首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regional analyses and biogeochemical models predict that ecosystem N pools and N cycling rates must increase from the semi-arid shortgrass steppe to the sub-humid tallgrass prairie of the Central Great Plains, yet few field data exist to evaluate these predictions. In this paper, we measured rates of net N mineralization, N in above- and belowground primary production, total soil organic matter N pools, soil inorganic N pools and capture in resin bags, decomposition rates, foliar 15N, and N use efficiency (NUE) across a precipitation gradient. We found that net N mineralization did not increase across the gradient, despite more N generally being found in plant production, suggesting higher N uptake, in the wetter areas. NUE of plants increased with precipitation, and δ15N foliar values and resin-captured N in soils decreased, all of which are consistent with the hypothesis that N cycling is tighter at the wet end of the gradient. Litter decomposition appeared to play a role in maintaining this regional N cycling trend: litter decomposed more slowly and released less N at the wet end of the gradient. These results suggest that immobilization of N within the plant–soil system increases from semi-arid shortgrass steppe to sub-humid tallgrass prairie. Despite the fact that N pools increase along a bio-climatic gradient from shortgrass steppe to mixed grass and tallgrass prairie, this element becomes relatively more limiting and is therefore more tightly conserved at the wettest end of the gradient. Similar to findings from forested systems, our results suggest that grassland N cycling becomes more open to N loss with increasing aridity.  相似文献   

2.
The large organic carbon (C) pools found in noncultivated grassland soils suggest that historically these ecosystems have had high rates of C sequestration. Changes in the soil C pool over time are a function of alterations in C input and output rates. Across the Great Plains and at individual sites through time, inputs of C (via aboveground production) are correlated with precipitation; however, regional trends in C outputs and the sensitivity of these C fluxes to annual variability in precipitation are less well known. To address the role of precipitation in controlling grassland C fluxes, and thereby soil C sequestration rates, we measured aboveground and belowground net primary production (ANPP-C and BNPP-C), soil respiration (SR-C), and litter decomposition rates for 2 years, a relatively dry year followed by a year of average precipitation, at five sites spanning a precipitation gradient in the Great Plains. ANPP-C, SR-C, and litter decomposition increased from shortgrass steppe (36, 454, and 24 g C m–2 y–1) to tallgrass prairie (180, 1221, and 208 g C m–2 y–1 for ANPP-C, SR-C, and litter decomposition, respectively). No significant regional trend in BNPP-C was found. Increasing precipitation between years increased rates of ANPP-C, BNPP-C, SR-C, and litter decomposition at most sites. However, regional patterns of the sensitivity of ANPP-C, BNPP-C, SR-C, and litter decomposition to between-year differences in precipitation varied. BNPP-C was more sensitive to between-year differences in precipitation than were the other C fluxes, and shortgrass steppe was more responsive than were mixed grass and tallgrass prairie.  相似文献   

3.
Unexpected patterns of sensitivity to drought in three semi-arid grasslands   总被引:1,自引:0,他引:1  
Cherwin K  Knapp A 《Oecologia》2012,169(3):845-852
Global climate models forecast an increase in the frequency and intensity of extreme weather events, including severe droughts. Based on multi-year relationships between precipitation amount and aboveground annual net primary production (ANPP), semi-arid grasslands are projected to be among the most sensitive ecosystems to changes in precipitation. To assess sensitivity to drought, as well as variability within the shortgrass steppe biome, we imposed moderate and severe rainfall reductions for two growing seasons in three undisturbed grasslands that varied in soil type and climate. We predicted strong drought-induced reductions in ANPP at all sites and greater sensitivity to drought in sites with lower average precipitation, consistent with continental-scale patterns. Identical experimental infrastructure at each site reduced growing season rainfall events by 50 or 80%, and significantly reduced average soil moisture in both years (by 21 and 46% of control levels, respectively). Despite reductions in soil moisture, ANPP responses varied unexpectedly-from no reduction in ANPP to a 51% decrease. Although sensitivity to drought was highest in the semi-arid grassland with lowest mean annual precipitation, patterns in responses to drought across these grasslands were also strongly related to rainfall event size. When growing season rainfall patterns were dominated by many smaller events, ANPP was significantly reduced by drought but not when rainfall patterns were characterized by large rain events. This interaction between drought sensitivity and rainfall event size suggests that ANPP responses to future droughts may be reduced if growing season rainfall regimes also become more extreme.  相似文献   

4.
基于全球库存建模和制图研究(GIMMS)第三代归一化植被指数(NDVI3g)产品和气象数据,利用一元线性回归模型、偏相关分析和显著性T检验,分析了1982—2015年青藏高原高寒草甸和高寒草原春、夏、秋季NDVI时空演变的差异特征及其与气候因子的关系。研究表明:(1)高寒草甸春、夏、秋季NDVI整体均无明显变化趋势,高寒草原春季和夏季NDVI均显著增加,变化速率均为0.0002/a(P<0.05),而秋季NDVI变化趋势不明显。(2)空间上,高寒草甸春季NDVI显著增加面积占比31.95%,集中分布在祁连山区和三江源区,夏季NDVI显著增加的面积占比32.12%,主要分布在祁连山区、三江源地区和一江两河流域;秋季NDVI显著增加的比例为24.59%,集中分布于祁连山区和一江两河流域。高寒草原春、夏、秋季NDVI显著增加的区域均集中分布于西藏自治区北部和柴达木盆地南缘地区,分别占比44.20%、43.09%和37.99%。(3)高寒草甸春季和秋季NDVI均与气温显著正相关,偏相关系数达0.41(P<0.05)和0.23(P<0.05),夏季NDVI与气温、降水量和太阳辐...  相似文献   

5.
Six open‐top chambers were installed on the shortgrass steppe in north‐eastern Colorado, USA from late March until mid‐October in 1997 and 1998 to evaluate how this grassland will be affected by rising atmospheric CO2. Three chambers were maintained at current CO2 concentration (ambient treatment), three at twice ambient CO2, or approximately 720 μmol mol?1 (elevated treatment), and three nonchambered plots served as controls. Above‐ground phytomass was measured in summer and autumn during each growing season, soil water was monitored weekly, and leaf photosynthesis, conductance and water potential were measured periodically on important C3 and C4 grasses. Mid‐season and seasonal above‐ground productivity were enhanced from 26 to 47% at elevated CO2, with no differences in the relative responses of C3/C4 grasses or forbs. Annual above‐ground phytomass accrual was greater on plots which were defoliated once in mid‐summer compared to plots which were not defoliated during the growing season, but there was no interactive effect of defoliation and CO2 on growth. Leaf photosynthesis was often greater in Pascopyrum smithii (C3) and Bouteloua gracilis (C4) plants in the elevated chambers, due in large part to higher soil water contents and leaf water potentials. Persistent downward photosynthetic acclimation in P. smithii leaves prevented large photosynthetic enhancement for elevated CO2‐grown plants. Shoot N concentrations tended to be lower in grasses under elevated CO2, but only Stipa comata (C3) plants exhibited significant reductions in N under elevated compared to ambient CO2 chambers. Despite chamber warming of 2.6 °C and apparent drier chamber conditions compared to unchambered controls, above‐ground production in all chambers was always greater than in unchambered plots. Collectively, these results suggest increased productivity of the shortgrass steppe in future warmer, CO2 enriched environments.  相似文献   

6.
Response of the Shortgrass Steppe to Changes in Rainfall Seasonality   总被引:4,自引:1,他引:3  
Studies in temperate grassland ecosystems have shown that differences in composition of C3 and C4 plant functional types can have important influences on ecosystem pools and processes. We used a plant community dynamics model (STEPPE) linked to a biogeochemical cycling model (CENTURY) to determine how ecosystem properties in shortgrass steppe are influenced by plant functional type composition. Because of phenological differences between C3 and C4 plants, we additionally simulated the effects of precipitation seasonality on plant communities and examined how C3 and C4 composition interacts with precipitation to affect ecosystems. The model output suggests that differences in C3 and C4 composition can lead to differences in soil organic carbon (C) and nitrogen (N) within 1000 simulation years. Soil organic C and N (g C and N m 2 to 0.2-m depth) were least in a 100% C4 community compared with a 100% C3 community and a mixed C3–C4 community. A change in the time of maximum precipitation from summer to spring in a simulated shortgrass steppe slightly favored C3 plants over C4 plants. The proportion of total net primary production accounted for by C3 plants increased from 21% to 25% after 200 years, when 90 mm of precipitation was switched from summer to spring. Soil organic matter (SOM) was relatively stable in the C4-dominated communities with respect to changes in precipitation seasonality, whereasSOM in the C3 community was sensitive to precipitation seasonality changes. These results suggest an important interaction between plant community composition and precipitation seasonality on SOM, with phenology playing a key role. Received 9 June 1998; accepted 6 January 1999  相似文献   

7.
Abstract. Our objective was to evaluate the effects of burrowing activities by banner-tail kangaroo rats (Dipodomys spectabilis Merriam) on plant community structure and species dominance for two patch types at the ecotone between shortgrass steppe and desert grassland in New Mexico, USA. 10 mounds produced by kangaroo rats were selected in patches dominated by Bouteloua gracilis (the dominant in shortgrass steppe communities) and 10 mounds were selected in patches dominated by B. eriopoda (the dominant in Chihuahuan desert grasslands). Plant cover and density by species were sampled from three locations associated with each mound: the mound proper, the edge of the mound in the transition area, and the off-mound vegetation. Similar cover of B. eriopoda for the edges of mounds in both patch types indicates the ability of this species to respond to animal disturbances regardless of the amount of cover in the surrounding undisturbed vegetation. By contrast, cover of B. gracilis was low for all mounds and mound edges in patches dominated by this species. Much higher cover of B. eriopoda on mound edges compared to the undisturbed vegetation in B. gracilis-dominated patches indicates that kangaroo rats have important positive effects on this species. Lower cover of perennial grasses and higher cover of forbs, shrubs, and succulents on the edges of mounds in B. eriopoda-dominated patches compared to patches dominated by B. gracilis indicate the importance of surrounding vegetation to plant responses on disturbed areas. Our results show that kangaroo rats have important effects on both species dominance and composition for different patch types, and may provide a mechanism for small-scale dominance patterns at an ecotone; thus providing further support for their role as keystone species in desert grasslands.  相似文献   

8.
Overwintering is a key demographic stage for migratory birds but remains poorly understood, especially among multiple declining grassland bird species. The non-breeding ranges all 4 species of longspur (i.e., chestnut-collared [Calcarius ornatus], Smith's [C. pictus], Lapland [C. lapponicus], thick-billed [Rhynchophanes mccownii]) overlap in Oklahoma and the Texas Panhandle, USA, making this region ideal to study their wintering ecology. We evaluated the relationship between wintering longspur occurrence and fine-scale habitat characteristics using a combination of standardized bird surveys and vegetation plot sampling. Our study encompassed large, representative tracts of 3 prairie ecosystems (i.e., shortgrass, mixed-grass, and tallgrass prairies) that intersect within the Southern Great Plains, during winters of 2018–2019 and 2019–2020. Using randomization tests and classification trees, we characterized longspur habitats and compared these associations across the 3 prairie ecosystems. Fine-scale winter habitats (horizontal structure, vertical structure, and species compositions) varied among all 4 longspur species, varied at very fine scales, and differed between grassland types. Our findings can be applied to the management of grasslands such as decreasing vegetation height in mixed-grass prairies for chestnut-collared longspurs or removing woody vegetation in shortgrass prairies for thick-billed longspurs to help develop full-life cycle conservation for longspurs, which have experienced population declines.  相似文献   

9.
Question: Is there a difference in plant species and life form composition between two major patch types at a biome transition zone? Are subordinate species associated with different patch types at the shortgrass steppe — Chihuahuan desert grassland transition zone? Is this association related to differences in soil texture between patch types and the geographic range of associated species? Location: central New Mexico, USA. Methods: Patches dominated by either Bouteloua gracilis, the dominant species in the shortgrass steppe, or Bouteloua eriopoda, dominant species in the Chihuahuan desert grasslands, were sampled for the occurrence of subordinate species and soil texture within a 1500‐ha transitional mosaic of patches. Results: Of the 52 subordinate species analysed, 16 species were associated with B. gracilis‐dominated patches and 12 species with B. eriopoda‐dominated patches. Patches dominated by B. gracilis were richer in annual grasses and forbs, whereas patches dominated by B. eriopoda contained more perennials forbs and shrubs. Soils of B. gracilis‐dominated patches had higher clay and lower rock contents compared with soils of B. eriopoda‐dominated patches. Differences in species characteristics of the dominant species as well as differences in soil texture between patch types contribute to patch‐scale variation in composition. The association of species to patch types was not related to their geographic range and occurrence in the adjacent biomes. Conclusions: Patch types at this biome transition zone have characteristic life‐form and species composition, but species are associated to patch types due to local constraints, independently from their affinity to the adjacent biomes.  相似文献   

10.
Carbon dioxide and methane exchange of a north-east Siberian tussock tundra   总被引:1,自引:0,他引:1  
Carbon dioxide, energy flux measurements and methane chamber measurements were carried out in an arctic wet tussock grassland located on a flood plane of the Kolyma river in NE Siberia over a summer period of 155 days in 2002 and early 2003. Respiration was also measured in April 2004. The study region is characterized by late thaw of the top soil (mid of June) and periodic spring floods. A stagnant water table below the grass canopy is fed by thawing of the active layer of permafrost and by flood water. The climate is continental with average daily temperature in the warmest months of 13°C (maximum temperature at midday: 28°C by the end of July), dry air (maximum vapour pressure deficit at midday: 28 hPa) and low rainfall of 50 mm during summer (July–September). Summer evaporation (July–September: 103 mm) exceeded rainfall by a factor of 2. The daily average Bowen ratio (H/LE) was 0.62 during the growing season. Net ecosystem CO2 uptake reached 10 μmol m−2 s−1 and was related to photon flux density (PFD) and vapour pressure deficit (VPD). The cumulative annual net carbon flux from the atmosphere to the terrestrial surface was estimated to be about −38 g C m−2 yr−1 (negative flux depicts net carbon sink). Winter respiration was extrapolated using the Lloyd and Taylor function. The net carbon balance is composed of a high rate of assimilation in a short summer and a fairly large but uncertain respiration mainly during autumn and spring. Methane flux (about 12 g C m−2 measured over 60 days) was 25% of C uptake during the same period of time (end of July to end of September). Assuming that CH4 was emitted only in summer, and taking the greenhouse gas warming potential of CH4 vs. CO2 into account (factor 23), the study site was a greenhouse gas source (at least 200 g Cequivalent m−2 yr−1). Comparing different studies in wetlands and tundra ecosystems as related to latitude, we expect that global warming would rather increase than decrease the CO2-C sink.  相似文献   

11.
Colonial, burrowing herbivores can be engineers of grassland and shrubland ecosystems worldwide. Spatial variation in landscapes suggests caution when extrapolating single‐place studies of single species, but lack of data and the need to generalize often leads to ‘model system’ thinking and application of results beyond appropriate statistical inference. Generalizations about the engineering effects of prairie dogs (Cynomys sp.) developed largely from intensive study at a single complex of black‐tailed prairie dogs C. ludovicianus in northern mixed prairie, but have been extrapolated to other ecoregions and prairie dog species in North America, and other colonial, burrowing herbivores. We tested the paradigm that prairie dogs decrease vegetation volume and the cover of grasses and tall shrubs, and increase bare ground and forb cover. We sampled vegetation on and off 279 colonies at 13 complexes of 3 prairie dog species widely distributed across 5 ecoregions in North America. The paradigm was generally supported at 7 black‐tailed prairie dog complexes in northern mixed prairie, where vegetation volume, grass cover, and tall shrub cover were lower, and bare ground and forb cover were higher, on colonies than at paired off‐colony sites. Outside the northern mixed prairie, all 3 prairie dog species consistently reduced vegetation volume, but their effects on cover of plant functional groups varied with prairie dog species and the grazing tolerance of dominant perennial grasses. White‐tailed prairie dogs C. leucurus in sagebrush steppe did not reduce shrub cover, whereas black‐tailed prairie dogs suppressed shrub cover at all complexes with tall shrubs in the surrounding habitat matrix. Black‐tailed prairie dogs in shortgrass steppe and Gunnison's prairie dogs C. gunnisoni in Colorado Plateau grassland both had relatively minor effects on grass cover, which may reflect the dominance of grazing‐tolerant shortgrasses at both complexes. Variation in modification of vegetation structure may be understood in terms of the responses of different dominant perennial grasses to intense defoliation and differences in foraging behavior among prairie dog species. Spatial variation in the engineering role of prairie dogs suggests spatial variation in their keystone role, and spatial variation in the roles of other ecosystem engineers. Thus, ecosystem engineering can have a spatial component not evident from single‐place studies.  相似文献   

12.
Abstract. Our overall objective was to use a soil water model to predict spatial patterns in germination and establishment of two important perennial C4-bunchgrasses across the North American shortgrass steppe and desert grassland regions. We also predicted changes in establishment patterns under climate change scenarios. Bouteloua gracilis dominates the shortgrass steppe from northeastern Colorado to southeastern New Mexico. Bouteloua eriopoda dominates desert grasslands in central and southern New Mexico. Germination and establishment for each species were predicted at 16 sites along the gradient using a daily time step, multi-layer soil water model (SOILWAT) to determine the percentage of years that temperature and soil water criteria for germination and establishment were met. Percentage of years with predicted establishment decreased from north to south for B. gracilis, but increased from north to south for B. eriopoda, comparable to observed dominance patterns. The 95 % confidence interval around the point at which simulated establishment were equal for the two species was near the location of the shortgrass steppe-desert grassland ecotone where both species are abundant. The intersection in percentage of years with establishment for the two species was predicted to move further north when climate was scaled using three Global Circulation Models (GCMs), indicating a possible northward expansion of B. eriopoda. Our results suggest that recruitment by seed may be an important process in determining, at least in part, the geographic distribution of these two species. Changes in climate that affect establishment constraints could result in shifts of species dominance that may or may not be accompanied by changes in species composition.  相似文献   

13.
Aboveground net primary production (ANPP) is a key integrator of C uptake and energy flow in many terrestrial ecosystems. As such, ecologists have long sought to understand the factors driving variation in this important ecosystem process. Although total annual precipitation has been shown to be a strong predictor of ANPP in grasslands across broad spatial scales, it is often a poor predictor at local scales. Here we examine the amount of variation in ANPP that can be explained by total annual precipitation versus precipitation during specific periods of the year (precipitation periods) and nutrient availability at three sites representing the major grassland types (shortgrass steppe, mixed-grass prairie, and tallgrass prairie) spanning the broad precipitation gradient of the U.S. Central Great Plains. Using observational data, we found that precipitation periods and nutrient availability were much stronger predictors of site-level ANPP than total annual precipitation. However, the specific nutrients and precipitation periods that best predicted ANPP differed among the three sites. These effects were mirrored experimentally at the shortgrass and tallgrass sites, with precipitation and nutrient availability co-limiting ANPP, but not at the mixed-grass site, where nutrient availability determined ANPP exclusive of precipitation effects. Dominant grasses drove the ANPP response to increased nutrient availability at all three sites. However, the relative responses of rare grasses and forbs were greater than those of the dominant grasses to experimental nutrient additions, thus potentially driving species turnover with chronic nutrient additions. This improved understanding of the factors driving variation in ANPP within ecosystems spanning the broad precipitation gradient of the Great Plains will aid predictions of alterations in ANPP under future global change scenarios.  相似文献   

14.
The shortgrass steppe is co-dominated by two C4perennial grasses, Bouteloua gracilis andBuchloë dactyloides. At our site and throughouteastern Colorado Bouteloua gracilis has higher cover andbiomass than Buchloë dactyloides. We hypothesizedthatthe interaction between seedling recruitment differences and disturbance regimeand tolerance to drought conditions were the most likely causes of the observeddifferences in relative abundances. We used a simulation model to investigatethe relative importance of the three factors. We studied plant biomass of thesetwo species in 18 simulated treatments that resulted from a factorialcombination of seedling recruitment differences, disturbance regime, andtolerance to drought conditions. Analysis of the simulation outputs with ANOVAindicated that biomass of each species responded positively to increases inrecruitment probability. Increasing disturbance frequency favoredBuchloë dactyloides over Boutelouagracills, whereas the susceptibility Buchloëdactyloides to drought favored Boutelouagracilis. The results indicated that differences in droughttoleranceand seedling recruitment probabilities along with their interactions withdisturbance regimes exert a major control on the biomass of the species. In theabsence of or with intermediate disturbance, a higher recruitment probabilityand greater tolerance to drought of Bouteloua gracilisthanBuchloë dactyloides yielded patterns of relativebiomass similar to the patterns observed in the shortgrass steppe.  相似文献   

15.
Global warming and land-use change could have profound impacts on ecosystem carbon (C) fluxes, with consequent changes in C sequestration and its feedback to climate change. However, it is not well understood how net ecosystem C exchange (NEE) and its components respond to warming and mowing in tallgrass prairie. We conducted two warming experiments, one long term with a 1.7°C increase in a C4-dominated grassland (Experiment 1), and one short term with a 2.8°C increase in a C3-dominated grassland (Experiment 2), to investigate main and interactive effects of warming and clipping on ecosystem C fluxes in the Great Plains of North America during 2009–2011. An infrared radiator was used to simulate climate warming and clipping once a year mimicked mowing in both experiments. The results showed that warming significantly increased ecosystem respiration (ER), slightly increased GPP, with the net outcome (NEE) being little changed in Experiment 1. In contrast, warming significantly suppressed GPP and ER in both years, with the net outcome being enhanced in NEE (more C sequestration) in 2009–2010 in Experiment 2. The C4-dominated grassland showed a much higher optimum temperature for C fluxes than the C3-dominated grassland, which may partly contribute to the different warming effects in the two experiments. Clipping significantly enhanced GPP, ER, and NEE in both experiments but did not significantly interact with warming in impacting C fluxes in either experiment. The warming-induced changes in ecosystem C fluxes correlated significantly with C4 biomass proportion but not with warming-induced changes in either soil temperature or soil moisture across the plots in the experiments. Our results demonstrate that carbon fluxes in the tallgrass prairie are highly sensitive to climate warming and clipping, and C3/C4 plant functional types may be important factor in determining ecosystem response to climate change.  相似文献   

16.
Summary Increasing leaf to air vapor pressure deficit (VPD) caused reductions in stomatal conductance of both current year and previous season needles of Pseudotsuga menziesii saplings. The stomata of current year needles were found to be more responsive to changes in VPD than those of previous season needles. The reductions in stomatal conductance of current year needles were not associated with decreases in xylem pressure potential. In fact, the reductions in stomatal conductance of current year needles were sometimes sufficient to reduce transpiration and thus raise xylem pressure potential even though VPD was increasing. There was a decline in stomatal responsiveness to VPD in current year needles between early and late summer. Pressure-volume curves determined for different age needles at different times of the year suggested that differences and changes in stomatal responsiveness to VPD may have been caused in part by differences and changes in needle water potential components. Hexane washes of current year needles during the late summer succeeded in partially restoring their VPD sensitivity, suggesting that changes in the water permeability of the external cuticle during needle maturation may also have played a role in causing the summer decline in VPD responsiveness.In both current and previous year needles VPD-induced changes in stomatal conductance had a greater relative effect on transpiration (q w) than on net photosynthesis (PhN). In maturing needles the ratio of the sensitivities of transpiration and net photosynthesis to changes in stomatal conductance, (q w/g s)/PhN/g s), remained nearly constant as VPD was varied. This provides experimental support for a recent hypothesis that stomata respond to environmental fluctuations in such a manner as to maintain the above ratio constant, which optimizes CO2 uptake with respect to water loss.  相似文献   

17.
Urban ecosystems are expanding globally, and assessing the ecological consequences of urbanization is critical to understanding the biology of local and global change related to land use. We measured carbon (C) fluxes, nitrogen (N) cycling, and soil microbial community structure in a replicated (n=3) field experiment comparing urban lawns to corn, wheat–fallow, and unmanaged shortgrass steppe ecosystems in northern Colorado. The urban and corn sites were irrigated and fertilized. Wheat and shortgrass steppe sites were not fertilized or irrigated. Aboveground net primary productivity (ANPP) in urban ecosystems (383±11 C m?2 yr?1) was four to five times greater than wheat or shortgrass steppe but significantly less than corn (537±44 C m?2 yr?1). Soil respiration (2777±273 g C m?2 yr?1) and total belowground C allocation (2602±269 g C m?2 yr?1) in urban ecosystems were both 2.5 to five times greater than any other land‐use type. We estimate that for a large (1578 km2) portion of Larimer County, Colorado, urban lawns occupying 6.4% of the land area account for up to 30% of regional ANPP and 24% of regional soil respiration from land‐use types that we sampled. The rate of N cycling from urban lawn mower clippings to the soil surface was comparable with the rate of N export in harvested corn (both ~12–15 g N m?2 yr?1). A one‐time measurement of microbial community structure via phospholipid fatty acid analysis suggested that land‐use type had a large impact on microbial biomass and a small impact on the relative abundance of broad taxonomic groups of microorganisms. Our data are consistent with several other studies suggesting that urbanization of arid and semiarid ecosystems leads to enhanced C cycling rates that alter regional C budgets.  相似文献   

18.
Dodd  M. B.  Lauenroth  W. K.  Welker  J. M. 《Oecologia》1998,117(4):504-512
We conducted a study to test the predictions of Walter's two-layer model in the shortgrass steppe of northeastern Colorado. The model suggests that grasses and woody plants use water resources from different layers of the soil profile. Four plant removal treatments were applied in the spring of 1996 within a plant community codominated by Atriplex canescens (a C4 shrub) and Bouteloua gracilis (a C4 grass). During the subsequent growing season, soil water content was monitored to a depth of 180 cm. In addition, stem and leaf tissue of Atriplex, Bouteloua and the streamside tree Populus sargentii were collected monthly during the growing seasons of 1995 and 1996 for analysis of the δ18O value of plant stem water (for comparison with potential water sources) and the δ13C value of leaves (as an indicator of plant water status). Selective removal of shrubs did not significantly increase water storage at any depth in the measured soil profile. Selective removal of the herbaceous understory (mainly grasses) increased water storage in the top 60 cm of the soil. Some of this water gradually percolated to lower layers, where it was utilized by the shrubs. Based on stem water δ18O values, grasses were exclusively using spring and summer rain extracted from the uppermost soil layers. In contrast, trees were exclusively using groundwater, and the consistent δ13C values of tree leaves over the course of the summer indicated no seasonal changes in gas exchange and therefore minimal water stress in this life-form. Based on anecdotal rooting-depth information and initial measurements of stem water δ18O, shrubs may have also had access to groundwater. However, their overall δ18O values indicated that they mainly used water from spring and summer precipitation events, extracted from subsurface soil layers. These findings indicate that the diversity of life-forms found in this shortgrass steppe community may be a function of the spatial partitioning of soil water resources, and their differential use by grasses, shrubs, and trees. Consequently, our findings support the two-layer model in a broad sense, but indicate a relatively flexible strategy of water acquisition by shrubs. Received: 23 December 1997 / Accepted: 16 September 1998  相似文献   

19.
Much of the breeding range for the mountain plover (Charadrius montanus) occurs in shortgrass steppe and mixed-grass prairie in the western Great Plains of North America. Studies of mountain plovers in shortgrass steppe during the 1970s and 1990s were focused in Weld County, Colorado, which was considered a key breeding area for the species. These studies, however, did not include habitats influenced by black-tailed prairie dogs (Cynomys ludovicianus) or prescribed fire. The role of these 2 rangeland disturbance processes has increased substantially over the past 15 years. During 2008–2009, I used radial distance point count surveys to estimate mountain plover densities early in the nesting season in 4 habitats on public lands in Weld County, Colorado. All 4 habitats were grazed by cattle during the growing season at moderate stocking rates but had different additional disturbances consisting of 1) dormant-season prescribed burns, 2) active black-tailed prairie dog colonies, 3) black-tailed prairie dog colonies affected by epizootic plague in the past 1–2 years, and 4) rangeland with no recent history of fire or prairie dogs. Mountain plover densities were similar on active black-tailed prairie dog colonies ( = 6.8 birds/km2, 95% CI = 4.3–10.6) and prescribed burns ( = 5.6 birds/km2, 95% CI = 3.5–9.1). In contrast, no plovers were detected at randomly selected rangeland sites grazed by cattle but lacking recent disturbance by prairie dogs or fire, even though survey effort was highest for this rangeland habitat. Mountain plover densities were intermediate (2.0 birds/km2, 95% CI = 0.8–5.0) on sites where black-tailed prairie dogs had recently been extirpated by plague. These findings suggest that prescribed burns and active black-tailed prairie dog colonies may enhance breeding habitat for mountain plovers in shortgrass steppe and illustrate the potential for suppressed or altered disturbance processes to influence habitat availability for declining wildlife species. © 2011 The Wildlife Society.  相似文献   

20.
Grazing and Ecosystem Carbon Storage in the North American Great Plains   总被引:3,自引:0,他引:3  
Isotopic signatures of 13C were used to quantify the relative contributions of C3 and C4 plants to whole-ecosystem C storage (soil+plant) in grazed and ungrazed sites at three distinct locations (short-, mid- and tallgrass communities) along an east–west environmental gradient in the North American Great Plains. Functional group composition of plant communities, the source and magnitude of carbon inputs, and total ecosystem carbon storage displayed inconsistent responses to long-term livestock grazing along this gradient. C4 plants [primarily Bouteloua gracilis (H.B.K.) Lag ex Steud.] dominated the long-term grazed site in the shortgrass community, whereas the ungrazed site was co-dominated by C3 and C4 species; functional group composition did not differ between grazed and ungrazed sites in the mid- and tallgrass communities. Above-ground biomass was lower, but the relative proportion of fine root biomass was greater, in grazed compared to ungrazed sites at all three locations. The grazed site of the shortgrass community had 24% more whole-ecosystem carbon storage compared to the ungrazed site (4022 vs. 3236 g C m−2). In contrast, grazed sites at the mid- and tallgrass communities had slightly lower (8%) whole-ecosystem carbon storage compared to ungrazed sites (midgrass: 7970 vs. 8683 g C m−2; tallgrass: 8273 vs. 8997 g C m−2). Differential responses between the shortgrass and the mid- and tallgrass communities with respect to grazing and whole-ecosystem carbon storage are likely a result of: (1) maintenance of larger soil organic carbon (SOC) pools in the mid- and tallgrass communities (7476–8280 g C m−2) than the shortgrass community (2517–3307 g C m−2) that could potentially buffer ecosystem carbon fluxes, (2) lower root carbon/soil carbon ratios in the mid- and tallgrass communities (0.06–0.10) compared to the shortgrass community (0.20–0.27) suggesting that variation in root organic matter inputs would have relatively smaller effects on the size of the SOC pool, and (3) the absence of grazing-induced variation in the relative proportion of C3 and C4 functional groups in the mid- and tallgrass communities. We hypothesize that the magnitude and proportion of fine root mass within the upper soil profile is a principal driver mediating the effect of community composition on the biogeochemistry of these grassland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号