首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 183 毫秒
1.
In the 21st century, researchers have attempted a synthesis between community ecology and evolutionary biology. This emerging research area, which aims to synthesize community ecology and evolutionary biology, is evolutionary community ecology. Evolutionary community ecology addresses how intraspecific trait variation in community members is essential for predicting community properties and, how community properties are a key component of the selective forces that determine genetic and phenotypic variation in a community member. In this paper, I review recent findings in evolutionary community ecology in plant-associated arthropods in terrestrial ecosystems. I discuss roles of both genetic variation and phenotypic plasticity as a source of trait variation in plants in shaping plant-associated arthropod communities. Also, I discuss effects of genetic variation in herbivores on plant-associated arthropod communities. Furthermore, I highlight community context evolution in which multiple species interactions and community composition affect trait evolution of a community member. Finally, I argue that future studies should investigate a feedback loop between community and evolutionary dynamics beyond unidirectional studies on effects of evolution on a community or vice versa. This approach will provide major insights into mechanistic principles for making predictions of community ecology.  相似文献   

2.
A synthesis between community ecology and evolutionary biology is emerging that identifies how genetic variation and evolution within one species can shape the ecological properties of entire communities and, in turn, how community context can govern evolutionary processes and patterns. This synthesis incorporates research on the ecology and evolution within communities over short timescales (community genetics and diffuse coevolution), as well as macroevolutionary timescales (community phylogenetics and co-diversification of communities). As we discuss here, preliminary evidence supports the hypothesis that there is a dynamic interplay between ecology and evolution within communities, yet researchers have not yet demonstrated convincingly whether, and under what circumstances, it is important for biologists to bridge community ecology and evolutionary biology. Answering this question will have important implications for both basic and applied problems in biology.  相似文献   

3.
The recognition that animals sense the world in a different way than we do has unlocked important lines of research in ecology and evolutionary biology. In practice, the subjective study of natural stimuli has been permitted by perceptual spaces, which are graphical models of how stimuli are perceived by a given animal. Because colour vision is arguably the best‐known sensory modality in most animals, a diversity of colour spaces are now available to visual ecologists, ranging from generalist and basic models allowing rough but robust predictions on colour perception, to species‐specific, more complex models giving accurate but context‐dependent predictions. Selecting among these models is most often influenced by historical contingencies that have associated models to specific questions and organisms; however, these associations are not always optimal. The aim of this review is to provide visual ecologists with a critical perspective on how models of colour space are built, how well they perform and where their main limitations are with regard to their most frequent uses in ecology and evolutionary biology. We propose a classification of models based on their complexity, defined as whether and how they model the mechanisms of chromatic adaptation and receptor opponency, the nonlinear association between the stimulus and its perception, and whether or not models have been fitted to experimental data. Then, we review the effect of modelling these mechanisms on predictions of colour detection and discrimination, colour conspicuousness, colour diversity and diversification, and for comparing the perception of colour traits between distinct perceivers. While a few rules emerge (e.g. opponent log–linear models should be preferred when analysing very distinct colours), in general model parameters still have poorly known effects. Colour spaces have nonetheless permitted significant advances in ecology and evolutionary biology, and more progress is expected if ecologists compare results between models and perform behavioural experiments more routinely. Such an approach would further contribute to a better understanding of colour vision and its links to the behavioural ecology of animals. While visual ecology is essentially a transfer of knowledge from visual sciences to evolutionary ecology, we hope that the discipline will benefit both fields more evenly in the future.  相似文献   

4.
张德兴 《生物多样性》2015,23(5):559-31
分子生态学是多学科交叉的整合性研究领域, 是运用进化生物学理论解决宏观生物学问题的科学。经过半个多世纪的发展, 本学科已日趋成熟, 它不仅已经广泛渗透到宏观生物学的众多学科领域, 而且已经成为连接和融合很多不同学科的桥梁, 是目前最具活力的研究领域之一。其研究的范畴, 从最基础的理论和方法技术, 到格局和模式的发现和描述, 到对过程和机制的深入探讨, 再到付诸于实践的行动和规划指导等各个层次。分子生态学的兴起给宏观生物学带来了若干飞跃性的变化, 使宏观生物学由传统的以观察、测量和推理为主的描述性研究转变为以从生物和种群的遗传构成的变化和历史演化背景上检验、证明科学假设及揭示机制和规律为主的机制性/解释性研究, 因而使得对具有普遍意义的科学规律、生态和进化过程及机制的探索成为可能。分子生态学已经进入组学研究时代, 这使得阐明复杂生态过程、生物地理过程和适应性演化过程的机制性研究由原来难以企及的梦想变成完全可以实现的探求; 它也带来了全新的挑战, 其中最有深远影响的将是对分子生态学研究至关重要的进化生物学基础理论方面的突破, 例如遗传变异理论、种群分化理论、表观遗传因素的作用, 乃至进化生物学的基本知识构架等等。这些方面的进展必将使宏观生物学迎来一场空前的革命, 并对生态学的所有分支学科产生重大影响, 甚至催生诸如生态表观组学这样的新分支学科。对于中国科学家来说, 分子生态学组学时代的开启, 更是一个千载难逢的机遇, 为提出和建立生命科学的新方法、新假说、新思想和新理论提供了莫大的探索空间——此前我们对宏观生物学方法、理论和思想的发展贡献很小。然而, 限制组学时代重大突破的关键因素是理论、概念、理念、实验方法或分析方法方面的创新和突破, 这正是我国分子生态学研究最薄弱的环节。我国教育部门应尽快调整生命科学本科生培养的理念和方法, 以培养具备突出创新潜力的年轻一代后备人才; 同时, 科研项目资助部门和研究人员不仅应清醒地认识本学科领域的发展态势, 更要及时调整思路, 树立新的项目管理理念和治学 理念。  相似文献   

5.
6.
Spadefoot toads have emerged as a model system for addressing fundamental questions in ecological and evolutionary developmental biology (eco-evo-devo). Their tadpoles produce a wide range of adaptive phenotypes in direct response to diverse environmental stimuli. Such phenotypic plasticity offers an excellent opportunity to examine how an organism's ecology affects its development as well as how an organism's development influences its ecology and evolution. By characterizing and understanding the interconnectedness between an organism's environment, its development responses, and its ecological interactions in natural populations, such research promises to clarify further the role of the environment in not only selecting among diverse phenotypes, but also creating such phenotypes in the first place.  相似文献   

7.
8.
Baker's yeast, Saccharomyces cerevisiae, is not only an extensively used model system in genetics and molecular biology, it is an upcoming model for research in ecology and evolution. The available body of knowledge and molecular techniques make yeast ideal for work in areas such as evolutionary and ecological genomics, population genetics, microbial biogeography, community ecology and speciation. As long as ecological information remains scarce for this species, the vast amount of data that is being generated using S. cerevisiae as a model system will remain difficult to interpret in an evolutionary context. Here we review the current knowledge of the evolution and ecology of S. cerevisiae and closely related species in the Saccharomyces sensu stricto group, and suggest future research directions.  相似文献   

9.
The field of molecular biology is advancing fast with new powerful technologies, sequencing methods and analysis software being developed constantly. Commonly used tools originally developed for research on humans and model species are now regularly used in ecological and evolutionary research. There is also a growing interest in the causes and consequences of epigenetic variation in natural populations. Studying ecological epigenetics is currently challenging, especially for vertebrate systems, because of the required technical expertise, complications with analyses and interpretation, and limitations in acquiring sufficiently high sample sizes. Importantly, neglecting the limitations of the experimental setup, technology and analyses may affect the reliability and reproducibility, and the extent to which unbiased conclusions can be drawn from these studies. Here, we provide a practical guide for researchers aiming to study DNA methylation variation in wild vertebrates. We review the technical aspects of epigenetic research, concentrating on DNA methylation using bisulfite sequencing, discuss the limitations and possible pitfalls, and how to overcome them through rigid and reproducible data analysis. This review provides a solid foundation for the proper design of epigenetic studies, a clear roadmap on the best practices for correct data analysis and a realistic view on the limitations for studying ecological epigenetics in vertebrates. This review will help researchers studying the ecological and evolutionary implications of epigenetic variation in wild populations.  相似文献   

10.
At present, the disciplines of evolutionary biology and ecosystem science are weakly integrated. As a result, we have a poor understanding of how the ecological and evolutionary processes that create, maintain, and change biological diversity affect the flux of energy and materials in global biogeochemical cycles. The goal of this article was to review several research fields at the interfaces between ecosystem science, community ecology and evolutionary biology, and suggest new ways to integrate evolutionary biology and ecosystem science. In particular, we focus on how phenotypic evolution by natural selection can influence ecosystem functions by affecting processes at the environmental, population and community scale of ecosystem organization. We develop an eco-evolutionary model to illustrate linkages between evolutionary change (e.g. phenotypic evolution of producer), ecological interactions (e.g. consumer grazing) and ecosystem processes (e.g. nutrient cycling). We conclude by proposing experiments to test the ecosystem consequences of evolutionary changes.  相似文献   

11.
Since the mid-twentieth century, numerous vertebrates and invertebrates have been used as model organisms and become indispensable tools for exploring a broad range of biological and ecological processes. Crayfish seem to be adequate models which resulted in their involvement in research. In the two decades since its discovery, ongoing research has confirmed that the marbled crayfish (Procambarus virginalis Lyko, 2017) is an ideal taxon in this regard, especially due to its almost continuous asexual reproduction providing a source of genetically identical offspring. This review provides an overview of the occurrence, biology, ecology, ethology, and human exploitation of marbled crayfish with primary focus on its use as a laboratory model organism as well as potential risks to native biota in case of its introduction. Genetic uniformity, ease of culture, and a broad behaviour repertoire fosters the use of marbled crayfish in epigenetics and developmental biology, as well as physiological, ecotoxicological, and ethological research. Marbled crayfish could be further exploited for basic and applied fields of science such as evolutionary biology and clonal tumour evolution. However, due to its high invasive potential in freshwater environments security measures must be taken to prevent its escape into the wild.  相似文献   

12.
A major goal of biological research is to provide a mechanistic understanding of diverse biological processes. To this end, synthetic biology offers a powerful approach, whereby biological questions can be addressed in a well-defined framework. By constructing simple gene circuits, such studies have generated new insights into the design principles of gene regulatory networks. Recently, this strategy has been applied to analyze ecological and evolutionary questions, where population-level interactions are critical. Here, we highlight recent development of such systems and discuss how they were used to address problems in ecology and evolutionary biology. As illustrated by these examples, synthetic ecosystems provide a unique platform to study ecological and evolutionary phenomena that are challenging to study in their natural contexts.  相似文献   

13.
Connectivity among populations determines the dynamics and evolution of populations, and its assessment is essential in ecology in general and in conservation biology in particular. The robust basis of any ecological study is the accurate delimitation of evolutionary units, such as populations, metapopulations and species. Yet a disconnect still persists between the work of taxonomists describing species as working hypotheses and the use of species delimitation by molecular ecologists interested in describing patterns of gene flow. This problem is particularly acute in the marine environment where the inventory of biodiversity is relatively delayed, while for the past two decades, molecular studies have shown a high prevalence of cryptic species. In this study, we illustrate, based on marine case studies, how the failure to recognize boundaries of evolutionary‐relevant unit leads to heavily biased estimates of connectivity. We review the conceptual framework within which species delimitation can be formalized as falsifiable hypotheses and show how connectivity studies can feed integrative taxonomic work and vice versa. Finally, we suggest strategies for spatial, temporal and phylogenetic sampling to reduce the probability of inadequately delimiting evolutionary units when engaging in connectivity studies.  相似文献   

14.
15.
To understand speciation, we first need to know what species are. Yet debates over species concepts have seemed endless, with little obvious relevance to the study of speciation. Recently, there has been progress in resolving these debates, favoring a lineage-based, evolutionary species concept. This progress calls for reconsideration of the study of speciation. Traditional speciation research based on the biological species concept has led to great advances in understanding how nonallopatric speciation occurs and how species diverge and remain separate from each other. However, this research has neglected the question of how new species arise in the first place for the most common geographic mode (allopatric). A new and very different research program is needed to understand the ecological and evolutionary processes that split an ancestral species into new allopatric lineages. This research program will connect speciation to many other fundamental questions in evolutionary biology, ecology, biogeography, and conservation biology.  相似文献   

16.
17.
本文简要论述了2010-1015年间,我国濒危哺乳动物(主要是食肉类、灵长类、有蹄类和鲸类) 保护生物学的研究进展,涉及进化保护生物学、保护生态学、保护行为学、保护生理学、保护遗传学、保护基因组学与宏基因组学和保护政策建议与实践等诸多领域。以大熊猫和金丝猴为代表的濒危动物保护生物学研究成绩显著。各项研究结果表明,大熊猫并非是一个已走到“进化尽头”的物种,仍具进化潜力。虽然大熊猫仍然面临栖息地破碎等环境问题,总的来看其种群数量在逐渐增长,栖息地面积在逐渐扩大,已走出困境并脱离“濒危”的状态,可降为“易危”。我国大熊猫的保护为世界生物多样性保护树立了成功的范例。根据国内研究进展和国际发展动态,该文还对未来保护生物学的研究提出了一些建议,包括加强长期定点监测与系统性的研究工作,加强新理论、新方法和新技术的研发及应用,加强宏微观研究手段的结合从机制上揭示科学问题,加强动物对食物、高原极端环境和水生生态环境的适应性进化分子机制的揭示,加强理论与实践相结合积极推动研究成果的应用,为濒危动物的有效保护保驾护航。  相似文献   

18.
Bumble bees are a longstanding model system for studies on behaviour, ecology and evolution, due to their well‐studied social lifestyle, invaluable role as wild and managed pollinators, and ubiquity and diversity across temperate ecosystems. Yet despite their importance, many aspects of bumble bee biology have remained enigmatic until the rise of the genetic and, more recently, genomic eras. Here, we review and synthesize new insights into the ecology, evolution and behaviour of bumble bees that have been gained using modern genetic and genomic techniques. Special emphasis is placed on four areas of bumble bee biology: the evolution of eusociality in this group, population‐level processes, large‐scale evolutionary relationships and patterns, and immunity and resistance to pesticides. We close with a prospective on the future of bumble bee genomics research, as this rapidly advancing field has the potential to further revolutionize our understanding of bumble bees, particularly in regard to adaptation and resilience. Worldwide, many bumble bee populations are in decline. As such, throughout the review, connections are drawn between new molecular insights into bumble bees and our understanding of the causal factors involved in their decline. Ongoing and potential applications to bumble bee management and conservation are also included to demonstrate how genetics‐ and genomics‐enabled research aids in the preservation of this threatened group.  相似文献   

19.
Functional genomics provides new opportunities to address issues of fundamental interest in evolutionary biology and suggests many new research directions that are ripe for evolutionary investigation. New types of data, and the ability to study biological processes from a whole genome perspective, are likely to have a profound impact on evolutionary biology and ecology. To illustrate, we discuss how genomewide gene expression studies can be used to reformulate questions about trade-offs and pleiotropy. We then touch on some of the new research opportunities that the application of functional genomics affords to evolutionary biologists. We end with some brief notes about how evolutionary biology and comparative approaches will probably have an impact on functional genomics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号