首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Understanding the evolutionary relationships among species based on their genetic information is one of the primary objectives in phylogenetic analysis. Reconstructing phylogenies for large data sets is still a challenging task in Bioinformatics.  相似文献   

2.

Background

Species number, functional traits, and phylogenetic history all contribute to characterizing the biological diversity in plant communities. The phylogenetic component of diversity has been particularly difficult to quantify in species-rich tropical tree assemblages. The compilation of previously published (and often incomplete) data on evolutionary relationships of species into a composite phylogeny of the taxa in a forest, through such programs as Phylomatic, has proven useful in building community phylogenies although often of limited resolution. Recently, DNA barcodes have been used to construct a robust community phylogeny for nearly 300 tree species in a forest dynamics plot in Panama using a supermatrix method. In that study sequence data from three barcode loci were used to generate a well-resolved species-level phylogeny.

Methodology/Principal Findings

Here we expand upon this earlier investigation and present results on the use of a phylogenetic constraint tree to generate a community phylogeny for a diverse, tropical forest dynamics plot in Puerto Rico. This enhanced method of phylogenetic reconstruction insures the congruence of the barcode phylogeny with broadly accepted hypotheses on the phylogeny of flowering plants (i.e., APG III) regardless of the number and taxonomic breadth of the taxa sampled. We also compare maximum parsimony versus maximum likelihood estimates of community phylogenetic relationships as well as evaluate the effectiveness of one- versus two- versus three-gene barcodes in resolving community evolutionary history.

Conclusions/Significance

As first demonstrated in the Panamanian forest dynamics plot, the results for the Puerto Rican plot illustrate that highly resolved phylogenies derived from DNA barcode sequence data combined with a constraint tree based on APG III are particularly useful in comparative analysis of phylogenetic diversity and will enhance research on the interface between community ecology and evolution.  相似文献   

3.

Background

The study of traditional knowledge of medicinal plants has led to discoveries that have helped combat diseases and improve healthcare. However, the development of quantitative measures that can assist our quest for new medicinal plants has not greatly advanced in recent years. Phylogenetic tools have entered many scientific fields in the last two decades to provide explanatory power, but have been overlooked in ethnomedicinal studies. Several studies show that medicinal properties are not randomly distributed in plant phylogenies, suggesting that phylogeny shapes ethnobotanical use. Nevertheless, empirical studies that explicitly combine ethnobotanical and phylogenetic information are scarce.

Methodology/Principal Findings

In this study, we borrowed tools from community ecology phylogenetics to quantify significance of phylogenetic signal in medicinal properties in plants and identify nodes on phylogenies with high bioscreening potential. To do this, we produced an ethnomedicinal review from extensive literature research and a multi-locus phylogenetic hypothesis for the pantropical genus Pterocarpus (Leguminosae: Papilionoideae). We demonstrate that species used to treat a certain conditions, such as malaria, are significantly phylogenetically clumped and we highlight nodes in the phylogeny that are significantly overabundant in species used to treat certain conditions. These cross-cultural patterns in ethnomedicinal usage in Pterocarpus are interpreted in the light of phylogenetic relationships.

Conclusions/Significance

This study provides techniques that enable the application of phylogenies in bioscreening, but also sheds light on the processes that shape cross-cultural ethnomedicinal patterns. This community phylogenetic approach demonstrates that similar ethnobotanical uses can arise in parallel in different areas where related plants are available. With a vast amount of ethnomedicinal and phylogenetic information available, we predict that this field, after further refinement of the techniques, will expand into similar research areas, such as pest management or the search for bioactive plant-based compounds.  相似文献   

4.

Background  

The subclass Enoplia (Phylum Nematoda) is purported to be the earliest branching clade amongst all nematode taxa, yet the deep phylogeny of this important lineage remains elusive. Free-living marine species within the order Enoplida play prominent roles in marine ecosystems, but previous molecular phylogenies have provided only the briefest evolutionary insights; this study aimed to firmly resolve internal relationships within the hyper-diverse but poorly understood Enoplida. In addition, we revisited the molecular framework of the Nematoda using a rigorous phylogenetic approach in order to investigate patterns of early splits amongst the oldest lineages (Dorylaimia and Enoplia).  相似文献   

5.
Phylogenies are fundamental to comparative biology as they help to identify independent events on which statistical tests rely. Two groups of phylogenetic comparative methods (PCMs) can be distinguished: those that take phylogenies into account by introducing explicit models of evolution and those that only consider phylogenies as a statistical constraint and aim at partitioning trait values into a phylogenetic component (phylogenetic inertia) and one or multiple specific components related to adaptive evolution. The way phylogenetic information is incorporated into the PCMs depends on the method used. For the first group of methods, phylogenies are converted into variance-covariance matrices of traits following a given model of evolution such as Brownian motion (BM). For the second group of methods, phylogenies are converted into distance matrices that are subsequently transformed into Euclidean distances to perform principal coordinate analyses. Here, we show that simply taking the elementwise square root of a distance matrix extracted from a phylogenetic tree ensures having a Euclidean distance matrix. This is true for any type of distances between species (patristic or nodal) and also for trees harboring multifurcating nodes. Moreover, we illustrate that this simple transformation using the square root imposes less geometric distortion than more complex transformations classically used in the literature such as the Cailliez method. Given the Euclidean nature of the elementwise square root of phylogenetic distance matrices, the positive semidefinitiveness of the phylogenetic variance-covariance matrix of a trait following a BM model, or related models of trait evolution, can be established. In that way, we build a bridge between the two groups of statistical methods widely used in comparative analysis. These results should be of great interest for ecologists and evolutionary biologists performing statistical analyses incorporating phylogenies.  相似文献   

6.
The statistical estimation of phylogenies is always associated with uncertainty, and accommodating this uncertainty is an important component of modern phylogenetic comparative analysis. The birth–death polytomy resolver is a method of accounting for phylogenetic uncertainty that places missing (unsampled) taxa onto phylogenetic trees, using taxonomic information alone. Recent studies of birds and mammals have used this approach to generate pseudoposterior distributions of phylogenetic trees that are complete at the species level, even in the absence of genetic data for many species. Many researchers have used these distributions of phylogenies for downstream evolutionary analyses that involve inferences on phenotypic evolution, geography, and community assembly. I demonstrate that the use of phylogenies constructed in this fashion is inappropriate for many questions involving traits. Because species are placed on trees at random with respect to trait values, the birth–death polytomy resolver breaks down natural patterns of trait phylogenetic structure. Inferences based on these trees are predictably and often drastically biased in a direction that depends on the underlying (true) pattern of phylogenetic structure in traits. I illustrate the severity of the phenomenon for both continuous and discrete traits using examples from a global bird phylogeny.  相似文献   

7.
Phylogenies are essential to studies investigating the effect of evolutionary history on assembly of species in ecological communities and geographical and ecological patterns of phylogenetic structure of species assemblages. Because phylogenies well resolved at the species level are lacking for many major groups of organisms such as vascular plants, researchers often generate a species-level phylogenies using a phylogeny well resolved at the genus level as a backbone and attaching species to their respective genera in the phylogeny as polytomies or by using a megaphylogeny well resolved at the genus level as a backbone and adding additional species to the megaphylogeny as polytomies of their respective genera. However, whether the result of a study using species-level phylogenies generated in these ways is robust, compared to that based on phylogenies fully resolved at the species level, has not been assessed. Here, we use 1093 angiosperm tree assemblages (each in a 110 × 110 km quadrat) in North America as a model system to address this question, by examining six commonly used metrics of phylogenetic structure (phylogenetic diversity and phylogenetic relatedness) and six climate variables commonly used in ecology. Our results showed that (1) the scores of phylogenetic metrics derived from species-level phylogenies resolved at the genus level with species being attached to their respective genera as polytomies are very strongly or perfectly correlated to those derived from a phylogeny fully resolved at the species level (the mean of correlation coefficients is 0.973), and (2) the relationships between the scores of phylogenetic metrics and climate variables are consistent between the two sets of analyses based on the two types of phylogeny. Our study suggests that using species-level phylogenies resolved at the genus level with species being attached to their genera as polytomies is appropriate in studies exploring patterns of phylogenetic structure of species in ecological communities across geographical and ecological gradients.  相似文献   

8.
Phylogenetic stemminess is one of the most popular metrics of tree shape among evolutionary biologists. The index was originally described by Fiala & Sokal (1985) as the proportion of the total length of the branches of a phylogenetic clade (including the subtending branch or “stem”) that is accounted for by the length of the subtending branch of the clade. Accordingly, phylogenies with high stemminess would show accumulation of speciation events toward the present, whereas those with low‐stemminess values would reflect the opposite pattern (i.e., speciation events skewed toward the root node, Fig.1).  相似文献   

9.
Conservation biologists have only finite resources, and so must prioritise some species over others. The EDGE-listing approach ranks species according to their combined evolutionary distinctiveness and degree of threat, but ignores the uncertainty surrounding both threat and evolutionary distinctiveness. We develop a new family of measures for species, which we name EDAM, that incorporates evolutionary distinctiveness, the magnitude of decline, and the accuracy with which decline can be predicted. Further, we show how the method can be extended to explore phyogenetic uncertainty. Using the vascular plants of Britain as a case study, we find that the various EDAM measures emphasise different species and parts of Britain, and that phylogenetic uncertainty can strongly affect the prioritisation scores of some species.  相似文献   

10.

Background  

Multilocus phylogenies can be used to infer the species tree of a group of closely related species. In species trees, the nodes represent the actual separation between species, thus providing essential information about their evolutionary history. In addition, multilocus phylogenies can help in analyses of species delimitation, gene flow and genetic differentiation within species. However, few adequate markers are available for such studies.  相似文献   

11.

Background  

To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available.  相似文献   

12.
Hoppenrath M  Leander BS 《PloS one》2010,5(10):e13220

Background

Interrelationships among dinoflagellates in molecular phylogenies are largely unresolved, especially in the deepest branches. Ribosomal DNA (rDNA) sequences provide phylogenetic signals only at the tips of the dinoflagellate tree. Two reasons for the poor resolution of deep dinoflagellate relationships using rDNA sequences are (1) most sites are relatively conserved and (2) there are different evolutionary rates among sites in different lineages. Therefore, alternative molecular markers are required to address the deeper phylogenetic relationships among dinoflagellates. Preliminary evidence indicates that the heat shock protein 90 gene (Hsp90) will provide an informative marker, mainly because this gene is relatively long and appears to have relatively uniform rates of evolution in different lineages.

Methodology/Principal Findings

We more than doubled the previous dataset of Hsp90 sequences from dinoflagellates by generating additional sequences from 17 different species, representing seven different orders. In order to concatenate the Hsp90 data with rDNA sequences, we supplemented the Hsp90 sequences with three new SSU rDNA sequences and five new LSU rDNA sequences. The new Hsp90 sequences were generated, in part, from four additional heterotrophic dinoflagellates and the type species for six different genera. Molecular phylogenetic analyses resulted in a paraphyletic assemblage near the base of the dinoflagellate tree consisting of only athecate species. However, Noctiluca was never part of this assemblage and branched in a position that was nested within other lineages of dinokaryotes. The phylogenetic trees inferred from Hsp90 sequences were consistent with trees inferred from rDNA sequences in that the backbone of the dinoflagellate clade was largely unresolved.

Conclusions/Significance

The sequence conservation in both Hsp90 and rDNA sequences and the poor resolution of the deepest nodes suggests that dinoflagellates reflect an explosive radiation in morphological diversity in their recent evolutionary past. Nonetheless, the more comprehensive analysis of Hsp90 sequences enabled us to infer phylogenetic interrelationships of dinoflagellates more rigorously. For instance, the phylogenetic position of Noctiluca, which possesses several unusual features, was incongruent with previous phylogenetic studies. Therefore, the generation of additional dinoflagellate Hsp90 sequences is expected to refine the stem group of athecate species observed here and contribute to future multi-gene analyses of dinoflagellate interrelationships.  相似文献   

13.
The publication of a large number of taxon names at all levels within the arbuscular mycorrhizal fungi (Glomeromycota) has resulted in conflicting systematic schemes and generated considerable confusion among biologists working with these important plant symbionts. A group of biologists with more than a century of collective experience in the systematics of Glomeromycota examined all available molecular–phylogenetic evidence within the framework of phylogenetic hypotheses, incorporating morphological characters when they were congruent. This study is the outcome, wherein the classification of Glomeromycota is revised by rejecting some new names on the grounds that they are founded in error and by synonymizing others that, while validly published, are not evidence-based. The proposed “consensus” will provide a framework for additional original research aimed at clarifying the evolutionary history of this important group of symbiotic fungi.  相似文献   

14.
Brownian motion computer simulation was used to test the statistical properties of a spatial autoregressive method in estimating evolutionary correlations between two traits using interspecific comparative data. When applied with a phylogeny of 42 species, the method exhibited reasonable Type I and II error rates. Estimation abilities were comparable to those of independent contrasts and minimum evolution (parsimony) methods, and generally superior to a traditional nonphylogenetic approach (not taking phylogenies into account at all). However, the autoregressive method performed extremely poorly with a smaller phylogeny (15 species) and with nearly independent (“star”) phylogenies. In both of these situations, any phylogenetic autocorrelation present in the data was not detected by the method. Results show how diagnostic techniques (e.g., Moran's I) can be useful in detecting and avoiding such situations, but that such techniques should not be used as definitive evidence that phylogenetic correlation is not present in a set of comparative data. The correction factor (α) proposed by Gittleman and Kot (1990) for use in weighting phylogenetic information had little effect in most analyses of 15 or 42 species with incorrect phylogenetic information, and may require much larger sample sizes before significant improvement is shown. With the sample sizes tested in this study, however, the autoregressive method implemented with this correction factor and correct phylogenetic information led to downwardly biased estimates of the absolute magnitude of the evolutionary correlation between two traits. Cautions and recommendations for implemention of the spatial autoregressive method are given; computer programs to conduct the analyses are available on request.  相似文献   

15.
Among the seven shortfalls of biodiversity knowledge, the one that makes direct reference to phylogenetic information is the Darwinian shortfall, which embraces three components: “(1) the lack of fully resolved phylogenies for most groups of organisms; (2) the limited knowledge of branch lengths and difficulties in absolute time calibrations; and (3) unknown evolutionary models linking those phylogenies to ecological traits and the life-history variation” (Diniz-Filho et al. in Trends Ecol Evol 28:689–694, 2013). In order to overcome them, Diniz-Filho et al. (Trends Ecol Evol 28:689–694, 2013) emphasized the need to know the problems relative to phylogeny reconstruction, but they did not provide a clear comprehension of these problems. In the present article, I aim to comment on these problems in the context of the five epistemic stages of phylogenetic analysis. These are: (1) taxon sampling; (2) evidence; (3) homology assessment; (4) optimization methods; and (5) hypotheses formulation. A brief review of these stages is necessary to comprehend how complex is the use of phylogenetic hypotheses in ecology and conservation. I also provide additional and balanced solutions in an attempt to overcome the evolutionary shortfall.  相似文献   

16.

Aim

The ectomycorrhizal genus Strobilomyces is widely distributed throughout many parts of the world, but its origin, divergence and distribution patterns remain largely unresolved. In this study, we aim to explore the species diversity, distribution and evolutionary patterns of Strobilomyces on a global scale by establishing a general phylogenetic framework with extensive sampling.

Location

Africa, Australasia, East Asia, Europe, North America, Central America and Southeast Asia.

Methods

The genealogical concordance phylogenetic species recognition method was used to delimit phylogenetic species. Divergence times were estimated using a Bayesian uncorrelated lognormal relaxed molecular clock. The ancestral area and host of Strobilomyces were inferred via the programs rasp and mesquite . The change of diversification rate over time was estimated using Ape, Laser and Bammtools software packages.

Results

We recognize a novel African clade and 49 phylogenetic species with morphological evidence, including 18 new phylogenetic species and 23 previously described ones. Strobilomyces probably originated in Africa, in association with Detarioideae/Phyllanthaceae/Monotoideae during the early Eocene. The dispersal to Southeast Asia can be explained by Wolfe's “Boreotropical migration” hypothesis. East Asia, Australasia, Europe and North/Central America are primarily the recipients of immigrant taxa during the Oligocene or later. A rapid radiation implied by one diversification shift was inferred within Strobilomyces during the Miocene.

Main conclusions

An unexpected phylogenetic species diversity within Strobilomyces was uncovered. The highest diversity, resulting probably from a rapid radiation, was found in East Asia. Dispersal played an important role in the current distribution pattern of Strobilomyces. The Palaeotropical disjunction is explained by species dispersal from Africa to Southeast Asia through boreotropical forests during the early Eocene. Species from the Northern Hemisphere and Australasia are largely derived from immigrant ancestors from Southeast Asia.  相似文献   

17.

Background  

The phylogenetic position and evolutionary relationships of Fusobacteria remain uncertain. Especially intriguing is their relatedness to low G+C Gram positive bacteria (Firmicutes) by ribosomal molecular phylogenies, but their possession of a typical gram negative outer membrane. Taking advantage of the recent completion of the Fusobacterium nucleatum genome sequence we have examined the evolutionary relationships of Fusobacterium genes by phylogenetic analysis and comparative genomics tools.  相似文献   

18.
吴良  宋明华  欧阳华 《遗传》2009,31(7):689-697
DNA序列、形态和其他同源性状可以用于推断物种的起源和历史。整合所有可利用的系统发育信息可以大大拓展所覆盖类群的范围, 推进我们对现存生物的认识, 而且使得生物学家提出和验证的假说尺度更广, 更有统计说服力。文章综述了整合系统发育信息的概念及其与传统分析的异同, 重点讨论了整合系统发育信息中应用最广的超级树(Supertree)和超级矩阵(Supermatrix)方法; 在比较分析了这两个方法的优缺点之后, 介绍了近些年提出的新的方法。文章详细分析了整合系统发育信息的发展所面临的来自数据和理论方面的挑战, 认为尽管整合分析的发展困难较多, 它仍然是到目前为止构建完整生命之树(网)的唯一方法; 它的完善必将拓展我们对于生物进化过程的认识, 并对进化生物学相关学科产生积极影响。  相似文献   

19.

Aim

Floristic and faunal diversity fall within species assemblages that can be grouped into distinct biomes or ecoregions. Understanding the origins of such biogeographic assemblages helps illuminate the processes shaping present‐day diversity patterns and identifies regions with unique or distinct histories. While the fossil record is often sparse, dated phylogenies can provide a window into the evolutionary past of these regions. Here, we present a novel phylogenetic approach to investigate the evolutionary origins of present‐day biogeographic assemblages and highlight their conservation value.

Location

Southern Africa.

Methods

We evaluate the evolutionary turnover separating species clusters in space at different time slices to determine the phylogenetic depth at which the signal for their present‐day structure emerges. We suggest present‐day assemblages with distinct evolutionary histories might represent important units for conservation. We apply our method to the vegetation of southern Africa using a dated phylogeny of the woody flora of the region and explore how the evolutionary history of vegetation types compares to common conservation currencies, including species richness, endemism and threat.

Results

We show the differentiation of most present‐day vegetation types can be traced back to evolutionary splits in the Miocene. The woody flora of the Fynbos is the most evolutionarily distinct, and thus has deeper evolutionary roots, whereas the Savanna and Miombo Woodland show close phylogenetic affinities and likely represent a more recent separation. However, evolutionarily distinct phyloregions do not necessarily capture the most unique phylogenetic diversity, nor are they the most species‐rich or threatened.

Main conclusions

Our approach complements analyses of the fossil record and serves as a link to the history of diversification, migration and extinction of lineages within biogeographic assemblages that is separate from patterns of species richness and endemism. Our analysis reveals how phyloregions capture conservation value not represented by traditional biodiversity metrics.
  相似文献   

20.
Molecular biologists and some population geneticists have recently claimed to be able to reconstruct modern human populations remote history by means of phylogenetic trees. Many objections to this method are discussed in the present paper. The most important are
  1. Inter-populations migrations are likely to have been important, even in the remote past. So the “treeness” of this evolution is disputable.
  2. There is no reason to believe that actual molecular phylogenies would be convergent between different molecules and would therefore represent populations history.
The various kind of genetic data, their relations to other data and the limits of their possible use in the analysis of our past are then discussed, together with the ideological background of the most common theories and of their publication. It is very likely that the history of different populations was heterogeneous. Small and isolated hunter-gatherers frequently evolving close to a phylogenetic model, while dense and increasing populations, since the Neolithic, were closer to a dynamic network model, structured by isolation by distance. In any case, our present knowledge is obviously insufficient to reconstruct our genetic past, especially on the long term, and we can only hope that the development of the HUGO Genome Diversity project is going to yield the significant information presently lacking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号