共查询到20条相似文献,搜索用时 15 毫秒
1.
Problems of isolating Borrelia burgdorferi from ticks collected in United Kingdom foci of Lyme disease 总被引:1,自引:0,他引:1
M. ANNE LIVESLEY DOROTHY CAREY LISE GERN PATRICIA A. NUTTALL 《Medical and veterinary entomology》1994,8(2):172-178
Abstract. Many isolates of Borrelia burgdorferi have been obtained from ticks and vertebrate tissues collected in North America and continental Europe but only one established culture of United Kingdom Borrelia burgdorferi has been recorded. In this paper we report the isolation of B.burgdorferi from one of 108 tick pools representing 733 ticks and eighty-four tissue samples from twenty-six rodents collected in the U.K., and the subsequent failure to establish the isolate (from ticks collected in Fordingbridge) in culture. In contrast, using identical techniques and culture medium, B.burgdorferi was isolated from one of seven tick pools collected in Switzerland, and from a single pool of ticks collected in Slovakia, and both isolates were successfully passaged. Analysis of questing I.ricinus collected from Fordingbridge by direct immunofluorescence showed 6/32 (19%) of adults and 8/108 (7%) of nymphs were positive for B. burgdorferi , although only one nymph contained ≥ 1000 spirochaetes. To examine further the problem of isolating U.K. B.burgdorferi , twelve Ixodes ricinus tick samples from Fordingbridge, a recognized focus of Lyme disease, were subjected to isolation and culturing techniques, and the procedures monitored by use of the polymerase chain reaction (PCR). Whereas 11/12 samples were PCR positive after 2 weeks in culture, only one was PCR positive after 4 weeks. Motile spirochaetes were not visible by dark-field microscopy in any of the cultures. The results indicate that the standard BSK II medium routinely used to isolate and culture B. burgdorferi does not readily support the replication of the Borrelia species endemic to the U.K. 相似文献
2.
Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races 总被引:2,自引:0,他引:2
McCoy KD Boulinier T Tirard C Michalakis Y 《Evolution; international journal of organic evolution》2003,57(2):288-296
Abstract Despite the fact that parasite dispersal is likely to be one of the most important processes influencing the dynamics and coevolution of host-parasite interactions, little information is available on the factors that affect it. In most cases, opportunities for parasite dispersal should be closely linked to host biology. Here we use microsatellite genetic markers to compare the population structure and dispersal of two host races of the seabird tick Ixodes uriae at the scale of the North Atlantic. Interestingly, tick populations showed high within-population genetic variation and relatively low population differentiation. However, gene flow at different spatial scales seemed to depend on the host species exploited. The black-legged kittiwake ( Rissa tridactyla ) had structured tick populations showing patterns of isolation by distance, whereas tick populations of the Atlantic puffin ( Fratercula arctica ) were only weakly structured at the largest scale considered. Host-dependent rates of tick dispersal between colonies will alter infestation probabilities and local dynamics and may thus modify the adaptation potential of ticks to local hosts. Moreover, as I. uriae is a vector of the Lyme disease agent Borrelia burgdorferi sensu lato in both hemispheres, the large-scale movements of birds and the subsequent dispersal of ticks will have important consequences for the dynamics and coevolutionary interactions of this microparasite with its different vertebrate and invertebrate hosts. 相似文献
3.
Although much insight is to be gained through the comparison of the population genetic structures of parasites and hosts, there are, at present, few studies that take advantage of the information on vertebrate life histories available through the consideration of their parasites. Here, we examined the genetic structure of a colonial seabird, the black-legged kittiwake (Rissa tridactyla) using seven polymorphic microsatellite markers to make inferences about population functioning and intercolony dispersal. We sampled kittiwakes from 22 colonies across the species' range and, at the same time, collected individuals of one of its common ectoparasites, the tick Ixodes uriae. Parasites were genotyped at eight microsatellite markers and the population genetic structure of host and parasite were compared. Kittiwake populations are only genetically structured at large spatial scales and show weak patterns of isolation by distance. This may be due to long-distance dispersal events that erase local patterns of population subdivision. However, important additional information is gained by comparing results with those of the parasite. In particular, tick populations are strongly structured at regional scales and show a stepping-stone pattern of gene flow. Due to the parasite's life history, its population structure is directly linked to the frequency and spatial extent of within-breeding season movements of kittiwakes. The comparison of host and parasite gene flow therefore helps us to disentangle the intercolony movements of birds from that of true dispersal events (movement followed by reproduction). In addition, such data can provide essential elements for predicting the outcome of local co-evolutionary interactions. 相似文献
4.
Allison M. Gardner Natalie C. Pawlikowski Sarah A. Hamer Graham J. Hickling James R. Miller Anna M. Schotthoefer Jean I. Tsao Brian F. Allan 《Proceedings. Biological sciences / The Royal Society》2020,287(1941)
Lyme disease, the most prevalent vector-borne disease in North America, is increasing in incidence and geographic distribution as the tick vector, Ixodes scapularis, spreads to new regions. We re-construct the spatial-temporal invasion of the tick and human disease in the Midwestern US, a major focus of Lyme disease transmission, from 1967 to 2018, to analyse the influence of spatial factors on the geographic spread. A regression model indicates that three spatial factors—proximity to a previously invaded county, forest cover and adjacency to a river—collectively predict tick occurrence. Validation of the predictive capability of this model correctly predicts counties invaded or uninvaded with 90.6% and 98.5% accuracy, respectively. Reported incidence increases in counties after the first report of the tick; based on this modelled relationship, we identify 31 counties where we suspect I. scapularis already occurs yet remains undetected. Finally, we apply the model to forecast tick establishment by 2021 and predict 42 additional counties where I. scapularis will probably be detected based upon historical drivers of geographic spread. Our findings leverage resources dedicated to tick and human disease reporting and provide the opportunity to take proactive steps (e.g. educational efforts) to prevent and limit transmission in areas of future geographic spread. 相似文献
5.
Ogden NH Maarouf A Barker IK Bigras-Poulin M Lindsay LR Morshed MG O'callaghan CJ Ramay F Waltner-Toews D Charron DF 《International journal for parasitology》2006,36(1):63-70
We used an Ixodes scapularis population model to investigate potential northward spread of the tick associated with climate change. Annual degree-days >0 degrees C limits for I. scapularis establishment, obtained from tick population model simulations, were mapped using temperatures projected for the 2020s, 2050s and 2080s by two Global Climate Models (the Canadian CGCM2 and the UK HadCM3) for two greenhouse gas emission scenario enforcings 'A2'and 'B2' of the Intergovernmental Panel on Climate Change. Under scenario 'A2' using either climate model, the theoretical range for I. scapularis establishment moved northwards by approximately 200 km by the 2020s and 1000 km by the 2080s. Reductions in emissions (scenario 'B2') had little effect on projected range expansion up to the 2050s, but the range expansion projected to occur between the 2050s and 2080s was less than that under scenario 'A2'. When the tick population model was driven by projected annual temperature cycles (obtained using CGCM2 under scenario 'A2'), tick abundance almost doubled by the 2020s at the current northern limit of I. scapularis, suggesting that the threshold numbers of immigrating ticks needed to establish new populations will fall during the coming decades. The projected degrees of theoretical range expansion and increased tick survival by the 2020s, suggest that actual range expansion of I. scapularis may be detectable within the next two decades. Seasonal tick activity under climate change scenarios was consistent with maintenance of endemic cycles of the Lyme disease agent in newly established tick populations. The geographic range of I. scapularis-borne zoonoses may, therefore, expand significantly northwards as a consequence of climate change this century. 相似文献
6.
Julien Gasparini Karen D. McCoy Torkild Tveraa & Thierry Boulinier 《Ecology letters》2002,5(4):519-524
The capacity for mothers to transmit induced resistance against a specific parasite to their young may be an essential maternal effect that determines the fitness of offspring. In a previous study, antibodies against the Lyme disease agent Borrelia burgdorferi sensu lato were detected in kittiwake ( Rissa tridactyla ) eggs in relation to the exposure of birds to the tick vector Ixodes uriae . However, as yet, there has been no demonstration of a direct relationship between antibody concentrations in parents and young in a natural population. Here, we show, using the kittiwake– Borrelia system, the existence of a positive relationship between antibody concentrations in maternal serum and that in eggs and chick serum. No such relationship was found between paternal serum and eggs or young. These results suggest the existence of an adaptive maternal effect, an effect that should have important implications for the ecology and evolution of host–parasite interactions. 相似文献
7.
John D. Scott Min‐Kuang Lee Keerthi Fernando Lance A. Durden Danielle R. Jorgensen Sunny Mak Muhammad G. Morshed 《Journal of vector ecology》2010,35(1):124-139
Lyme disease is reported across Canada, but pinpointing the source of infection has been problematic. In this three‐year, bird‐tick‐pathogen study (2004–2006), 366 ticks representing 12 species were collected from 151 songbirds (31 passerine species/subspecies) at 16 locations Canada‐wide. Of the 167 ticks/pools tested, 19 (11.4%) were infected with Borrelia burgdorferi sensu lato (s.l.). Sequencing of the rrf‐rrl intergenic spacer gene revealed four Borrelia genotypes: B. burgdorferi sensu stricto (s.s.) and three novel genotypes (BC genotype 1, BC genotype 2, BC genotype 3). All four genotypes were detected in spirochete‐infected Ixodes auritulus (females, nymphs, larvae) suggesting this tick species is a vector for B. burgdorferi s.l. We provide first‐time records for: ticks in the Yukon (north of 60° latitude), northernmost collection of Amblyomma americanum in North America, and Amblyomma imitator in Canada. First reports of bird‐derived ticks infected with B. burgdorferi s.l. include: live culture of spirochetes from Ixodes pacificus (nymph) plus detection in I. auritulus nymphs, Ixodes scapularis in New Brunswick, and an I. scapularis larva in Canada. We provide the first account of B. burgdorferi s. l. in an Ixodes muris tick collected from a songbird anywhere. Congruent with previous data for the American Robin, we suggest that the Common Yellowthroat, Golden‐crowned Sparrow, Song Sparrow, and Swainson's Thrush are reservoir‐competent hosts. Song Sparrows, the predominant hosts, were parasitized by I. auritulus harboring all four Borrelia genotypes. Our results show that songbirds import B. burgdorferi s.l.‐infected ticks into Canada. Bird‐feeding I. scapularis subadults were infected with Lyme spirochetes during both spring and fall migration in eastern Canada. Because songbirds disperse millions of infected ticks across Canada, people and domestic animals contract Lyme disease outside of the known and expected range. 相似文献
8.
9.
Lars Eisen Rebecca J. Eisen Jeomhee Mun Daniel J. Salkeld Robert S. Lane 《Journal of vector ecology》2009,34(1):81-91
This study was undertaken to determine which rodent species serve as primary reservoirs for the Lyme disease spirochete Borrelia burgdorferi in commonly occurring woodland types in inland areas of northwestern California, and to examine whether chaparral or grassland serve as source habitats for dispersal of B. burgdorferi‐ or B. bissettii‐infected rodents into adjacent woodlands. The western gray squirrel (Sciurus griseus) was commonly infected with B. burgdorferi in oak woodlands, whereas examination of 30 dusky‐footed woodrats (Neotoma fuscipes) and 280 Peromyscus spp. mice from 13 widely‐spaced Mendocino County woodlands during 2002 and 2003 yielded only one infected woodrat and one infected deer mouse (P. maniculatus). These data suggest that western gray squirrels account for the majority of production by rodents of fed Ixodes pacificus larvae infected with B. burgdorferi in the woodlands sampled. Infections with B. burgdorferi also were rare in woodrats (0/47, 0/3) and mice (3/66, 1/6) captured in chaparral and grassland, respectively, and therefore these habitats are unlikely sources for dispersal of this spirochete into adjacent woodlands. On the other hand, B. bissettii was commonly detected in both woodrats (22/47) and mice (15/66) in chaparral. We conclude that the data from this and previous studies in northwestern California are suggestive of a pattern where inland oak‐woodland habitats harbor a B. burgdorferi transmission cycle driven primarily by I. pacificus and western gray squirrels, whereas chaparral habitats contain a B. bissettii transmission cycle perpetuated largely by I. spinipalpis, woodrats, and Peromyscus mice. The dominant role of western gray squirrels as reservoirs of B. burgdorferi in certain woodlands offers intriguing opportunities for preventing Lyme disease by targeting these animals by means of either host‐targeted acaricides or oral vaccination against B. burgdorferi. 相似文献
10.
Råberg L 《Journal of evolutionary biology》2012,25(7):1448-1453
The 'trade-off' hypothesis for virulence evolution assumes that between-host transmission rate is a positive and saturating function of pathogen exploitation and virulence, but there are as yet few tests of this assumption, in particular for vector-borne pathogens. Here, I show that the infectivity (probability of transmission) of the tick-borne bacterium Borrelia afzelii from two of its natural rodent hosts (bank vole and yellow-necked mouse) to its main tick vector increases asymptotically with increasing exploitation (measured as bacterial load in skin biopsies). Hence, this result provides support for one of the basic assumptions of the 'trade-off hypothesis'. Moreover, there was no difference in infectivity between bank voles and yellow-necked mice despite bacterial loads being on average an order of magnitude higher in bank voles, most likely because ticks took larger blood meals from mice. This shows that interspecific variation in host resistance does not necessarily translate into a difference in infectivity. 相似文献
11.
An entomophagous wasp (Hunterellus hookeri Howard) parasitizes about a third of the host-seeking nymphal Ixodes dammini Spielman et al. ticks on Naushon Island in Massachusetts (U.S.A.) where the agents of Lyme disease (Borrelia burgdorferi Johnson et al.) and human babesiosis (Babesia microti Franca) are enzootic. Following blood-feeding, wasp-parasitized ticks are destroyed by the developing wasp. The prevalence of either human pathogen in host-seeking ticks collected in wasp-infested sites is nearly 40% lower than that found in other sites. Nymphal ticks, collected early in their season of activity, are more frequently parasitized by the wasp and less frequently by the Lyme disease spirochaete than those collected later in the summer. Spirochaetes never infected wasp-infected ticks, and few wasp-infected ticks were concurrently infected by the Babesia piroplasm. Taken together, these correlations indicate that the wasp may render the tick inhospitable to both pathogens. The presence of the wasp may have reduced risk of human infection on the island by either pathogen by as much as a third. 相似文献
12.
Ixodes (Pholeoixodes) hexagonus, an efficient vector of Borrelia burgdorferi in the laboratory 总被引:2,自引:0,他引:2
LISE GERN LINA N. TOUTOUNGI CHANG MIN HU RE AESCHLIMANN 《Medical and veterinary entomology》1991,5(4):431-435
Borrelia burgdorferi Johnson et al. was first isolated from the midgut of Ixodes dammini Spielman et al. in the U.S.A. and from the midgut of I.ricinus (L.) in Europe. I.ricinus was considered to be the only tick vector of this borrelia, in Europe, until I.hexagonus Leach, the hedgehog tick, was found to harbour spirochaetes. This paper reports an evaluation of the vector competence of I.hexagonus for the spirochaete B.burgdorferi. Transovarial and trans-stadial survival were demonstrated and the spirochaete was transmitted to laboratory mice via the bites of trans-stadially infected I.hexagonus females. 相似文献
13.
Prevalence and distribution of Borrelia and Babesia species in ticks feeding on dogs in the U.K. 下载免费PDF全文
S. ABDULLAH C. HELPS S. TASKER H. NEWBURY R. WALL 《Medical and veterinary entomology》2018,32(1):14-22
Ticks were collected during March–July 2015 from dogs by veterinarians throughout the U.K. and used to estimate current prevalences and distributions of pathogens. DNA was extracted from 4750 ticks and subjected to polymerase chain reaction and sequence analysis to identify Borrelia burgdorferi sensu lato (Spirochaetales: Spirochaetaceae) and Babesia (Piroplasmida: Babesiidae) species. Of 4737 ticks [predominantly Ixodes ricinus Linneaus (Ixodida: Ixodidae)], B. burgdorferi s.l. was detected in 94 (2.0%). Four Borrelia genospecies were identified: Borrelia garinii (41.5%); Borrelia afzelli (31.9%); Borrelia burgdorferi sensu stricto (25.5%), and Borrelia spielmanii (1.1%). One Rhipicephalus sanguineus Latreille (Ixodida: Ixodidae), collected from a dog with a history of travel outside the U.K., was positive for B. garinii. Seventy ticks (1.5%) were positive for Babesia spp. Of these, 84.3% were positive for Babesia venatorum, 10.0% for Babesia vulpes sp. nov., 2.9% for Babesia divergens/Babesia capreoli and 1.4% for Babesia microti. One isolate of Babesia canis was detected in a Dermacentor reticulatus (Ixodida: Ixodidae) tick collected from a dog that had recently travelled to France. Prevalences of B. burgdorferi s.l. and Babesia spp. did not differ significantly between different regions of the U.K. The results map the widespread distribution of B. burgdorferi s.l. and Babesia spp. in ticks in the U.K. and highlight the potential for the introduction and establishment of exotic ticks and tick‐borne pathogens. 相似文献
14.
DNA‐based identification and OspC serotyping in cultures of Borrelia burgdorferi s.l. isolated from ticks collected in the Moravia (Czech Republic) 下载免费PDF全文
Two different genetic loci, flaB and ospC, were employed to assign genospecies and OspC phylogenetic type to 18 strains isolated from ticks collected in Pisárky, a suburban park in the city of Brno, Czech Republic. The RFLP analysis revealed three different genospecies (B. afzelii, B. garinii, and B. valaisiana). Three samples from the collection contained more than one genospecies. In the other 15 strains, nucleotide sequences of flaB and ospC were determined. The following phylogenetic analysis assigned 12 isolates to genospecies B. garinii and three to B. afzelii. These isolates were further subdivided into seven distinct ospC groups. The most related OspC types were G2, G4, and G5 (B. garinii) and A3 and A8 (B. afzelii). 相似文献
15.
Bruno Pichon Laurence Mousson Claude Figureau François Rodhain Claudine Perez-Eid 《Experimental & applied acarology》1999,23(3):267-275
The Rambouillet Forest, a Lyme disease-endemic area near Paris, France, was surveyed from September 1994 to October 1995 to determine the risk periods and zones for humans. Firstly, during the period of Ixodes ricinus activity, abundance of nymphs is greater in spring than in autumn. Secondly, we observed significant variation in nymphal abundance between zones according to the density of cervids. The polymerase chain reaction (PCR) was used to detect DNA of Borrelia burgdorferi sensu lato in 461 unfed nymphs. DNA was detected in 38 nymphs (8.2%). By genospecific PCR based on the OspA gene, we detected the three pathogenic spirochetes with occurrences of 10.3, 31.1 and 58.6 for B. burgdorferi s.s., Borrelia garinii and Borrelia afzelii, respectively, indicating that B. afzelii is probably the main Borrelia species in the Rambouillet Forest. Finally, 11.5% of positive nymphs exhibited a double infection. Infection rates of I. ricinus nymphs by B. burgdorferi s.l. were not significantly different throughout the year for a given area, indicating that the risk periods of acquiring Lyme disease are mainly linked to nymph activity and correspond to spring and autumn. Likewise infection rates of nymphs were not significantly different between zones with a high density of deer (more than 100 animals per 100 ha) and zones with lower deer density (less than 20 animals per 100 ha). In addition to the role of deer as an amplifier of tick populations, these data indicate that zones with a high density of cervids should be considered as higher risk areas. © Rapid Science Ltd. 1998 相似文献
16.
Hubálek Z Halouzka J Juricová Z Sikutová S Rudolf I 《Medical and veterinary entomology》2006,20(2):166-172
Questing Ixodes ricinus L. (Acari: Ixodidae) ticks were collected on a forest trail that had been completely cleared of shrubs and ground vegetation in winter 2002 and on a nearby control uncleared forest transect in South Moravia (Czech Republic). Samples were collected each May in 2003, 2004 and 2005. Nymphal ticks were 3.4 times, 1.9 times and 1.2 times less frequent on cleared forest than on uncleared forest trails in the three respective years, whereas adult tick abundance was 27.2 times, 4.0 times and 2.2 times lower, respectively. The ticks were examined for borreliae by dark-field microscopy: prevalence of nymphal ticks infected with Borrelia burgdorferi sensu lato (12.6% to 20.0%) did not differ significantly between the cleared and uncleared trail during the 3 years. In conclusion, the habitat modification appeared to result in a decreased abundance of I. ricinus as well as a reduced frequency of infected ticks (and thus indirectly a lower potential risk of Lyme borreliosis), which lasted, however, for only 2 years. Eight cultures of borreliae isolated from the ticks were all identified as the 'ornithophilic' genomic species Borrelia garinii, possibly indicating a greater role of forest birds than that of forest rodents as the hosts of immature I. ricinus in the tick (and borrelial) colonization of the cleared part of the forest. 相似文献
17.
Maria A. Diuk‐Wasser Gwenaël Vourc'h Paul Cislo Anne Gatewood Hoen Forrest Melton Sarah A. Hamer Michelle Rowland Roberto Cortinas Graham J. Hickling Jean I. Tsao Alan G. Barbour Uriel Kitron Joseph Piesman Durland Fish 《Global Ecology and Biogeography》2010,19(4):504-514
Aim Ixodes scapularis is the most important vector of human tick‐borne pathogens in the United States, which include the agents of Lyme disease, human babesiosis and human anaplasmosis, among others. The density of host‐seeking I. scapularis nymphs is an important component of human risk for acquiring Borrelia burgdorferi, the aetiological agent of Lyme disease. In this study we used climate and field sampling data to generate a predictive map of the density of host‐seeking I. scapularis nymphs that can be used by the public, physicians and public health agencies to assist with the diagnosis and reporting of disease, and to better target disease prevention and control efforts. Location Eastern United States of America. Methods We sampled host‐seeking I. scapularis nymphs in 304 locations uniformly distributed east of the 100th meridian between 2004 and 2006. Between May and September, 1000 m2 were drag sampled three to six times per site. We developed a zero‐inflated negative binomial model to predict the density of host‐seeking I. scapularis nymphs based on altitude, interpolated weather station and remotely sensed data. Results Variables that had the strongest relationship with nymphal density were altitude, monthly mean vapour pressure deficit and spatial autocorrelation. Forest fragmentation and soil texture were not predictive. The best‐fit model identified two main foci – the north‐east and upper Midwest – and predicted the presence and absence of I. scapularis nymphs with 82% accuracy, with 89% sensitivity and 82% specificity. Areas of concordance and discordance with previous studies were discussed. Areas with high predicted but low observed densities of host‐seeking nymphs were identified as potential expansion fronts. Main conclusions This model is unique in its extensive and unbiased field sampling effort, allowing for an accurate delineation of the density of host‐seeking I. scapularis nymphs, an important component of human risk of infection for B. burgdorferi and other I. scapularis‐borne pathogens. 相似文献
18.
Andrey N. Alekseev Elena A. Arumova Inga S. Vasilieva 《Experimental & applied acarology》1995,19(9):519-522
Borrelia burgdorferi sensu lato was detected in one out of five cement plugs of female Ixodes persulcatus ticks. The spirochetes were found by dark field microscopy as early as 18 h after attachment of the ticks to the skin of a white mouse. The relevance of this finding is discussed in relation to the epidemiology of Lyme Borreliosis. 相似文献
19.
Nucleotide sequence and analysis of the gene in Borrelia burgdorferi encoding the immunogenic P39 antigen 总被引:8,自引:0,他引:8
Warren J. Simpson Witold Cieplak Merry E. Schrumpf Alan G. Barbour Tom G. Schwan 《FEMS microbiology letters》1994,119(3):381-387
Abstract The P39 antigen is a specific, highly conserved, and immunogenic protein of Lyne disease spirochetes, Borrelia burgdorferi sensu lato. The nucleotide sequence of the gene encoding this protein was determined and found to be the first of two tandemly arranged open reading frames located on the spirochete's chromosome. These two open reading frames were designated bmpA for the gene encoding P39 and bmpB for the gene encoding the putative protein ORF2 encoded by the second open reading frame. The nucleic acid sequence identity for the two open reading frames was 62% while their deduced amino acid sequences were 52% identical. Comparison to sequence data bases demonstrated that the deduced amino acid sequences of both P39 and ORF2 were homologous to TmpC, a putative outer or cytoplasmic membrane lipoprotein of the syphilis spirochete, Treponema pallidum . 相似文献
20.
Borrelia burgdorferi, the causative agent of Lyme disease, shows a great ability to adapt to different environments, including the arthropod vector, and the mammalian host. The success of these microorganisms to survive in nature and complete their enzootic cycle depends on the regulation of genes that are essential to their survival in the different environments. This review describes the current knowledge of gene expression by B. burgdorferi in the tick and the mammalian host. The functions of the differentially regulated gene products as well as the factors that influence their expression are discussed. A thorough understanding of the changes in gene expression and the function of the differentially expressed antigens during the life cycle of the spirochete will allow a better control of this prevalent infection and the design of new, second generation vaccines to prevent infection with the spirochete. 相似文献