首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Contrasting phenotypes of alpine cushion species have been recurrently described in several mountain ranges along small‐scale topography gradients, with tight competitive phenotypes in stressful convex topography and loose facilitative phenotypes in sheltered concave topography. The consistency of phenotypic effects along large‐scale climate stress gradients have been proposed as a test of the likely genetic bases of the differences observed at small‐scale. Inversely, plastic phenotypic effects are more likely to vanish at some points along climate stress gradients. We tested this hypothesis for two phenotypes of the alpine cushion species Thylacospermum caespitosum at four points along regional gradients of cold and drought stress in northwest China. We measured the traits of the two cushion phenotypes and quantified their associated plant communities and environmental variables along the regional temperature and aridity gradients. Cushion height, convexity and stem density overall showed significant effect of phenotypes. Difference in tightness of cushions between phenotypes was consistent across climate conditions, whereas differences in cushion convexity and height between phenotypes increased with increasing cold stress. Phenotypic effects on species richness and abundance were consistent along both climate gradients but not effects on species composition, while there were no phenotypic effects on environmental variables. Additionally, RII (relative interaction index) curves were linear along the drought gradient but unimodal along the temperature gradient, likely due to the occurrence of contrasting species pools at the different sites. We conclude that the consistency of phenotypic effects of T. caespitosum was high for species richness and abundance and mainly explained by differences in interference mediated by likely heritable differences in cushion tightness. Additionally, our study shows that the shapes of the relationship between plant responses to neighbours and environmental stresses are not necessarily driven by niche‐based deterministic factors.  相似文献   

2.
Knowledge about the phylogeny and ecology of communities along environmental gradients helps to disentangle the role of competition-driven processes and environmental filtering for community assembly. In this study, we evaluated patterns in species richness, phylogenetic structure and life-history traits of bee communities along altitudinal gradients in the Alps, Germany. We found a linear decline in species richness and abundance but increasing phylogenetic clustering in communities with increasing altitude. The proportion of social- and ground-nesting species, as well as mean body size and altitudinal range of bee communities, increased with increasing altitude, whereas the mean geographical distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, whereas the relative importance of competition increases at low altitudes. We conclude that inherent phylogenetic and ecological species attributes at high altitudes pose a threat for less competitive alpine specialists with ongoing climate change.  相似文献   

3.

Background

Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient.

Methodology/Principal Findings

Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size.

Conclusions/Significance

We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity.  相似文献   

4.
Extensively managed and flower‐rich mountain hay meadows, hotspots of Europe''s biodiversity, are subject to environmental and climatic gradients linked to altitude. While the shift of pollinators from bee‐ to fly‐dominated communities with increasing elevation across vegetation zones is well established, the effect of highland altitudinal gradients on the community structure of pollinators within a specific habitat is poorly understood. We assessed wild bee and hoverfly communities, and their pollination service to three plant species common in mountain hay meadows, in eighteen extensively managed yellow oat grasslands (Trisetum flavescens) with an altitudinal gradient spanning approx. 300 m. Species richness and abundance of pollinators increased with elevation, but no shift between hoverflies and wild bees (mainly bumblebees) occurred. Seedset of the woodland cranesbill (Geranium sylvaticum) increased with hoverfly abundance, and seedset of the marsh thistle (Cirsium palustre) increased with wild bee abundance. Black rampion (Phyteuma nigrum) showed no significant response. The assignment of specific pollinator communities, and their response to altitude in highlands, to different plant species underlines the importance of wild bees and hoverflies as pollinators in extensive grassland systems.  相似文献   

5.
Understanding the biogeographic patterns of root-associated fungi and their sensitivity to temperature may improve predictions of future changes in terrestrial biodiversity and associated ecosystem processes, but data are currently limited. Anticipating change will require combining observational data, which predict how climatic factors limit current species distributions, with direct manipulations of climate, which can isolate responses to specific climate variables. Root endophytes are common symbionts of plants, particularly in arctic and alpine environments, yet their responses to climate warming are not resolved. Here, we directly cultured endophytic fungi from roots collected along altitudinal gradients in replicated mountain watersheds and from a 27 y field warming experiment in the Rocky Mountains, USA, to improve understanding of climate impacts on fungal root endophytes. Fungal taxa that were common at high elevations declined most under climate warming, whereas low elevation dominants responded neutrally or increased with experimental warming. Altitudinal gradients in fungal communities were strongly specific to the plant host species. Specifically, Poa species had 25–60% greater fungal isolate abundance and 25–38% greater fungal diversity at high elevations than at low elevation sites. In contrast, Festuca thurberi had 64% lower fungal diversity on roots at high elevation than at low elevation. Our results help to improve understanding of the potential for climate change to alter plant-fungal interactions in mountain ecosystems.  相似文献   

6.
1. Decades of introductions of exotic sportfish to mountain lakes around the world have impoverished them biologically, and this may be exacerbated by global warming. We assessed the current status of invasive salmonids and native zooplankton communities in 34 naturally fishless lakes along an elevational gradient, which served as an environmental proxy for the expected effects of climate change. 2. Our main goal was to explore how climate‐related variables influence the effects of stocked salmonids on the total biomass, species richness and taxonomic composition of zooplankton. We predicted that warmer conditions would dampen the negative predatory effects of exotic brook trout (Salvelinus fontinalis) on zooplankton communities because more temperate lakes contain a greater diversity of potentially tolerant species. 3. Instead, we discovered that the persistence of stocked brook trout in the warmer lakes significantly amplified total zooplankton biomass and species richness. In colder and deeper lakes, zooplankton were relatively unaffected by S. fontinalis, which however persisted better in alpine lakes than at lower elevations after stocking practices were halted over two decades ago. Warmer lake conditions and higher concentrations of dissolved organic carbon (DOC) were significant primary drivers of zooplankton species turnover, both favouring greater species diversity. 4. Our findings of an ecological surprise involving potential synergistic positive effects of climate warming and exotic trout on native zooplankton communities presents a conundrum for managers of certain national mountain parks. Present mandates to eradicate non‐native trout and return the mountain lakes to their naturally fishless state may conflict with efforts to conserve biodiversity under a rapidly changing climate.  相似文献   

7.

Background

The stress‐gradient hypothesis predicts a shift from facilitative to competitive plant interactions with decreasing abiotic stress. This has been supported by studies along elevation and temperature gradients, but also challenged by the hypothesis of a facilitation collapse at extremely harsh sites. Although facilitation is known to be important in primary succession, few studies have examined these hypotheses along primary succession gradients.

Aim

To examine whether there is a relationship between the presence of the circumpolar cushion plant Silene acaulis and other species, and if so, whether there is a shift between positive and negative interactions along a primary succession gradient in a glacier foreland.

Location

Finse, southern Norway.

Methods

We examined the performance of the common alpine forb Bistorta vivipara, species richness of vascular plants, bryophytes and lichens, and the number of seedlings and fertile vascular plants in S. acaulis cushions, and control plots without S. acaulis, along a succession gradient with increasing distance from a glacier front, and thus decreasing abiotic stress. To examine if S. acaulis cushions modify the abiotic environment, we recorded soil temperature, moisture, organic content and pH in cushions and control plots.

Results

Bistorta vivipara performed better, as shown by bigger leaves in S. acaulis cushions compared to control plots in the harshest part of the gradient close to the glacier. There were few differences in B. vivipara performance between cushion and control plots in the more benign environment further away from the glacier. This suggests a shift from facilitative to mainly neutral interactions by S. acaulis on the performance of B. vivipara with decreasing abiotic stress. A trend, although not significant, of higher vascular species richness and fertility inside S. acaulis cushions along the whole gradient, suggests that S. acaulis also facilitates community‐level species richness. The causal mechanism of this facilitation is likely that the cushions buffer extreme temperatures.

Conclusions

Our results support the stress‐gradient hypothesis for the relationship between the cushion plant S. acaulis and the performance of a single species along a primary succession gradient in a glacier foreland. S. acaulis also tended to increase vascular plant species richness and fertility regardless of stress level along the gradient, suggesting facilitation at the community level. We found no collapse of facilitation at the most stressful end of the gradient in this alpine glacier foreland.  相似文献   

8.
In summer 2003 we recorded the presence and abundance of alien plant species at 232 sites (107 railway stations and 125 road sites) along mountain passes in the Swiss Alps. The altitudinal distribution of species was related to the current abundance of the species in Switzerland and time since introduction. A total of 155 alien taxa were recorded. Numbers of species per site declined exponentially with altitude, and only a few species were found in the alpine zone (>2000 m). In contrast, species richness among comparable native taxa appeared to be nearly independent of altitude over the range investigated. Maximum altitude reached by alien species was related positively to both total area occupied in Switzerland and to time since introduction. A comparison of the results with earlier records suggests that many species, particularly those previously restricted to low or intermediate altitudes, have advanced their altitudinal limits over the past few decades. Various hypotheses are presented to explain the declining abundance of alien species with altitude: low-altitude filter effects, low propagule pressure, and genetic swamping of peripheral populations at higher altitudes. However, at present we do not have sufficient evidence to determine the relative importance of these effects. We conclude that invasion into mountain areas such as the Swiss Alps tends to proceed rather slowly, though the process may be accelerated by climatic warming. For this reason, further research to investigate the processes determining how plants invade mountain areas is urgently needed. And more generally, investigations into the distribution of alien species along strong altitudinal gradients may provide valuable insights into the mechanisms driving the spread of alien organisms.  相似文献   

9.
The Madrean Sky Islands are mountain ranges isolated by a ‘desert sea’. This area is a biodiversity hotspot currently threatened by climate change. Here, we studied soil microbial communities along elevational gradients in eight Madrean Sky Islands in southeastern Arizona (USA). Our results showed that while elevational microbial richness gradients were weak and not consistent across different mountains, soil properties strongly influenced microbial community composition (overall composition and the abundance of key functional groups) along elevational gradients. In particular, warming is associated with a higher abundance of soil-borne fungal plant pathogens that concomitantly might facilitate upward elevational shifts of plant species released from negative plant–soil feedbacks. Furthermore, projected warming and drought in the area aggravated by anthropogenic nitrogen deposition on mountain tops (and thus, decreasing nitrogen limitation) can enhance a shift from ectomycorrhizal to arbuscular mycorrhizal fungi. Overall, these results indicate that climate change effects on plant–soil interactions might have profound ecosystem consequences.  相似文献   

10.
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.  相似文献   

11.

Background

Environmental stress is widely considered to be an important factor in regulating whether changes in diversity will affect the functioning and stability of ecological communities.

Methodology/Principal Findings

We investigated the effects of a major environmental stressor (a decrease in water volume) on diversity-abundance and diversity-stability relations in laboratory microcosms composed of temperate multi-trophic rock pool communities to identify differences in community and functional group responses to increasing functional group richness along a gradient of environmental stress (low, medium, and high water volume). When a greater number of functional groups were present, communities were less temporally variable and achieved higher abundances. The stabilizing effect of increased functional group richness was observed regardless of the level of environmental stress the community was subjected too. Despite the strong consistent stabilizing effect of increased functional group richness on abundance, the way that individual functional groups were affected by functional group richness differed along the stress gradient. Under low stress, communities with more functional groups present were more productive and showed evidence of strong facilitative interactions. As stress increased, the positive effect of functional group richness on community abundance was no longer observed and compensatory responses became more common. Responses of individual functional groups to functional group richness became increasing heterogeneous are stress increased, prompting shifts from linear diversity-variability/abundance relations under low stress to a mix of linear and non-linear responses under medium and high stress. The strength of relations between functional group richness and both the abundances and temporal variability of functional groups also increased as stress increased.

Conclusions/Significance

While stress did not affect the relation between functional group richness and stability per se, the way in which functional groups responded to changes in functional group richness differed as stress increased. These differences, which include increases in the heterogeneity of responses of individual functional groups, increases in compensatory dynamics, and increases in the strength of richness-abundance and richness-variability relations, may be critical to maintaining stability under increasingly stressful environmental conditions.  相似文献   

12.

Background

Thermal gradients along changes in elevation in mountainous environments are reflected by different biotas. Although there have been studies of elevation variation in bat assemblages in summer, winter changes in the same gradients remain unknown.

Methodology/Principal Findings

The objective of this study was to document changes in the species composition of bats hibernating in caves along a temperate elevational gradient. We studied 70 caves between from 300 m to 1,930 m altitude along a slope of the Carpathian Mountains in southern Poland. We recorded changes in bats, including species richness, abundance, altitudinal distribution and dominance during consecutive winters between 2003 and 2009. Similarity of dominance of faunal structure was assessed by using the Bray-Curtis similarity index. We used the generalised additive model and rarefaction to study the variation in species richness, and generalized additive mixed models to examine the effect of abiotic factors on the qualitative and quantitative structure of bat assemblages. During 351 surveys we recorded 13,856 hibernating bats from 15 species. Species richness peaked around mid-elevation (1,100–1,400 m a.s.l.) with richness declining at both higher and lower elevations. Based on the results of a cluster analysis, we could distinguish among four altitudinal zones that differed in species richness and dominance structure.

Conclusions/Significance

This is the first study documenting changes in species richness and variation of structure of bats hibernating in caves along an elevational gradient. The most surprising and key finding is the fact that changes in the structure of assemblages of hibernating bats along the altitudinal gradient occurred in jumps, forming zones similar to those observed in the vegetation zones. Moreover, species richness and dominance structure of assemblages of hibernating bats in the mountains depended not only on location above sea level, but also on local geomorphologic conditions which strongly affected the microclimate of the caves.  相似文献   

13.
The extent to which small shifts among local topographic microsites could mitigate the effects of larger-scale climate change in arctic–alpine systems including mountain top organisms is largely unknown. This study is among the first to evaluate the relative contribution of microsite and altitude as a proxy for climate change on saxicolous lichen communities. We registered 107 lichen species in 54 boulders ranging from 900 to 2700 m.a.s.l. and in a large array of microsites in central Argentina. Communities ordinated along NMS multivariate analysis axes 1, 2 and 3 presented a cumulative R2 of 80%. The three axes were explained by altitude with axis 1 only being explained by altitude. Axis 2 was also explained by slope and aspect whereas axis 3 was explained by the interaction of altitude with aspect indicating that aspect was important only at lower altitudes but not at the mountain top. Lichen cover and richness were similar throughout the altitudinal gradient. We interpret that under a climate warming scenario, lower altitude species occupying pole ward facing slopes will have to migrate upwards while at the mountain top—for most communities—there still is scope for microsite segregation to compensate climate change.  相似文献   

14.

Aim

To assess how environmental, biotic and anthropogenic factors shape native–alien plant species richness relationships across a heterogeneous landscape.

Location

Banks Peninsula, New Zealand.

Methods

We integrated a comprehensive floristic survey of over 1200 systematically located 6 × 6 m plots, with corresponding climate, environmental and anthropogenic data. General linear models examined variation in native and alien plant species richness across the entire landscape, between native‐ and alien‐dominated plots, and within separate elevational bands.

Results

Across all plots, there was a significant negative correlation between native and alien species richness, but this relationship differed within subsets of the data: the correlation was positive in alien‐dominated plots but negative in native‐dominated plots. Within separate elevational bands, native and alien species richness were positively correlated at lower elevations, but negatively correlated at higher elevations. Alien species richness tended to be high across the elevation gradient but peaked in warmer, mid‐ to low‐elevation sites, while native species richness increased linearly with elevation. The negative relationship between native and alien species richness in native‐dominated communities reflected a land‐use gradient with low native and high alien richness in more heavily modified native‐dominated vegetation. In contrast, native and alien richness were positively correlated in very heavily modified alien‐dominated plots, most likely due to covariation along a gradient of management intensity.

Main conclusions

Both positive and negative native–alien richness relationships can occur across the same landscape, depending on the plant community and the underlying human and environmental gradients examined. Human habitat modification, which is often confounded with environmental variation, can result in high alien and low native species richness in areas still dominated by native species. In the most heavily human modified areas, dominated by alien species, both native and alien species may be responding to similar underlying gradients.
  相似文献   

15.
Interspecific facilitation contributes to the assembly of desert plant communities. However, we know little of how desert communities invaded by exotic species respond to facilitation along regional-scale aridity gradients. These measures are essential for predicting how desert plant communities might respond to concomitant plant invasion and environmental change. Here, we evaluated the potential for Bromus tectorum (a dominant invasive plant species) and the broader herbaceous plant community to form positive associations with native shrubs along a substantial aridity gradient across the Great Basin, Mojave, and San Joaquin Deserts in North America. Along this gradient, we sampled metrics of abundance and performance for B. tectorum, all native herbaceous species combined, all exotic herbaceous species combined, and the total herbaceous community using 180 pairs of shrub and open microsites. Across the gradient, B. tectorum formed strong positive associations with native shrubs, achieving 1.6–2.2 times greater abundance, biomass, and reproductive output under native shrubs than away from shrubs, regardless of relative aridity. In contrast, the broader herbaceous community was not positively associated with native shrubs. Interestingly, increasing B. tectorum abundance corresponded to decreasing native abundance, native species richness, exotic species richness, and total species richness under but not away from shrubs. Taken together, these findings suggest that native shrubs have considerable potential to directly (by increasing abundance and performance) and indirectly (by increasing competitive effects on neighbors) facilitate B. tectorum invasion across a large portion of the non-native range.  相似文献   

16.
Montane birds face significant threats from a warming climate, so determining the environmental factors that most strongly influence the composition of such assemblages is of critical conservation importance. Changes in temperature and other environmental conditions along elevational gradients are known to influence the species richness and abundance of bird assemblages occupying mountains. However, the role of species‐specific traits in mediating the responses of bird species to changing conditions remains poorly understood. We aimed to determine whether different bird species responded differently to changing environmental conditions in a relatively understudied biodiversity hotspot in subtropical rainforest on the east coast of Australia. We examined patterns in avian species richness and abundance along two rainforest elevational gradients using monthly point counts between September 2015 and October 2016. Environmental data on temperature, wetness, canopy cover and canopy height were collected simultaneously, and trait information on body size and feeding guild membership for each bird species was obtained from the Handbook of Australian, New Zealand and Antarctic Birds. We used a generalized linear mixed modelling (GLMM) framework to determine the drivers of species richness and abundance and to quantify species’ trait–environment interactions. GLMMs indicated that temperature alone was significantly positively correlated with species richness and abundance. Species richness declined with increasing elevation. When modelling abundance, we found that feeding guild membership did not significantly affect species’ responses to environmental conditions. In contrast, the predicted abundance of a species was found to depend on its body size, due to significant positive interactions between this trait, temperature and canopy cover. Our findings indicate that large‐bodied birds are likely to increase in abundance more rapidly than small‐bodied birds with continued climatic warming. These results underline the importance of temperature as a driving factor of avian community assembly along environmental gradients.  相似文献   

17.

Background

Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive.

Methods and Principal Findings

We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world''s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport''s rule for the birds of Sikkim region of the Himalaya.

Conclusions and Significance

This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention.  相似文献   

18.
Changes in plant species richness across environmental and temporal gradients have often been explained by the intermediate disturbance hypothesis and a unimodal diversity–productivity relationship. We tested these predictions using two sets of mountain plant communities assembled along postglacial successional and snow depth (disturbance and stress) gradients in maritime Kamchatka. In each community, we counted the number of species in plots of increasing sizes (0.0025–100 m2) and analyzed them using species–area curves fitted by the Arrhenius power function and the Gleason logarithmic function. A comparison of successional communities along a 270-year-old moraine chronosequence behind the receding Koryto Glacier—representing gradients of increasing productivity and resource competition—confirmed the unimodal species richness pattern. The plant diversity peaked in a 60–80-year-old SalixAlnus stand where light availability was sufficient to sustain a rich understory combining pioneer and late successional herbs. The closed Alnus canopy on older moraines caused a pronounced decrease in species richness for all plot sizes (interactive stage 80–120 years since deglaciation). A slight increase in species richness in the oldest assortative stages (120–270 years), when Alnus stands are mature, was found only at the smaller spatial scales. This reflects (i) the consolidation of clonal understory dominants and (ii) the absence of other woody species such as Betula ermanii whose invasion would eliminate Alnus and increase diversity at larger spatial scales. A comparative study of major mountain plant communities distributed above the Koryto Glacier foreland did not confirm the highest species richness at intermediate levels of disturbance and stress. Contrary to our expectation, the species richness was highest in alpine tundra and snowbed communities, which are subjected to severe winter frost and a short summer season, while less disturbed communities of subalpine meadows, heaths, and Betula ermanii woods were less species-rich. We attribute this pattern to differences in habitat area and species pool size.  相似文献   

19.
Aim We test how productivity, disturbance rate, plant functional composition and species richness gradients control changes in the composition of high‐latitude vegetation during recent climatic warming. Location Northern Fennoscandia, Europe. Methods We resampled tree line ecotone vegetation sites sampled 26 years earlier. To quantify compositional changes, we used generalized linear models to test relationships between compositional changes and environmental gradients. Results Compositional changes in species abundances are positively related to the normalized difference vegetation index (NDVI)‐based estimate of productivity gradient and to geomorphological disturbance. Competitive species in fertile sites show the greatest changes in abundance, opposed to negligible changes in infertile sites. Change in species richness is negatively related to initial richness, whereas geomorphological disturbance has positive effects on change in richness. Few lowland species have moved towards higher elevations. Main conclusions The sensitivity of vegetation to climate change depends on a complex interplay between productivity, physical and biotic disturbances, plant functional composition and richness. Our results suggest that vegetation on productive sites, such as herb‐rich deciduous forests at low altitudes, is more sensitive to climate warming than alpine tundra vegetation where grazing may have strong buffering effects. Geomorphological disturbance promotes vegetation change under climatic warming, whereas high diversity has a stabilizing effect.  相似文献   

20.
Short-term changes in plant species number, frequency and composition were studied along an altitudinal gradient crossing four summits from the treeline ecotone to the subnival zone in the South Alps (Dolomites, Italy). Large-scale (summit areas) and small-scale patterns (16 plots of 1 m2/summit) were monitored. After 5 years, a re-visitation of the summit areas revealed a considerable increase of species richness at the upper alpine and subnival zone (10% and 9%, respectively) and relatively modest increases at the lower alpine zone and the treeline ecotone (3% and 1%, respectively). At the small scale, the results were partly different, with species richness decreasing at the lower summits and increasing at the higher summits. The changes can most likely be attributed to climate warming effects and to competitive interactions. The main newcomers at the lower three summits were species from the treeline and the lower altitudinal zones. Only at the highest summit, the newcomers came from the alpine species pool. At the treeline ecotone, the abundance of Pinus cembra, of dwarf shrubs and clonal graminoid species increased. Here, displacements of alpine species may be predicted for the near future. At the higher summits, expansions of the established alpine species and further invasions of species from lower altitudes are forecasted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号