welai  Che  Hong  Jin  Chaolong  Li  Yanli  Li  Feng  Zhou  Ruyuan 《Journal of physiology and biochemistry》2021,77(3):461-468
Journal of Physiology and Biochemistry - Little is known about the biological functions and underlying mechanisms of long non-coding RNA AFAP1-AS1 in degenerative calcified aortic valve disease...  相似文献   

15.
Using highly specific polyclonal antisera raised against recombinant murine IL-1 alpha and beta, we performed solid-phase immunoabsorption studies on supernates of resident and adjuvant-elicited CBA/J mouse peritoneal macrophages. Antibody specificity was established by reciprocal absorption studies and Western blot analysis. Supernates obtained from macrophages cultured for 18 hr in the presence of 1 microgram/ml lipopolysaccharide (LPS) were subjected to immunoabsorption. Approximately 78-90% of the released bioactive material was IL-1 and about 80% of this could be attributed to IL-1 beta. Analogous to that reported for human monocytes, these data suggest that IL-1 beta is the predominant released form of IL-1.  相似文献   

16.
During liver fibrosis, quiescent HSCs (qHSCs) are activated to become activated HSCs (aHSCs)/myofibroblasts. The signal adapter MyD88, an essential component of TLR signaling, plays an important role in liver fibrosis. However, far less is known about the specific effects of MyD88 signaling in both qHSCs and aHSCs in the progress of liver fibrosis. Here, we used a CCl4-induced mouse fibrosis model in which MyD88 was selectively depleted in qHSCs (GFAPMyD88−/− mice) or aHSCs (α-SMAMyD88−/− mice). MyD88 deficiency in qHSCs or aHSCs attenuated liver fibrosis in mice and inhibited α-SMA-positive cell activation. Inhibition of MyD88 in HSCs decreased α-SMA and collagen I levels, inflammatory cell infiltration, and pro-inflammatory gene expression. Furthermore, MyD88 signaling in HSCs increased the secretion of CXCL10, which promoted macrophage M1 polarization through CXCR3, leading to activation of the JAK/STAT1 pathway. Inhibition of CXCL10 attenuated macrophage M1 polarization and reduced liver fibrosis. Thus, MyD88 signaling in HSCs crucially contributes to liver fibrosis and provides a promising therapeutic target for the prevention and treatment of liver fibrosis.Subject terms: Mechanisms of disease, Kupffer cells  相似文献   

17.
Epigallocatechin gallate (EGCg), the major tea catechin, is known as a potent anti-microbial and anti-tumor compound. The effects of EGCg on host defense mechanisms against Listeria monocytogenes infection were examined in vitro using mouse peritoneal exudate cells. The study showed that EGCg inhibited the intracellular growth of L. monocytogenes in macrophages. The enhancement of in vitro anti-L. monocytogenes activity by EGCg is not due to the modulation of reactive oxygen intermediates or the production of reactive nitrogen intermediates but due to the inhibition of its escaping from the phagosome into cytosolic space. Anti-L. monocytogenes of EGCg is through the inhibition of hemolytic and cholesterol-binding activity of listeriolysin O, which usually disrupts the phagosomal membrane in the escaping phase of L. monocytogenes.  相似文献   

18.
19.
Tan  Hao  Xu  Wenjie  Ding  Xiaoqian  Ye  Huayu  Hu  Yun  He  Xinyi  Ming  Ye  Zheng  Leilei 《Glycoconjugate journal》2022,39(4):487-497
Glycoconjugate Journal - Advanced glycation end products (AGEs) aggregation and macrophages polarization are identified as the main factors contributing to bone diseases caused by aging or...  相似文献   

20.
The rate of fat graft survival is a critical aspect of successful surgery and has been a matter of concern for over 20 years.Owing to their anti-inflammatory ef...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号