首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Common rust (Puccinia sorghi) and southern rust (Puccinia polysora) are two of the most important foliar corn diseases worldwide. These fungi have caused severe economic loss to corn yields worldwide. The current and future potential distribution of these diseases was modelled with CLIMEX using the known current geographic locations of the rusts, growth and stress indices. The models were run under the A2 scenario using CSIRO‐Mk3·0 and MIROC‐H for 2050 and 2100. The current projection shows areas with marginal to optimal suitability in all the continents. The models for future projections display a general reduction in the Southern hemisphere and increase in the Northern hemisphere, especially for the southern rust. The overlay of the General Circulation Models produce an estimation of the common areas under risk for future climate conditions for the simultaneous occurrence for both corn rusts, with a reduction of the medium‐ and high‐risk categories by 2100. This study highlights the possible effects of climate change at a global level for common and southern rust, as well as the risk of occurrence of both diseases in common areas for future climate that could be particularly harmful for crops.  相似文献   

2.
Aim:  Ecosystems face numerous well‐documented threats from climate change. The well‐being of people also is threatened by climate change, most prominently by reduced food security. Human adaptation to food scarcity, including shifting agricultural zones, will create new threats for natural ecosystems. We investigated how shifts in crop suitability because of climate change may overlap currently protected areas (PAs) and priority sites for PA expansion in South Africa. Predicting the locations of suitable climate conditions for crop growth will assist conservationists and decision‐makers in planning for climate change. Location:  South Africa. Methods:  We modelled climatic suitability in 2055 for maize and wheat cultivation, two extensively planted, staple crops, and overlaid projected changes with PAs and PA expansion priorities. Results:  Changes in winter climate could make an additional 2 million ha of land suitable for wheat cultivation, while changes in summer climate could expand maize suitability by up to 3.5 million ha. Conversely, 3 million ha of lands currently suitable for wheat production are predicted to become climatically unsuitable, along with 13 million ha for maize. At least 328 of 834 (39%) PAs are projected to be affected by altered wheat or maize suitability in their buffer zones. Main conclusions:  Reduced crop suitability and food scarcity in subsistence areas may lead to the exploitation of PAs for food and fuel. However, if reduced crop suitability leads to agricultural abandonment, this may afford opportunities for ecological restoration. Expanded crop suitability in PA buffer zones could lead to additional isolation of PAs if portions of newly suitable land are converted to agriculture. These results suggest that altered crop suitability will be widespread throughout South Africa, including within and around lands identified as conservation priorities. Assessing how climate change will affect crop suitability near PAs is a first step towards proactively identifying potential conflicts between human adaptation and conservation planning.  相似文献   

3.
Climate change may modify environmental conditions creating suitable environments for phytopathogen vectors in places that were not suitable before. The present study aimed to contrast current and future spatial distribution of Diaphorina citri in Mexico under two climate change scenarios, Shared Socioeconomic Pathways (SSP) 4.5 and 8.5 for years 2050 and 2070. Non-correlated bioclimatic variables from eight General Circulation Models derived from the Coupled Model Intercomparison Project-6 and presence point data were used to generate distribution models with MaxEnt. Future projections showed that current suitable areas, equivalent to a 38.6% of coverage persist across all scenarios, new suitability areas appear, and no reduction is expected. All the models coincide on a potential increase in relation to the current national distribution of 11.1, 14.8, 13.8 and 25.5% for SSP2 4.5–50 SSP2 4.5–70 SSP5 8.5–50, and SSP5 8.5–70 respectively. Most of the new areas are not currently dedicated to citriculture; however, an increase in the risk of Huanglongbing is expected because most of the new areas are contiguous to the current presence areas, and cover urban zones where there may exist rutaceous hosts, from which the vector may spread the disease to the production zones.  相似文献   

4.
To differentiate effects of netting and attribute them to crop, cultivar, planting density, climate, net type and colour, ca. 200 publications were scanned originally. Apple was chosen as a model crop due to the majority of reports, wide variation with many varieties and growing locations worldwide in the Northern and Southern hemisphere, but the results may be useful for other fruiting plants. After meeting strict selection criteria, a meta-analysis of 26 internationally published peer-reviewed articles was based on seven varieties and seventeen locations with a diverse range of climates. A novel Main Effects Meta Principal Components Analysis (ME Meta-PCA) was developed and provided unexpectedly uniform results: Location (climate), planting density and hail net (type and colour) had negligible impacts. Fruit (red) colour, most adversely affected by netting, correlated with TSS viz fruit sweetness, as often postulated in consumer studies, followed, to a smaller extent, by sugar/TSS, fruit firmness and acidity but small increase in fruit mass—i.e. maintenance of fruit quality under netting over all seven varieties (Braeburn, Gala, Elstar, Jonagold, Pinova and Fuji) examined and locations worldwide. While Jonagold and the early ripening Gala appeared suitable, unaffected and stable in the netting effects in the ME Meta-PCA, Pinova was the least suitable for cultivation under netting. Interestingly, late ripening cultivars (Braeburn and Cripps Pink) were both positively influenced by desired earlier ripening under netting. These effects on fruit quality are discussed with respect to shade adaptation under netting and countermeasures such as easy colouring mutants or reflective mulches.  相似文献   

5.
Bioenergy is expected to play a critical role in climate change mitigation. Most integrated assessment models assume an expansion of agricultural land for cultivation of energy crops. This study examines the suitability of land for growing a range of energy crops on areas that are not required for food production, accounting for climate change impacts and conservation requirements. A global fuzzy logic model is employed to ascertain the suitable cropping areas for a number of sugar, starch and oil crops, energy grasses and short rotation tree species that could be grown specifically for energy. Two climate change scenarios are modelled (RCP2.6 and RCP8.5), along with two scenarios representing the land which cannot be used for energy crops due to forest and biodiversity conservation, food agriculture and urban areas. Results indicate that 40% of the global area currently suitable for energy crops overlaps with food land and 31% overlaps with forested or protected areas, highlighting hotspots of potential land competition risks. Approximately 18.8 million km2 is suitable for energy crops, to some degree, and does not overlap with protected, forested, urban or food agricultural land. Under the climate change scenario RCP8.5, this increases to 19.6 million km2 by the end of the century. Broadly, climate change is projected to decrease suitable areas in southern regions and increase them in northern regions, most notably for grass crops in Russia and China, indicating that potential production areas will shift northwards which could potentially affect domestic use and trade of biomass significantly. The majority of the land which becomes suitable is in current grasslands and is just marginally or moderately suitable. This study therefore highlights the vital importance of further studies examining the carbon and ecosystem balance of this potential land‐use change, energy crop yields in sub‐optimal soil and climatic conditions and potential impacts on livelihoods.  相似文献   

6.
Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat‐growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041–2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO2 emission scenario by 2081–2100 due to increasing losses in suitable wheat‐growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production.  相似文献   

7.
Estimates of species extinction risk under climate change are generally based on differences in present and future climatically suitable areas. However, the locations of potentially suitable future environments (affecting establishment success), and the degree of climatic suitability in already occupied and new locations (affecting population viability) may be equally important determinants of risk. A species considered to be at low risk because its future distribution is predicted to be large, may actually be at high risk if these areas are out of reach, given the species' dispersal and migration rates or if all future suitable locations are only marginally suitable and the species is unlikely to build viable populations in competition with other species. Using bioclimatic models of 17 representative European woody species, we expand on current ways of risk assessment and suggest additional measures based on (a) the distance between presently occupied areas and areas predicted to be climatically suitable in the future and (b) the degree of change in climatic suitability in presently occupied and unoccupied locations. Species of boreal and temperate deciduous forests are predicted to face higher risk from loss of climatically suitable area than species from warmer and drier parts of Europe by 2095 using both the moderate B1 and the severe A1FI emission scenario. However, the average distance from currently occupied locations to areas predicted suitable in the future is generally shorter for boreal species than for southern species. Areas currently occupied will become more suitable for boreal and temperate species than for Mediterranean species whereas new suitable areas outside a species' current range are expected to show greater increases in suitability for Mediterranean species than for boreal and temperate species. Such additional risk measures can be easily derived and should give a more comprehensive picture of the risk species are likely to face under climate change.  相似文献   

8.
Soybean (Glycine max (L.) Merr.) is one of the most important grains and oil-producing plants grown in China. Understanding the potential suitable characteristics of areas where soybean is grown and predicting its potential habitat under different climate scenarios are a significant part of ensuring food security. This study compiled 65 occurrence locations of soybean and 32 environmental variables obtained from the WorldClim database. Nine environmental variables were selected for model training. We identified potential suitable distribution areas for soybean in the frigid region and predicted changes in its geographical distribution under four shared socioeconomic pathways, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5, for the periods from 2021 to 2040, 2041 to 2060, 2061 to 2080, and 2081 to 2100 using the MaxEnt model. The results showed that annual mean temperature, elevation, and April solar radiation were the dominant factors affecting the distribution of soybean, contributing 48.8%, 17.9%, and 15.7% of the variability in the data, respectively. Highly suitable habitats (defined as having a suitability variable P of 0.66–1.0) for the current conditions included the Songnen and Sanjiang plains, covering about 2.36 × 105 km2. The total areas of highly (as defined above) and moderately suitable (0.33–0.66) habitats would be reduced under the four climate scenarios. However, the centroids of the highly suitable habitat had a small mobile range under different scenarios. These results along with previous research on the potential distribution of soybean offer useful information; ecological modeling approaches need to be considered in future crop planting management and land use.  相似文献   

9.
祁连圆柏具有良好的水土保持功能,是青海省高寒干旱地区造林绿化的优良乡土树种之一,预测未来气候变化情景下祁连圆柏在青海省的潜在地理分布将为祁连圆柏的经营管理和引种栽培提供理论指导。本研究基于实地调查和资料搜集获得88个有效地理分布样点,利用Maxent模型和ArcGIS空间分析技术对当前气候条件下祁连圆柏在青海省的潜在地理分布进行模拟,综合Jackknife检验和相关系数,分析影响祁连圆柏潜在分布的主导限制因子,同时结合第六次国际耦合模式比较计划(CMIP6)的气候模式数据,预测祁连圆柏在3种(SSP126、SSP245、SSP585)气候变化情景下2061—2080年潜在适生区的变化。结果表明:Maxent模型受试者工作特征曲线下面积(AUC)都大于0.92,具有较好的预测能力。在当前气候条件下,祁连圆柏的适宜分布区主要位于青海省东部,总适宜区面积占比为11.2%,影响其地理分布的主导因子是海拔、年均降水量、极端最低温和坡度,累计贡献率为85.9%。未来3种气候情景对祁连圆柏适宜区的影响存在差异,SSP245气候情景的适宜区面积将会缩减,SSP126和SSP585气候情景下则会不同程度地扩张,SSP126气候情景的扩张最明显,其扩张区域主要位于泽库县、河南蒙古族自治县中北部和祁连县东南部地区。在未来3种气候情景下,祁连圆柏适宜分布区逐渐向高海拔地区迁移,但在经纬度方向分布变化较小,适宜区总体稳定。  相似文献   

10.
Climate change is likely to affect plants in multiple ways, but predicting the consequences for habitat suitability requires a process‐based understanding of the interactions. This is at odds with existing approaches that are mostly phenomenological and largely restricted to predicting the effects of changing temperature and rainfall on species distributions at a coarse spatial scale. We examine the multiple effects of climate change, including predicting the effects of altered flood regimes and land‐use change, on the potential distribution of the invasive riparian species lippia (Phyla canescens) across a 26 000 km2 catchment in eastern Australia. We determined habitat suitability for lippia by combining process‐understanding of experts and an eco‐physiological bioclimatic model within a Bayesian belief network. The bioclimatic model predicted substantial changes in habitat suitability by 2070 under both a wetter (Echam Mark 3) and drier (Hadley Centre Mark 2) climate change scenario, but only the more likely drier scenario reduced suitability in our test region. The area suitable for lippia was predicted to increase at least threefold with increased flooding under a wet climate scenario, although this would be partially negated by land‐use change to cultivation. The region would become unsuitable to lippia with reduced flooding under a drier scenario irrespective of land‐use changes, although existing populations would persist if grazing persisted. Independent field validation verified model structure and parameterization, and therefore the opinion of experts, but identified site‐scale deficiencies in the available environmental data layers. Model predictions suggest that adaptation options for managing lippia will be greatly reduced under a drying scenario, but identify potential restoration opportunities under either scenario. This work highlights the value of predictive models that incorporate process‐understanding at sufficiently fine spatial resolution to capture the important processes underpinning habitat suitability.  相似文献   

11.
Predicting the response of vegetation to climate change through mathematical methods is an important way to understand ecosystem condition changes in ecologically vulnerable regions. We took the Sanjiangyuan region, one of the most sensitive areas to climate change, as the study area to construct a simpler calculation and higher resolution (suitable for regional scale study) nonlinear method to predict the normalized difference vegetation index (NDVI) under climate change by combining the delta downscaling method and backpropagation artificial neural network. We first used the delta downscaling method to downscale the coarse-resolution climate element data of the Coupled Model Intercomparison Project (Phase 6) (CMIP6) to 0.08333° (regional scale). By analysing the relationship between NDVI and climate elements, we found that NDVI has the highest correlation with annual total precipitation, annual mean temperature, variation range of precipitation and temperature, etc. Then, we used these impact factors to train the back propagation artificial neural network (BP-ANN) and predict the NDVI in 2030 and 2060 under the SSP1–2.6 scenario and SSP5–8.5 scenario. The simulated results show that the BP-ANN can be used to construct the nonlinear relationship between NDVI and the impact factors on different scales. In the future, NDVI will increase under both the SSP1–2.6 scenario and the SSP5–8.5 scenario. The western part of the study area has the highest altitude, the ecosystem is more vulnerable, and the changes will be the most intense. This study is expected to provide a reference for understanding the impact of climate change on vegetation in national parks in plateaus and to provide a simpler NDVI prediction method for the evaluation of environmental quality under the impact of climate change with NDVI as one of the parameters.  相似文献   

12.
Previous studies have shown that switchgrass has a wide range of genetic variation and that productivity is linked to local adaptation to the location of origin for many cultivars. In this meta‐analysis, we compiled and analyzed 900 observations associated with 41 field trials for four switchgrass cultivars (two lowlands, Alamo and Kanlow, and two uplands, Cave‐In‐Rock and Shelter). This extensive dataset and machine learning were used to identify the most influential variables impacting switchgrass productivity, to search for evidence of local adaptation to each cultivar's location of origin, and to predict change in productivity under future climate for each cultivar. In general, variables associated with climate and management are more important predictors of productivity relative to soil variables. Three climatic variables, annual mean temperature, annual precipitation, and precipitation in the wettest month, are identified as key environmental variables for productivity of all cultivars. Productivity under future climate (2041–2060) is predicted to stay stable for all cultivars relative to the prediction under current climate (1986–2005) across all trial locations and over a 20‐year simulation period. However, the productivity of each cultivar varies from location to location and from year to year, although productivity varies more between locations than between years. Additionally, we observe shifts in the most productive cultivar at the local field scale depending on the combination of management practice and climates. The shape of the relationship between productivity and the annual mean temperature relative to the cultivar's location of origin is a bell‐shaped curve for Kanlow, Cave‐in‐Rock, and Shelter, indicative of local adaptation. Identifying influential environmental variables and their relationships to productivity with respect to cultivar's location of origin help predicting productivity on the local field scale, and will help with the biofuel production planning through the selection of suitable cultivars for different locations under climate changes.  相似文献   

13.
气候变化是当前全球生物多样性面临的最大威胁之一,对物种地理分布格局具有较大影响。东北森林物种丰富度较高,目前尚缺乏基于主要树种、未来不同气候模式的综合研究。基于12种建群树种的分布数据及23个环境变量(19个生物气候因子、土地利用类型、海拔、坡度、坡向)数据,应用MaxEnt模型首次对东北地区乔木树种在3种气候变化情景下(SSP126可持续路径、SSP245中间路径、SSP585化石燃料为主发展路径)的潜在丰富度分布格局、主导环境变量以及树种损失、获得和周转情况进行了预测。结果表明:不同未来气候情景下东北地区各树种的潜在分布变化存在差异,适生区面积减小的树种有:兴安落叶松、山杨、春榆、白桦、水曲柳、胡桃楸、蒙古栎、辽东桤木,减小幅度达到10%-30%;适生区面积变化不大的树种有:红皮云杉、樟子松、黄檗,多数情况下低、中和高适生区面积变化发生了抵消,导致总适生区面积变化不大;适生区增加的树种有:红松,增加幅度达20%左右。环境因素将影响东北地区乔木树种潜在适宜性分布,其中,降水因素对东北地区树种分布格局起关键作用,尤其是降水量季节性变化,是影响东北地区50%左右树种分布格局的主导环境因子。东北地区乔木树种在无迁移和SSP585气候情景下受威胁程度相对较高,而在SSP126气候情景下大多处于低风险状态;物种迁移假设的对物种受威胁程度的影响先于气候变化情景的影响,树种发生适度迁移能够缓解树种受威胁的状况。网格单元中物种损失和周转的预测表明,东北地区树种高周转率主要由树种高损失率造成,损失率较高的地区往往树种周转率也相对较高。预测气候变化对东北地区树木分布格局的影响,有助于制定更有效的气候变化适应策略,以促进东北地区树木的可持续发展。  相似文献   

14.
Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L.) cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries’ economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.  相似文献   

15.
张彦静  陈菁  王晨彬  斯琴  谢锐  马方舟 《生态学报》2023,43(14):5850-5862
曲纹紫灰蝶(Chilades pandava)是一种以幼虫危害苏铁(Cycas revolute)嫩枝嫩叶的园林害虫,对苏铁的生长繁殖、生产者的经济效益以及城市园林的美观造成严重影响。基于曲纹紫灰蝶和苏铁的现存分布点,利用最大熵模型(MaxEnt)、ArcGIS、R软件对当前和未来气候条件下曲纹紫灰蝶在中国的潜在适生区分布及当前气候条件下寄主苏铁在中国的潜在适生区分布进行了预测,其中当前气候数据基于1970—2000年的历史数据,未来气候数据(2021—2040年、2041—2060年和2061—2080年)选择第六次国际耦合模式比较计划(CMIP6)中中国北京气候中心中等分辨率气候系统模式(BCC-CSM2-MR)下的3种共享社会经济路径(SSP126(属于低强迫情景), SSP370(属于中等至高等强迫情景), SSP585(属于高强迫情景))。结果表明:(1)模型预测结果非常好,各组模型的受试者工作特征(ROC)曲线下面积(AUC)值均高于0.95,昼夜温差月均值(bio2)、等温性(bio3)、最热季平均温度(bio10)、最湿月份降水量(bio13)是影响曲纹紫灰蝶分布的主导...  相似文献   

16.
Evaluating the potential climatic suitability for premium wine production is crucial for adaptation planning in Europe. While new wine regions may emerge out of the traditional boundaries, most of the present-day renowned winemaking regions may be threatened by climate change. Here, we analyse the future evolution of the geography of wine production over Europe, through the definition of a novel climatic suitability indicator, which is calculated over the projected grapevine phenological phases to account for their possible contractions under global warming. Our approach consists in coupling six different de-biased downscaled climate projections under two different scenarios of global warming with four phenological models for different grapevine varieties. The resulting suitability indicator is based on fuzzy logic and is calculated over three main components measuring (i) the timing of the fruit physiological maturity, (ii) the risk of water stress and (iii) the risk of pests and diseases. The results demonstrate that the level of global warming largely determines the distribution of future wine regions. For a global temperature increase limited to 2°C above the pre-industrial level, the suitable areas over the traditional regions are reduced by about 4%/°C rise, while for higher levels of global warming, the rate of this loss increases up to 17%/°C. This is compensated by a gradual emergence of new wine regions out of the traditional boundaries. Moreover, we show that reallocating better-suited grapevine varieties to warmer conditions may be a viable adaptation measure to cope with the projected suitability loss over the traditional regions. However, the effectiveness of this strategy appears to decrease as the level of global warming increases. Overall, these findings suggest the existence of a safe limit below 2°C of global warming for the European winemaking sector, while adaptation might become far more challenging beyond this threshold.  相似文献   

17.
桫椤是极为珍贵的孑遗木本蕨类植物.本研究利用Maxent生态位模型研究其全球潜在适生区及其变化,并运用受试者工作特征曲线(ROC)验证了精度,以为其资源的保护、搜寻和引种栽培提供参考.结果表明:桫椤的潜在适生区主要位于亚洲,少量分布于北美洲、中美洲和香草四岛、新西兰、新喀里多尼亚、斐济.当前气候条件下,桫椤的全球适生区...  相似文献   

18.
Distribution and abundance under climate change of particularly non-timber forest product tree species is vital since they sustain many livelihoods, especially in rural sub-Saharan Africa. The aim of the study was to determine the current and future natural range of mopane (Colophospermum mopane (J. Kirk ex Benth.) J. Léonard, Fabaceae), a dominant tree species in mopane woodlands of southern Africa. An ensemble model was built in ‘biomod2’ from eight algorithms and used to estimate the current and future distribution. Seven bioclimatic variables and 269 occurrence records were used to calibrate individual models that were later combined into an ensemble model. The ensemble model was projected to two time periods, 2041–2060 and 2081–2100, under two shared socio-economic pathways (SSPs), SSP2-4.5 and SSP5-8.5, and three general circulation models (GCMs). The ensemble model showed high performance (KAPPA = 0.770, ROC = 0.961, TSS = 0.792, ACCURACY = 0.900). A map of the current distribution shows occurrence predominantly in low-lying areas, including the Zambezi, Save and Limpopo valleys, Okavango and Cuvelai basins, and in southern and central Mozambique. Projection maps show expansion under all SSPs, GCMs and time periods. Averaged across GCMs in 2041–2060, the range expanded by 22.37% under SSP2-4.5, and by 19.94% under SSP5-8.5. In 2081–2100, the range expanded by 20.43% under SSP2-4.5, and by 27.62% under SSP5-8.5. Notably, the range expansion was highest under SSP5-8.5, an SSP that envisages unmitigated greenhouse gas release and the largest mean global temperature increase. It is highly likely that mopane is not directly threatened by climate change. Indirect climate change threats, however, remain uncertain.  相似文献   

19.
Climate change is predicted to have profound effects on freshwater organisms due to rising temperatures and altered precipitation regimes. Using an ensemble of bioclimatic envelope models (BEMs), we modelled the climatic suitability of 191 stream macroinvertebrate species from 12 orders across Europe under two climate change scenarios for 2080 on a spatial resolution of 5 arc minutes. Analyses included assessments of relative changes in species’ climatically suitable areas as well as their potential shifts in latitude and longitude with respect to species’ thermal preferences. Climate‐change effects were also analysed regarding species’ ecological and biological groupings, namely (1) endemicity and (2) rarity within European ecoregions, (3) life cycle, (4) stream zonation preference and (5) current preference. The BEMs projected that suitable climate conditions would persist in Europe in the year 2080 for nearly 99% of the modelled species regardless of the climate scenario. Nevertheless, a decrease in the amount of climatically suitable areas was projected for 57–59% of the species. Depending on the scenario, losses could be of 38–44% on average. The suitable areas for species were projected to shift, on average, 4.7–6.6° north and 3.9–5.4° east. Cold‐adapted species were projected to lose climatically suitable areas, while gains were expected for warm‐adapted species. When projections were analysed for different species groupings, only endemics stood out as a particular group. That is, endemics were projected to lose significantly larger amounts of suitable climatic areas than nonendemic species. Despite the uncertainties involved in modelling exercises such as this, the extent of projected distributional changes reveals further the vulnerability of freshwater organisms to climate change and implies a need to understand the consequences for ecological function and biodiversity conservation.  相似文献   

20.
Amphibian species persisting in isolated streams and wetlands in desert environments can be susceptible to low connectivity, genetic isolation, and climate changes. We evaluated the past (1900–1930), recent (1981–2010), and future (2071–2100) climate suitability of the arid Great Basin (USA) for the Columbia spotted frog (Rana luteiventris) and assessed whether changes in surface water may affect connectivity for remaining populations. We developed a predictive model of current climate suitability and used it to predict the historic and future distribution of suitable climates. We then modeled changes in surface water availability at each time period. Finally, we quantified connectivity among existing populations on the basis of hydrology and correlated it with interpopulation genetic distance. We found that the area of the Great Basin with suitable climate conditions has declined by approximately 49% over the last century and will likely continue to decline under future climate scenarios. Climate conditions at currently occupied locations have been relatively stable over the last century, which may explain persistence at these sites. However, future climates at these currently occupied locations are predicted to become warmer throughout the year and drier during the frog's activity period (May – September). Fall and winter precipitation may increase, but as rain instead of snow. Earlier runoff and lower summer base flows may reduce connectivity between neighboring populations, which is already limited. Many of these changes could have negative effects on remaining populations over the next 50–80 years, but milder winters, longer growing seasons, and wetter falls might positively affect survival and dispersal. Collectively, however, seasonal shifts in temperature, precipitation, and stream flow patterns could reduce habitat suitability and connectivity for frogs and possibly other aquatic species inhabiting streams in this arid region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号