首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Evaluating the similarity of diversity patterns across micro- to macroevolutionary scales in natural communities, such as species–genetic diversity correlations (SGDCs), may inform on processes shaping community assembly. However, whether SGDCs not only hold across communities but also across lineages has never been explored so far. Here we investigated SGDCs across co-distributed taxa for different spatial components (α, β, γ), and formally tested the influence of dispersal traits on β-SGDCs.

Location

Western Indian Ocean.

Time period

2016–2017.

Major taxa studied

Tropical reef fish species with contrasting dispersal traits.

Methods

Using double-digest restriction-site associated DNA sequencing (ddRADseq) Single Nucleotide Polymorphism data for 20 tropical reef fishes and distribution data of 2,446 species belonging to 12 families, we analysed the correlations between within-species genetic diversity and within-family species diversity (i.e., lineage diversity) for the three spatial components (α, β, γ-SGDCs). We then related the strength of β-SGDCs per species to proxies of larval dispersal abilities.

Results

We detected positive and significant lineage-based SGDC only for the β component, that is, the families showing the greatest level of species turnover among sites contain the species with the greatest levels of genetic differentiation. We showed that the Monsoon Drift mainly explained the β-diversity patterns at both intraspecific and interspecific levels. Higher β-SGDCs were found for species with short pelagic larval duration and weak larval swimming capacity.

Main conclusions

Our study reveals a strong correlation between genetic and species β-diversity, a result explained by the presence of a ‘soft’ barrier and mediated by larval dispersal processes. This suggests that vicariance and dispersal limitation are major processes shaping β-diversity patterns from microevolutionary to macroevolutionary scales in tropical reef fishes.  相似文献   

2.

Aim

Comprehensive biodiversity protection necessitates the consideration of multiple indexes of diversity, and how the distribution patterns of priority areas may shift under climate change. Galliformes is a globally endangered avian order vulnerable to climate change that provide an important indicator for wildlife conservation effectiveness. Here, we identified priority areas for conserving Galliformes taxonomic, phylogenetic, and functional diversity in China and their spatial dynamics subject to climate change, and examined how well existing protected areas align with current and future priority areas.

Location

China.

Methods

We applied species distribution modelling and Zonation algorithms to identify conservation priority area dynamics for 47 galliform species across three biodiversity indexes subject to three future climate change scenarios to 2050s and 2070s. We overlaid these identified priority areas onto existing national nature reserves and national parks to assess and project their effectiveness.

Results

Current priority areas proved spatially incongruent between indexes, with an optimal area overlap comprising just 10.3% of China's land area, lying largely outside of existing protected areas. Furthermore, over 80% of modelled optimal priority areas currently lacked formal conservation status. Future priority areas will shift substantially under climate change, to an extent dependent on greenhouse gas emission scenarios. Nevertheless, we identified five large regions where optimal Galliformes diversity indexes should remain stable under all scenarios, thus providing potential climatic refugia, if protected from human encroachment.

Main Conclusions

The current deficits we identified for Galliformes protection in China resonate with a broader need for hierarchical conservation strategic planning across regions and ecosystems to ensure long-term biodiversity protection, accommodating for climate change.  相似文献   

3.

Aim

The interplay between distribution ranges, species traits and sampling and taxonomic biases remains elusive amongst microscopic animals. This ignorance obscures our understanding of the diversity patterns of a major component of biodiversity. Here, we used marine Halacaridae to explore whether differences between marine provinces can explain their distribution patterns or if differential sampling efforts across regions prevent any macroecological inference. Furthermore, we test if certain functional traits influence their distribution patterns.

Location

Europe.

Results

Whereas geographical variables provided a better explanation for differences in species composition, sampling effort and distance from marine biological stations accounted for the majority of differences in European Halacaridae richness. Species occurring in more habitats showed broader geographical ranges and accumulated more records. Species traits like generalism affected the distribution of halacarid species.

Main Conclusions

We propose that the sampling effort of halacarid mites in Europe might be explained by two different cognitive biases: the convenience of selecting certain sampling localities compared to others and the tendency of zoologists to scrutinise habitats where their target organisms are more common.  相似文献   

4.

Aim

Large marine predators, such as cetaceans and sharks, play a crucial role in maintaining biodiversity patterns and ecosystem function, yet few estimates of their spatial distribution exist. We aimed to determine the species richness of large marine predators and investigate their fine-scale spatiotemporal distribution patterns to inform conservation management.

Location

The Hauraki Gulf/Tīkapa Moana/Te Moananui-ā-Toi, Aotearoa/New Zealand.

Methods

We conducted a replicate systematic aerial survey over 12 months. Flexible machine learning models were used to explore relationships between large marine predator occurrence (Bryde's whales, common and bottlenose dolphins, bronze whaler, pelagic and immature hammerhead sharks) and environmental and biotic variables, and predict their monthly distribution and associated spatially explicit uncertainty.

Results

We revealed that temporally dynamic variables, such as prey distribution and sea surface temperature, were important for predicting the occurrence of the study species and species groups. While there was variation in temporal and spatial distribution, predicted richness peaked in summer and was the highest in coastal habitats during that time, providing insight into changes in distributions over time and between species.

Main Conclusions

Temporal changes in distribution are not routinely accounted for in species distribution studies. Our approach highlights the value of multispecies surveys and the importance of considering temporally variable abiotic and biotic drivers for understanding biodiversity patterns when informing ecosystem-scale conservation planning and dynamic ocean management.  相似文献   

5.
Genetic diversity is crucial for species’ maintenance and persistence, yet is often overlooked in conservation studies. Species diversity is more often reported due to practical constraints, but it is unknown if these measures of diversity are correlated. In marine invertebrates, adults are often sessile or sedentary and populations exchange genes via dispersal of gametes and larvae. Species with a larval period are expected to have more connected populations than those without larval dispersal. We assessed the relationship between measures of species and genetic diversity, and between dispersal ability and connectivity. We compiled data on genetic patterns and life history traits in nine species across five phyla. Sampling sites spanned 600 km in the northwest Mediterranean Sea and focused on a 50‐km area near Marseilles, France. Comparative population genetic approaches yielded three main results. (i) Species without larvae showed higher levels of genetic structure than species with free‐living larvae, but the role of larval type (lecithotrophic or planktotrophic) was negligible. (ii) A narrow area around Marseilles, subject to offshore advection, limited genetic connectivity in most species. (iii) We identified sites with significant positive contributions to overall genetic diversity across all species, corresponding with areas near low human population densities. In contrast, high levels of human activity corresponded with a negative contribution to overall genetic diversity. Genetic diversity within species was positively and significantly linearly related to local species diversity. Our study suggests that local contribution to overall genetic diversity should be taken into account for future conservation strategies.  相似文献   

6.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

7.

Motivation

We generated a novel database of Neotropical snakes (one of the world's richest herpetofauna) combining the most comprehensive, manually compiled distribution dataset with publicly available data. We assess, for the first time, the diversity patterns for all Neotropical snakes as well as sampling density and sampling biases.

Main types of variables contained

We compiled three databases of species occurrences: a dataset downloaded from the Global Biodiversity Information Facility (GBIF), a verified dataset built through taxonomic work and specialized literature, and a combined dataset comprising a cleaned version of the GBIF dataset merged with the verified dataset.

Spatial location and grain

Neotropics, Behrmann projection equivalent to 1° × 1°.

Time period

Specimens housed in museums during the last 150 years.

Major taxa studied

Squamata: Serpentes.

Software format

Geographical information system (GIS).

Results

The combined dataset provides the most comprehensive distribution database for Neotropical snakes to date. It contains 147,515 records for 886 species across 12 families, representing 74% of all species of snakes, spanning 27 countries in the Americas. Species richness and phylogenetic diversity show overall similar patterns. Amazonia is the least sampled Neotropical region, whereas most well‐sampled sites are located near large universities and scientific collections. We provide a list and updated maps of geographical distribution of all snake species surveyed.

Main conclusions

The biodiversity metrics of Neotropical snakes reflect patterns previously documented for other vertebrates, suggesting that similar factors may determine the diversity of both ectothermic and endothermic animals. We suggest conservation strategies for high‐diversity areas and sampling efforts be directed towards Amazonia and poorly known species.  相似文献   

8.
9.
Aim Peak marine taxonomic diversity has only rarely occurred at or near the equator during the Phanerozoic Eon, in contrast to the present‐day pattern. This fundamental difference is difficult to reconcile because the latitude at which peak diversity occurs for living marine taxa has not yet been explicitly determined at a broad taxonomic and spatial scale. Here, we attempt to determine this value in order to compare the contemporary and fossil patterns directly. Location Our data are global in coverage. Methods We used a literature compilation of 149 present‐day marine latitudinal diversity gradients. We summed the number of marine taxa that exhibited peak diversity within 10° latitudinal bins. In addition, we recorded locality data, general habitat (benthic/pelagic), and the taxonomic level of the study organisms. Results We found that peak diversity for most sampled marine taxa currently occurs between 10° and 20° N, even after correcting for a Northern Hemisphere sampling bias. Moreover, this peak position is a global phenomenon: it is found across habitats and higher taxa, within all sampled ocean basins, and on both sides of the Atlantic and Pacific oceans. Benthic taxa, which dominate our data, exhibit one peak at 10°–20° N, while pelagic taxa exhibit a peak at 10°–20° N and an additional peak at 10°–20° S, producing a distinct trough at the equator. Main conclusions Our data indicate that peak marine diversity for many taxa is currently within 10°–20° N rather than at the equator, and that this is not likely to result from either undersampling at lower latitudes or the pattern being dominated by a particular taxon. Possible explanations may include a coincidence with the intertropical convergence zone, a mid‐domain effect, abundant shallow marine habitat, or high ocean temperatures at latitudes nearest the equator. Regardless of its exact cause, the position of peak diversity should be considered a fundamental feature of the latitudinal diversity gradient that must be accounted for within attempts to explain the latter’s existence.  相似文献   

10.

Aim

The abyssal Clarion-Clipperton Zone (CCZ), Pacific Ocean, is an area of commercial importance owing to the growing interest in mining high-grade polymetallic nodules at the seafloor for battery metals. Research into the spatial patterns of faunal diversity, composition, and population connectivity is needed to better understand the ecological impacts of potential resource extraction. Here, a DNA taxonomy approach is used to investigate regional-scale patterns of taxonomic and phylogenetic alpha and beta diversity, and genetic connectivity, of the dominant macrofaunal group (annelids) across a 6 million km2 region of the abyssal seafloor.

Location

The abyssal seafloor (3932–5055 m depth) of the Clarion-Clipperton Zone, equatorial Pacific Ocean.

Methods

We used a combination of new and published barcode data to study 1866 polychaete specimens using molecular species delimitation. Both phylogenetic and taxonomic alpha and beta diversity metrics were used to analyse spatial patterns of biodiversity. Connectivity analyses were based on haplotype distributions for a subset of the studied taxa.

Results

DNA taxonomy identified 291–314 polychaete species from the COI and 16S datasets respectively. Taxonomic and phylogenetic beta diversity between sites were relatively high and mostly explained by lineage turnover. Over half of pairwise comparisons were more phylogenetically distinct than expected based on their taxonomic diversity. Connectivity analyses in abundant, broadly distributed taxa suggest an absence of genetic structuring driven by geographical location.

Main Conclusions

Species diversity in abyssal Pacific polychaetes is high relative to other deep-sea regions. Results suggest that environmental filtering, where the environment selects against certain species, may play a significant role in regulating spatial patterns of biodiversity in the CCZ. A core group of widespread species have diverse haplotypes but are well connected over broad distances. Our data suggest that the high environmental and faunal heterogeneity of the CCZ should be considered in future policy decisions.  相似文献   

11.
高虹  陈圣宾  欧阳志云 《生态学报》2012,32(21):6767-6775
文化林是指村民按照文化传统、风俗习惯或宗教信仰自觉保护和管理的森林,具有一定社会文化功能。目前国内外对文化林物种多样性研究主要为定性描述,缺乏对文化林和非文化林生物多样性的定量比较及差异来源分析。利用物种多样性加性分配方法,将总的Gamma 多样性分成样格内的Alpha多样性以及样格间、样方间和林型间Beta多样性,对中国亚热带地区3个村落文化林的乔木层、灌木层、草本层和藤本层进行物种多样性的多尺度分析。调查发现:(1)文化林共有维管束植物296种,以苦槠,樟和米槠为优势种,非文化林共有维管束植物189种,以杉木、马尾松和毛竹为优势种。文化林乔木层和灌木层物种数显著高于非文化林,草本层和藤本层物种数差异不显著。(2)Beta多样性随尺度增大而增加,林型间Beta多样性最高,占区域总Gamma多样性的41.9%-62.8%,其次是样方间Beta多样性(18.6%-31.9%),对区域多样性贡献最小为样格内Alpha和样格间Beta多样性。(3)林型间的多样性对区域物种多样性的贡献中,文化林占主导作用,乔木层占54.4%-81.0%,灌木层占51.2%-60.2%,草本层占42.9%-64.1%,藤本层占49.9%-62.2%。(4) 物种累积-面积曲线表明,在各个尺度上,文化林物种多样性始终高于非文化林,从而在相同面积下保护了更多的物种。加性分配模型在多个空间尺度上阐明了Alpha和Beta多样性的变化,突出了文化林对区域物种多样性的贡献,对保护对象和保护范围的决策以及生物多样性的保护与恢复具有重要意义。  相似文献   

12.

Aim

The alpine region of mainland Australia is one of the world's 187 biodiversity hotspots. Genetic analyses of Australian alpine fauna indicate high levels of endemism on fine spatial scales, unlike Northern Hemisphere alpine systems where shallow genetic differentiation is typically observed among populations. These discrepancies have been attributed to differences in elevation and influence from glacial activity, and point to a unique phylogeographic history affecting Australian alpine biodiversity. To test generality of these findings across Australian alpine biota, we assessed patterns of genetic structure across plant species.

Location

The Australian Alps, Victoria, eastern Australia.

Methods

We used an economical pooled genotyping‐by‐sequencing (GBS) approach to examine patterns of genetic diversity among seven widespread species including shrubs and forbs from 16 mountain summits in the Australian Alpine National Park. Patterns of genetic structure among summit populations for each species were inferred from an average of 2,778 independent SNP loci using Bayesian phylogenomic inference and clustering approaches.

Results

SNP results were consistent across species in identifying deep evolutionary splits among summit communities from the Northern and Central Victorian Alpine regions. These patterns of genetic structure are also consistent with those previously reported for invertebrate and mammal taxa. However, local genetic structure was less pronounced in the plants, supporting the notion that population connectivity tends to be higher in plant species.

Main conclusion

There is deep lineage diversification between the North and Central Victorian Alpine regions, reflecting a high level of endemism. These findings differ from those reported for alpine biodiversity from New South Wales and much of the Northern Hemisphere, and support the notion that genetic diversity is typically greatest in areas least affected by historical ice sheet formation. We discuss the implications of our findings in the context of conservation planning, and highlight the benefits of this rapid and cost‐effective genome scan approach for characterizing evolutionary processes at multispecies and landscape scales.  相似文献   

13.

Aim

Although species richness globally is likely to be declining, patterns in diversity at the regional scale depend on species gains within new habitats and species losses from previously inhabited areas. Our understanding of the processes associated with gains or losses remains poor, including whether these events exhibit immediate or delayed responses to environmental change.

Location

The study focuses on nine temperate marine ecosystems in North America.

Time period

The study period varies by region, but overall encompasses observations from 1970 to 2014.

Major taxa studied

We identified regional gains and losses for 577 marine fish and invertebrate species.

Methods

From a total of 166,213 sampling events from bottom trawls across North America that informed 17,997 independent observations of species gains and losses, we built generalized linear mixed effects models to test whether lagged temperature can explain instances of gains and losses of marine fishes and invertebrates in North American continental shelf habitats.

Results

We found that gains were less likely in years with high seasonality, consistent with seasonal extremes as a strong constraint on species occurrence. Losses were also negatively associated with high seasonality, but the response was delayed by 3 years.

Main conclusions

Environmental conditions play a role in species occupancy across diverse temperate marine ecosystems. Immediate gains paired with delayed losses can drive transient increases in species richness during times of environmental change. Identifying the dynamics behind regional species gains and losses is an important step towards prediction of biodiversity changes across ecosystems.  相似文献   

14.

Aim

We used an eco-phylogenetic approach to investigate the diversity and assembly patterns of tropical dry forests (TDFs) in Central India. We aimed at informing conservation and restoration practices in these anthropogenically disturbed forests by identifying potential habitats of conservation significance and elements of regional biodiversity most vulnerable to human impact and climate change.

Location

Tropical dry forests of Madhya Pradesh, Central India.

Methods

We analysed the species richness, stem density, basal area and phylogenetic structure (standardized effect size of MNTD, MPD, PD and community evolutionary distinctiveness cED) of 117 tree species assemblages distributed across a ~230 to ~940 m elevational gradient. We examined how these community measures and taxonomic (Sørensen) and phylogenetic (UniFrac) beta diversity varied with elevation, precipitation, temperature and climatic stress.

Results

Species richness, phylogenetic diversity, stem density and basal area were positively correlated with elevation, with high-elevation plots exhibiting cooler temperatures, higher precipitation and lower stress. High-elevation assemblages also trended towards greater phylogenetic dispersion, which diminished at lower elevations and in drier, more stressful plots. Phylogenetic turnover was observed across the elevation gradient, and species evolutionary distinctiveness increased at lower elevations and under harsher abiotic conditions.

Main Conclusions

Harsher abiotic conditions at low elevations may act as a selective filter on plant lineages, leading to phylogenetically clustered low-diversity assemblages. These assemblages contained more evolutionarily distinct species that may contribute disproportionately to biodiversity. Conversely, milder abiotic conditions at high elevations may serve as refuges for drought-sensitive species, resulting in more diverse assemblages. Conservation practices that prioritize both high- and low-elevation habitats could promote the persistence of evolutionarily distinct species and areas of high biodiversity within the Central Indian landscape. Establishing connectivity between these habitats may provide a range of climatic conditions for species to retreat to or persist within as climates change.  相似文献   

15.
Understanding the environmental factors driving species‐genetic diversity correlations (SGDCs) is critical for designing appropriate conservation and management strategies to protect biodiversity. Yet, few studies have explored the impact of changing land use patterns on SGDCs specifically in aquatic communities. This study examined patterns of genetic diversity in roach (Rutilus rutilus L.) together with fish species composition across 19 locations in a large river catchment, spanning a gradient in land use. Our findings show significant correlations between some, but not all, species and genetic diversity end points. For example, genetic and species differentiation showed a weak but significant linear relationship across the Thames catchment, but additional diversity measures such as allelic richness and fish population abundance did not. Further examination of patterns in species and genetic diversity indicated that land use intensification has a modest effect on fish diversity compared to the combined influence of geographical isolation and land use intensification. These results indicate that environmental changes in riparian habitats have the potential to amplify shifts in the composition of stream fish communities in poorly connected river stretches. Conservation and management strategies for fish populations should, therefore, focus on enhancing connectivity between river stretches and limit conversion of nearby land to arable or urban use to maintain current levels of biodiversity.  相似文献   

16.

Aim

Mining is increasingly pressuring areas of critical importance for biodiversity conservation, such as the Brazilian Amazon. Biodiversity data are limited in the tropics, restricting the scope for risks to be appropriately estimated before mineral licensing decisions are made. As the distributions and range sizes of other taxa differ markedly from those of vertebrates—the common proxy for analysis of risk to biodiversity from mining—whether mining threatens lesser-studied taxonomic groups differentially at a regional scale is unclear.

Location

Brazilian Amazon.

Methods

We assess risks to several facets of biodiversity from industrial mining by comparing mining areas (within 70 km of an active mining lease) and areas unaffected by mining, employing species richness, species endemism, phylogenetic diversity and phylogenetic endemism metrics calculated for angiosperms, arthropods and vertebrates.

Results

Mining areas contained higher densities of species occurrence records than the unaffected landscape, and we accounted for this sampling bias in our analyses. None of the four biodiversity metrics differed between mining and nonmining areas for vertebrates. For arthropods, species endemism was greater in mined areas. Mined areas also had greater angiosperm species richness, phylogenetic diversity and phylogenetic endemism, although less species endemism than unmined areas.

Main Conclusions

Unlike for vertebrates, facets of angiosperm and arthropod diversity are relatively higher in areas of mining activity, underscoring the need to consider multiple taxonomic groups and biodiversity facets when assessing risk and evaluating management options for mining threats. Particularly concerning is the proximity of mining to areas supporting deep evolutionary history, which may be impossible to recover or replace. As pressures to expand mining in the Amazon grow, impact assessments with broader taxonomic reach and metric focus will be vital to conserving biodiversity in mining regions.  相似文献   

17.

Aim

Insights into the biological and evolutionary traits of species, and their ability to cope with global changes, can be gained by studying genetic diversity within species. A cornerstone hypothesis in evolutionary and conservation biology suggests that genetic diversity decreases with decreasing population size, however, population size is difficult to estimate in threatened species with large distribution ranges, and evidence for this is limited to few species. To address this gap, we tested this hypothesis across multiple closely related species at a global scale using population density which is a more accessible measure.

Location

Global.

Time Period

Contemporary.

Major Taxa Studied

Wild felids in their natural habitats.

Methods

We obtained data from published estimates of population density assessed via camera trap and within-population genetic diversity generated from microsatellite markers on 18 felid species across 41 countries from 354 studies. We propose a novel method to standardize population density estimates and to spatially join data using K-means clustering. Linear mixed-effect modelling was applied to account for confounding factors such as body mass, generation length and sample size used for the genetic estimates.

Results

We found a significant positive correlation between population density and genetic diversity, particularly observed heterozygosity and allelic richness. While the confounding factors did not affect the main results, long generation length and large sample size were significantly associated with high genetic diversity. Body mass had no effect on genetic diversity, likely because large-bodied species were over-represented in our data sets.

Main Conclusions

Our study emphasizes how recent demographic processes shape neutral genetic diversity in threatened and small populations where extinction vortex is a risk. Although caution is needed when interpreting the small population density effect in our findings, our methodological framework shows promising potential to identify which populations require actions to conserve maximal genetic variation.  相似文献   

18.

Aim

Our aim is to document the dimensions of current squamate reptile biodiversity in the Americas by integrating taxonomic, phylogenetic and functional data, and assessing how this may vary across phylogenetic scales. We also explore the potential underlying mechanisms that may be responsible for the observed geographical diversity patterns.

Location

The Americas.

Time period

Present.

Major taxa

Squamate reptiles.

Methods

We used published data on the distribution, phylogeny, and body size of squamate reptiles to document the current dimensions of their alpha diversity in the Americas. We overlapped species ranges to estimate taxonomic diversity (TD) and calculated phylogenetic diversity (PD) using mean pairwise phylogenetic distance (MPD), speciation rate (DivRate) and Faith's phylogenetic index (PD). We estimated functional diversity (FD) as trait dispersion in the multivariate space using body size and leg development data. We implemented a deconstructive macroecological approach to understand how spatial mismatches between the three facets of diversity vary across phylogenetic scales, and the potential eco-evolutionary mechanisms driving these patterns across space.

Results

We found a strong latitudinal gradient of TD with a large accumulation in tropical regions. PD and FD patterns were largely similar likely due to the high phylogenetic signal in the traits used, and higher values tended to be concentrated in harsh and/or heterogeneous environments. We found differences between major clades within Squamata that display contrasting geographical patterns. Several regions across the continent shared the same spatial mismatches between dimensions across clades, suggesting that similar eco-evolutionary processes are shaping these regional reptile assemblages. However, we also found evidence that non-mutually exclusive processes can operate differently across clades.

Main conclusions

The deconstructive approach implemented here is based on a solid macroecological framework. We can extend this to other taxonomic groups to establish whether there are particularities about how different eco-evolutionary mechanisms shape biodiversity facets in a spatially explicit context.  相似文献   

19.

Aim

Species richness is a measure of biodiversity often used in spatial conservation assessments and mapped by summing species distribution maps. Commission errors inherent those maps influence richness patterns and conservation assessments. We sought to further the understanding of the sensitivity of hotspot delineation methods and conservation assessments to commission errors, and choice of threshold for hotspot delineation.

Location

United States.

Methods

We created range maps and 30‐m and 1‐km resolution habitat maps for terrestrial vertebrates in the United States and generated species richness maps with each dataset. With the richness maps and the GAP Protected Areas Dataset, we created species richness hotspot maps and calculated the proportion of hotspots within protected areas; calculating protection under a range of thresholds for defining hotspots. Our method allowed us to identify the influence of commission errors by comparing hotspot maps.

Results

Commission errors from coarse spatial grain data and lack of porosity in the range data inflated richness estimates and altered their spatial patterns. Coincidence of hotspots from different data types was low. The 30‐m hotspots were spatially dispersed, and some were very long distances from the hotspots mapped with coarser data. Estimates of protection were low for each of the taxa. The relationship between estimates of hotspot protection and threshold choice was nonlinear and inconsistent among data types (habitat and range) and grain size (30‐m and 1‐km).

Main conclusions

Coarse mapping methods and grain sizes can introduce commission errors into species distribution data that could result in misidentifications of the regions where hotspots occur and affect estimates of hotspot protection. Hotspot conservation assessments are also sensitive to choice of threshold for hotspot delineation. There is value in developing species distribution maps with high resolution and low rates of commission error for conservation assessments.  相似文献   

20.
Aim We analyse patterns of biodiversity in the spring snail genus Bythinella, a group of highly isolated and stenotopic freshwater species. We aim to test: (1) whether there are European areas of increased diversity (i.e. ‘hotspots’), (2) whether the potential hotspots inferred show qualitative differences in biodiversity characteristics such as endemicity, distinctiveness of taxa, age of lineages or degree of fragmentation, and (3) whether these hotspots match the Pleistocene refugia of Bythinella spp. Location Europe, Asia Minor. Methods The analyses are based on genetic data from 717 Bythinella specimens sampled at 194 sites. We used haplotypes as operational units in all analyses. To test hypothesis 1, mean pairwise genetic distances between Bythinella populations within each 1° × 1° geographical grid cell sampled in Europe were calculated. Within individual mountain ranges, grid cells with high diversity were grouped with neighbouring ones and hotspots were identified based on pre‐defined criteria. Then, to test hypothesis 2, different biodiversity indices of these regions were calculated and compared. Finally, to test hypothesis 3, the spatial distribution of the identified hotspots was compared with the known Pleistocene refugia of Bythinella spp. Results Five areas showed increased levels of genetic diversity: the Massif Central/Pyrenees, the western and eastern Alps, and the western and eastern Carpathians. These regions showed qualitative differences in biodiversity, with the eastern Carpathians holding the highest number of (endemic) haplotypes, the oldest and most distinct lineages and the highest degree of fragmentation. Only three of the five detected hotspots matched previously identified Pleistocene refugia for Bythinella spp. Main conclusions The genetic diversity of Bythinella spp. is not randomly distributed throughout Europe. Some of the hotspots we identify coincide with those found in other freshwater taxa; others have not previously been reported. Thus, spring organisms may reflect a unique evolutionary history that is distinct from lentic and lotic taxa. Our findings may be useful for conservation purposes even though the species‐level taxonomy of the genus is still under discussion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号