首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.  相似文献   

2.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

3.
农田土壤有机碳库是全球碳循环的重要组成部分.随着秸秆还田技术的广泛应用,作物秸秆成为土壤外源碳的主要来源.秸秆碳在土壤中的转化与分配直接影响土壤有机碳组成与含量,进而改变土壤养分循环.基于近年来的相关研究,本文探讨了还田秸秆碳转化与分配过程的影响因子,详细介绍了参与秸秆碳同化过程的土壤微生物组成,归纳与阐述了秸秆碳对土壤有机碳组成、含量及其周转的影响.同时,就非生物因子对秸秆碳的生物转化效应的影响、秸秆碳转化过程中的生物和非生物因子的互作、秸秆碳氮和土壤碳氮循环的耦合作用、秸秆碳向土壤活性有机碳库或稳定性有机碳库转化的有效调控技术等主要研究方向进行了展望,以期为准确揭示秸秆还田条件下各类土壤有机碳的变化特征,进而为实现秸秆还田的高效培肥与固碳效应提供理论依据和技术支撑.  相似文献   

4.
The understanding of microbial interactions and trophic networks is a prerequisite for the elucidation of the turnover and transformation of organic materials in soils. To elucidate the incorporation of biomass carbon into a soil microbial food web, we added 13C-labeled Escherichia coli biomass to an agricultural soil and identified those indigenous microbes that were specifically active in its mineralization and carbon sequestration. rRNA stable isotope probing (SIP) revealed that uncultivated relatives of distinct groups of gliding bacterial micropredators (Lysobacter spp., Myxococcales, and the Bacteroidetes) lead carbon sequestration and mineralization from the added biomass. In addition, fungal populations within the Microascaceae were shown to respond to the added biomass after only 1 h of incubation and were thus surprisingly reactive to degradable labile carbon. This RNA-SIP study identifies indigenous microbes specifically active in the transformation of a nondefined complex carbon source, bacterial biomass, directly in a soil ecosystem.  相似文献   

5.
Input of labile organic carbon can enhance decomposition of extant soil organic carbon (SOC) through priming. We hypothesized that long‐term nitrogen (N) input in different chemical forms alters SOC pools by altering priming effects associated with N‐mediated changes in plants and soil microbes. The hypothesis was tested by integrating field experimental data of plants, soil microbes and two incubation experiments with soils that had experienced 10 years of N enrichment with three chemical forms (ammonium, nitrate and both ammonium and nitrate) in an alpine meadow on the Tibetan Plateau. Incubations with glucose–13C addition at three rates were used to quantify effects of exogenous organic carbon input on the priming of SOC. Incubations with microbial inocula extracted from soils that had experienced different long‐term N treatments were conducted to detect effects of N‐mediated changes in soil microbes on priming effects. We found strong evidence and a mechanistic explanation for alteration of SOC pools following 10 years of N enrichment with different chemical forms. We detected significant negative priming effects both in soils collected from ammonium‐addition plots and in sterilized soils inoculated with soil microbes extracted from ammonium‐addition plots. In contrast, significant positive priming effects were found both in soils collected from nitrate‐addition plots and in sterilized soils inoculated with soil microbes extracted from nitrate‐addition plots. Meanwhile, the abundance and richness of graminoids were higher and the abundance of soil microbes was lower in ammonium‐addition than in nitrate‐addition plots. Our findings provide evidence that shifts toward higher graminoid abundance and changes in soil microbial abundance mediated by N chemical forms are key drivers for priming effects and SOC pool changes, thereby linking human interference with the N cycle to climate change.  相似文献   

6.
武夷山低海拔和高海拔森林土壤有机碳的矿化特征   总被引:2,自引:0,他引:2  
研究不同海拔土壤有机碳矿化对深入认识不同海拔森林土壤有机碳动态变化具有重要意义.本文以武夷山低海拔和高海拔森林土壤为研究对象,通过室内模拟其在各自年平均气温(17、9℃)条件下的矿化培养试验,探讨土壤有机碳矿化特征的差异.结果表明:培养126 d后,尽管高海拔森林土壤的有机碳含量显著高于低海拔森林土壤,但低海拔和高海拔森林土壤在各自环境温度背景下的有机碳累积矿化量并无显著差异.一级动力学方程均能较好地模拟高低海拔森林土壤有机碳矿化特征,高海拔和低海拔森林土壤有机碳潜在矿化量(CP)和矿化速率常数均无显著差异,但低海拔土壤C_P/SOC值和矿化率显著高于高海拔土壤,表明在环境温度背景下,低海拔土壤固碳能力低于高海拔土壤.随着培养时间增加,高海拔土壤微生物生物量碳和微生物熵显著高于低海拔土壤,表明高海拔土壤微生物的碳同化量高于低海拔土壤微生物,有利于有机碳的积累.高海拔森林土壤中的β-葡萄糖甘酶和纤维素水解酶高于低海拔森林土壤,说明高海拔土壤微生物可能更多地分解活性碳.未来气候变暖可能暗示着会降低高海拔土壤有机碳固碳能力和微生物碳利用效率,从而导致土壤有机碳储量下降.  相似文献   

7.
Microbe-mediated carbon transformation plays an important role in soil carbon sequestration, which is considered to be one of the key strategies to achieve carbon neutrality in the long term. Assessing the efficiency of microbial necromass accumulation relative to plant carbon input or microbial respiration will help to identify ways to promote soil carbon sequestration from an ecosystem perspective.  相似文献   

8.
在农田生态系统中,施肥是维持和提高土壤有机碳(SOC)水平的重要管理措施。微生物代谢和植物组分存留共同控制着有机碳的截获过程。本研究利用肥料与肥力长期(30年)定位试验,以氨基糖和木质素分别作为微生物和植物残留组分标识物,探讨长期不同施肥处理对黑土农田中微生物和植物残体组分积累及有机碳库的影响。结果表明: 与未施肥处理相比,施用无机肥(单施氮肥或有机无机肥配施)可增加作物生物量和土壤氨基糖的积累,但对木质素和SOC含量无显著影响,说明无机肥施入刺激了微生物底物同化,加速了有机碳和木质素在耕层的周转。与无机肥相比,长期施用有机肥促进了SOC的累积(增幅38.3%),但是氨基糖在土壤有机碳中所占的比例并未发生显著变化,说明微生物残留物对SOC积累的贡献具有饱和性;而有机肥施入增加了木质素在SOC中的比例,即增加了植物残体对SOC长期积累的贡献。与单施有机肥相比,有机无机肥配施增加了微生物残留物对SOC的积累。因此,长期施肥可以调节微生物残留物和植物残留组分的不同积累过程,从而影响SOC的积累和稳定机制。  相似文献   

9.
长期施肥下红壤性水稻土有机碳储量变化特   总被引:1,自引:0,他引:1  
黄晶  张杨珠  高菊生  张文菊  刘淑军   《生态学杂志》2015,26(11):3373-3380
研究了1982—2012年长期不同施肥下红壤性水稻土土壤有机碳含量变化、固碳趋势及外源碳输入对土壤固碳的贡献.结果表明: 施肥能提高土壤有机碳含量,连续30年不同施肥后,各施肥处理土壤有机碳含量趋于稳定,有机无机配施的土壤有机碳含量为21.02~21.24 g·kg-1,增加速率为0.41~0.59 g·kg-1·a-1,单施化肥的土壤有机碳含量为15.48 g·kg-1.各有机无机肥配施处理土壤的平均有机碳储量为43.61~48.43 t C·hm-2,历年平均土壤有机碳储量显著大于单施化肥处理.土壤固碳速率与年均投入碳量呈显著指数正相关.本试验条件下,每年需要增加外源有机碳为0.12 t C·hm-2才能维持土壤有机碳的平衡.  相似文献   

10.
The number of studies focused on the transformation and sequestration of soil organic carbon (C) has dramatically increased in recent years due to growing interest in understanding the global C cycle. While it is readily accepted that terrestrial C dynamics are heavily influenced by the catabolic and anabolic activities of microorganisms, the incorporation of microbial biomass components into stable soil C pools (via microbial living cells and necromass) has received less attention. Nevertheless, microbial-derived C inputs to soils are now increasingly recognized as playing a far greater role in stabilization of soil organic matter than previously believed. Our understanding, however, is limited by the difficulties associated with studying microbial turnover in soils. Here, we describe the use of an Absorbing Markov Chain (AMC) to model the dynamics of soil C transformations among three microbial states: living microbial biomass, microbial necromass, and C removed from living and dead microbial sources. We find that AMC provides a powerful quantitative approach that allows prediction of how C will be distributed among these three states, and how long it will take for the entire amount of initial C to pass through the biomass and necromass pools and be moved into atmosphere. Further, assuming constant C inputs to the model, we can predict how C is eventually distributed, along with how much C sequestrated in soil is microbial-derived. Our work represents a first step in attempting to quantify the flow of C through microbial pathways, and has the potential to increase our understanding of the microbial role in soil C dynamics.  相似文献   

11.
Soil carbon transformation and sequestration have received significant interest in recent years due to a growing need for quantitating its role in mitigating climate change. Even though our understanding of the nature of soil organic matter has recently been substantially revised, fundamental uncertainty remains about the quantitative importance of microbial necromass as part of persistent organic matter. Addressing this uncertainty has been hampered by the absence of quantitative assessments whether microbial matter makes up the majority of the persistent carbon in soil. Direct quantitation of microbial necromass in soil is very challenging because of an overlapping molecular signature with nonmicrobial organic carbon. Here, we use a comprehensive analysis of existing biomarker amino sugar data published between 1996 and 2018, combined with novel appropriation using an ecological systems approach, elemental carbon–nitrogen stoichiometry, and biomarker scaling, to demonstrate a suit of strategies for quantitating the contribution of microbe‐derived carbon to the topsoil organic carbon reservoir in global temperate agricultural, grassland, and forest ecosystems. We show that microbial necromass can make up more than half of soil organic carbon. Hence, we suggest that next‐generation field management requires promoting microbial biomass formation and necromass preservation to maintain healthy soils, ecosystems, and climate. Our analyses have important implications for improving current climate and carbon models, and helping develop management practices and policies.  相似文献   

12.
Determining the effect of perennial energy crop (PEC) cultivation on soil organic carbon (SOC) in marginal land soil is vital for carbon neutrality and bioeconomy development. However, a comprehensive and systematic evaluation of the response of SOC content to different PECs and its underlying drivers is still lacking. We used soil data collected from infertile red topsoil (0–20 cm) after 10 years of cultivation with Miscanthus (MS), Panicum virgatum (SG), and Saccharum arundinaceum (SA) to explore the changes in SOC stock induced by PEC. The roles of physical, chemical, and microbiological factors driving the increase in the SOC stock were investigated. Results revealed that SA and MS enhanced SOC stock by 87.97% and 27.52% relative to the uncultivated control. Conversely, PEC increased the percentage of soil mega-aggregates, geometric mean diameters, soil chelate iron (Fe), and aluminum (Al) oxides, and reduced soil acidity for the infertile red soils. In addition, fungal richness and diversity for PEC soils were enhanced compared to the unplanted soil. It is possible that PEC cultivation reduced the relative abundance of copiotrophic fungi but increased the relative abundance of oligotrophic fungi. Furthermore, variance partitioning analysis revealed that chemical and microbiological factors accounted for 80.54% of the total variation for the SOC stock. The partial least squares path model showed that PEC cultivation enhanced soil carbon (C) stock via soil deacidification and increased soil bacterial function. In conclusion, this study confirms the SOC sequestration potential of PEC cultivation in marginal land and the underlying mechanism driving SOC stock. The main positive factors controlling soil C sequestration included “pH,” while the negative factors were “bacterial community,” “fungal community,” and “bacterial function.” Our research may help encourage and support decision-makers of wasted marginal land conversion to PEC cultivation.  相似文献   

13.
程淑兰  方华军  徐梦  耿静  何舜  于光夏  曹子铖 《生态学报》2018,38(23):8285-8295
大气氮沉降增加倾向于促进受氮限制陆地生态系统地上生物量,但是对地下碳过程和土壤碳截存的影响结果迥异,导致陆地生态系统“氮促碳汇”的评估存在很大的不确定性。大气氮沉降输入直接影响微生物活性或间接影响底物质量,改变凋落物和土壤有机质(SOM)的分解速率和分解程度,进而影响土壤有机碳(SOC)的积累与损耗过程。过去相关研究主要集中在土壤碳转化过程和碳储量动态方面,缺乏植物-微生物-SOM交互作用的理解,对土壤碳截存调控的生物化学和微生物学机理尚不清楚。本文以地下碳循环过程为主线,分别综述了氮沉降增加对植物地下碳分配、SOC激发效应、微生物群落碳代谢过程的影响,深入分析SOM化学稳定性与微生物群落动态的关系。该领域研究的薄弱环节体现在:(1)增氮倾向于降低根系的生长和周转,对根际沉积碳分配(数量和格局)的影响及驱动因素不明确;(2)虽然认识到氮素有效性影响土壤激发效应的方向和强度,但是氧化态NO-3和还原态NH+4输入对有机质激发效应的差异性影响及潜在机理知之甚少;(3)微生物碳利用效率(CUE)是微生物群落碳代谢的关键表征,能够很好地解释土壤碳的积累与损耗过程;由于缺乏适宜的测定方法,难以准确量化土壤微生物的CUE及微生物生物量的周转时间;(4)增氮会抑制土壤真菌群落及其胞外酶活性,对细菌群落组成的影响尚未定论,有关SOM化学质量与土壤微生物群落活性、组成之间的耦合关系尚不清楚。未来研究应基于长期的氮添加控制实验平台,结合碳氧稳定性同位素示踪、有机质化学、分子生物学和宏基因组学等方法,深入分析植物同化碳的地下分配规律、微生物碳代谢和周转、有机质化学结构与功能微生物群落的耦合关系等关键环节。上述研究将有助于揭示植物-土壤-微生物交互作用对SOC动态的调控机制,完善陆地生态系统碳-氮耦合循环模型,有效降低区域陆地碳汇评估的不确定性,并可为陆地生态系统应对全球变化提供科学依据。  相似文献   

14.
耕作方式对紫色水稻土有机碳和微生物生物量碳的影响   总被引:8,自引:2,他引:8  
以位于西南大学的农业部紫色土生态环境重点野外科学观测试验站始于1990年的长期定位试验田为对象,研究了冬水田平作(DP)、水旱轮作(SH)、垄作免耕(LM)及垄作翻耕(LF)等4种耕作方式对紫色水稻土有机碳(SOC)和微生物生物量碳(SMBC)的影响。结果表明,4种耕作方式下SOC和SMBC均呈现出在土壤剖面垂直递减趋势,翻耕栽培下其降低较均匀,而免耕栽培下其富集在表层土壤中。同一土层不同耕作方式间SOC和SMBC的差异在表层最大,随着土壤深度的增加,各处理之间的差异逐渐减小。在0—60 cm剖面中,SOC含量依次为:LM(17.6 g/kg)>DP(13.9 g/kg)>LF(12.5 g/kg)>SH(11.3 g/kg),SOC储量也依次为:LM(158.52 Mg C/hm2)>DP(106.74 Mg C/hm2)>LF(93.11 Mg C/hm2)>SH(88.59 Mg C/hm2),而SMBC含量则依次为:LM(259 mg/kg)>SH(213 mg/kg)>LF(160 mg/kg)>DP(144 mg/kg)。与其它3种耕作方式比较,LM处理显著提高SOC含量和储量以及SMBC含量。对土壤微生物商(SMBC/SOC)进行分析发现,耕作方式对SOC和SMBC的影响程度并不一致。SMBC与SOC、全氮、全磷、全硫、碱解氮、有效磷均呈现极显著正相关(P<0.01),与有效硫呈显著正相关(P<0.05);表明SMBC可以作为表征紫色水稻土土壤肥力的敏感因子。  相似文献   

15.
李强 《微生物学报》2022,62(6):2188-2197
在水-二氧化碳-碳酸盐岩-生物的相互作用下,岩溶碳循环活跃,在全球形成8.24×108 t C/a的岩溶碳汇,约占全球遗漏汇的29.4%,其中部分岩溶碳汇以土壤有机碳的形式固存,因此碱性土壤固碳是未来碳中和的主要途径。微生物作为土壤碳循环的重要驱动者,影响着土壤有机碳主要赋存形式即植物残体碳与微生物残体碳的动态变化。本文通过综述岩溶土壤有机碳库储量、岩溶土壤有机碳库的来源与构成、影响岩溶土壤有机碳库动态的微生物因素以及岩溶土壤有机碳库更新的微生物机制,探讨了微生物对岩溶土壤植物残体碳与微生物残体碳的影响,并提出亟待解决的关键科学问题。这为深入研究岩溶区土壤有机碳库分配、更新及其维持的微生物机制,深化对岩溶土壤碳循环及其微生物机理认识,进而为应对千分之四全球土壤增碳计划提供了参考。  相似文献   

16.
Nitrogen (N) availability has been considered as a critical factor for the cycling and storage of soil organic carbon (SOC), but effects of N enrichment on the SOC pool appear highly variable. Given the complex nature of the SOC pool, recent frameworks suggest that separating this pool into different functional components, for example, particulate organic carbon (POC) and mineral-associated organic carbon (MAOC), is of great importance for understanding and predicting SOC dynamics. Importantly, little is known about how these N-induced changes in SOC components (e.g., changes in the ratios among these fractions) would affect the functionality of the SOC pool, given the differences in nutrient density, resistance to disturbance, and turnover time between POC and MAOC pool. Here, we conducted a global meta-analysis of 803 paired observations from 98 published studies to assess the effect of N addition on these SOC components, and the ratios among these fractions. We found that N addition, on average, significantly increased POC and MAOC pools by 16.4% and 3.7%, respectively. In contrast, both the ratios of MAOC to SOC and MAOC to POC were remarkably decreased by N enrichment (4.1% and 10.1%, respectively). Increases in the POC pool were positively correlated with changes in aboveground plant biomass and with hydrolytic enzymes. However, the positive responses of MAOC to N enrichment were correlated with increases in microbial biomass. Our results suggest that although reactive N deposition could facilitate soil C sequestration to some extent, it might decrease the nutrient density, turnover time, and resistance to disturbance of the SOC pool. Our study provides mechanistic insights into the effects of N enrichment on the SOC pool and its functionality at global scale, which is pivotal for understanding soil C dynamics especially in future scenarios with more frequent and severe perturbations.  相似文献   

17.
为探究黑土团聚体内土壤有机碳(SOC)的“分馏”特征, 揭示不同植被覆盖下土壤团聚体的固碳机制, 该文以中国科学院海伦农业生态系统国家野外综合研究站内不同植被覆盖(草地、农田和裸地)长期定位实验的土样为研究对象, 利用团聚体湿筛分组、有机碳物理和化学分组相结合的方法, 研究了黑土团聚体及其内部的碳密度和腐殖质组分的碳分配特征。研究发现, 黑土经过不同植被覆盖31年后, 长期草地覆盖使土壤表层SOC、全氮(TN)含量显著增加, 农田和无植被覆盖的裸地SOC含量减少, 且在裸地显著降低。3种处理中, 2-0.25 mm (含2 mm, 下同)粒级团聚体均为优粒级。土壤团聚体的稳定性顺序为草地>农田>裸地。草地覆盖使土壤大团聚体的比例和有机碳库增加, 微团聚体和粉黏粒所占比例和碳库均减少, 说明草地覆盖促进了土壤大团聚体形成, 土壤固碳能力显著增强。而农田和裸地因外源碳投入少, 有机碳含量均是微团聚体>大团聚体>粉黏粒, SOC主要分布在微团聚体中。不同植被覆盖处理对土壤团聚体内密度组分和腐殖质各组分碳的富集“分馏”作用很明显, 与农田和裸地相比, 长期草地植被覆盖处理>2 mm和2-0.25 mm粒级团聚体中轻组碳含量富集的较多, 2-0.25 mm粒级团聚体中富里酸、胡敏酸和胡敏素的碳富集均最高, 而农田和裸地促进了微团聚体内腐殖质碳的富集。草地覆盖显著增加了大团聚体内活性有机碳组分, 来源于植物的碳首先进入到大粒径的团聚体中, 使土壤团聚结构显著改善, 农田和无植被覆盖的裸地土壤中轻组碳含量显著降低, 团聚体内有机碳以重组碳和胡敏素为主, 稳定化程度更高。  相似文献   

18.
Microbial‐derived nitrogen (N) is now recognized as an important source of soil organic N. However, the mechanisms that govern the production of microbial necromass N, its turnover, and stabilization in soil remain poorly understood. To assess the effects of elevated temperature on bacterial and fungal necromass N production, turnover, and stabilization, we incubated 15N‐labeled bacterial and fungal necromass under optimum moisture conditions at 10°C, 15°C, and 25°C. We developed a new 15N tracing model to calculate the production and mineralization rates of necromass N. Our results showed that bacterial and fungal necromass N had similar mineralization rates, despite their contrasting chemistry. Most bacterial and fungal necromass 15N was recovered in the mineral‐associated organic matter fraction through microbial anabolism, suggesting that mineral association plays an important role in stabilizing necromass N in soil, independently of necromass chemistry. Elevated temperature significantly increased the accumulation of necromass N in soil, due to the relatively higher microbial turnover and production of necromass N with increasing temperature than the increases in microbial necromass N mineralization. In conclusion, we found elevated temperature may increase the contribution of microbial necromass N to mineral‐stabilized soil organic N.  相似文献   

19.
Climate warming is predicted to considerably affect variations in soil organic carbon (SOC), especially in alpine ecosystems. Microbial necromass carbon (MNC) is an important contributor to stable soil organic carbon pools. However, accumulation and persistence of soil MNC across a gradient of warming are still poorly understood. An 8-year field experiment with four levels of warming was conducted in a Tibetan meadow. We found that low-level (+0–1.5°C) warming mostly enhanced bacterial necromass carbon (BNC), fungal necromass carbon (FNC), and total MNC compared with control treatment across soil layers, while no significant effect was caused between high-level (+1.5–2.5°C) treatments and control treatments. The contributions of both MNC and BNC to soil organic carbon were not significantly affected by warming treatments across depths. Structural equation modeling analysis demonstrated that the effect of plant root traits on MNC persistence strengthened with warming intensity, while the influence of microbial community characteristics waned along strengthened warming. Overall, our study provides novel evidence that the major determinants of MNC production and stabilization may vary with warming magnitude in alpine meadows. This finding is critical for updating our knowledge on soil carbon storage in response to climate warming.  相似文献   

20.
Microbial necromass is a large and persistent component of soil organic carbon (SOC), especially under croplands. The effects of cropland management on microbial necromass accumulation and its contribution to SOC have been measured in individual studies but have not yet been summarized on the global scale. We conducted a meta-analysis of 481-paired measurements from cropland soils to examine the management effects on microbial necromass and identify the optimal conditions for its accumulation. Nitrogen fertilization increased total microbial necromass C by 12%, cover crops by 14%, no or reduced tillage (NT/RT) by 20%, manure by 21%, and straw amendment by 21%. Microbial necromass accumulation was independent of biochar addition. NT/RT and straw amendment increased fungal necromass and its contribution to SOC more than bacterial necromass. Manure increased bacterial necromass higher than fungal, leading to decreased ratio of fungal-to-bacterial necromass. Greater microbial necromass increases after straw amendments were common under semi-arid and in cool climates in soils with pH <8, and were proportional to the amount of straw input. In contrast, NT/RT increased microbial necromass mainly under warm and humid climates. Manure application increased microbial necromass irrespective of soil properties and climate. Management effects were especially strong when applied during medium (3–10 years) to long (10+ years) periods to soils with larger initial SOC contents, but were absent in sandy soils. Close positive links between microbial biomass, necromass and SOC indicate the important role of stabilized microbial products for C accrual. Microbial necromass contribution to SOC increment (accumulation efficiency) under NT/RT, cover crops, manure and straw amendment ranged from 45% to 52%, which was 9%–16% larger than under N fertilization. In summary, long-term cropland management increases SOC by enhancing microbial necromass accumulation, and optimizing microbial necromass accumulation and its contribution to SOC sequestration requires site-specific management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号