首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The study aimed to establish areas of endemism and distribution patterns for Neotropical species of the genus Piper in the Neotropical and Andean regions by means of parsimony analysis of endemicity (PAE) and track‐compatibility analysis. Location The study area includes the Neotropical region and the Northern Andean region (Páramo‐Punan subregion). Methods We used distribution information from herbarium specimens and recent monographic revisions for 1152 species of Piper from the Neotropics. First, a PAE was attempted in order to delimit the areas of endemism. Second, we performed a track‐compatibility analysis to establish distribution patterns for Neotropical species of Piper. Terminology for grouping Piper is based on recent phylogenetic analyses. Results The PAE yielded 104 small endemic areas for the genus Piper, 80 of which are in the Caribbean, Amazonian and Paranensis subregions of the Neotropical region, and 24 in the Páramo‐Punan subregion of the Andean region. Track‐compatibility analysis revealed 26 generalized tracks, one in the Páramo‐Punan subregion (Andean region), 19 in the Neotropical region, and six connecting the Andean and Neotropical regions. Both the generalized tracks and endemic areas indicate that distribution of Piper species is restricted to forest areas in the Andes, Amazonia, Chocó, Central America, the Guayana Shield and the Brazilian Atlantic coast. Main conclusions Piper should not be considered an Andean‐centred group as it represents two large species components with distributions centred in the Amazonian and Andean regions. Furthermore, areas of greater species richness and/or endemism are restricted to lowland habitats belonging to the Neotropical region. The distribution patterns of Neotropical species of Piper could be explained by recent events in the Neotropical region, as is the case for the track connecting Chocó and Central America, where most of the species rich groups of the genus are found. Two kinds of event could explain the biogeography of a large part of the Piper taxa with Andean–Amazonian distribution: pre‐Andean and post‐Andean events.  相似文献   

2.
The high tropical Andes host one of the richest alpine floras of the world, with exceptionally high levels of endemism and turnover rates. Yet, little is known about the patterns and processes that structure altitudinal and latitudinal variation in plant community diversity. Herein we present the first continental‐scale comparative study of plant community diversity on summits of the tropical Andes. Data were obtained from 792 permanent vegetation plots (1 m2) within 50 summits, distributed along a 4200 km transect; summit elevations ranged between 3220 and 5498 m a.s.l. We analyzed the plant community data to assess: 1) differences in species abundance patterns in summits across the region, 2) the role of geographic distance in explaining floristic similarity and 3) the importance of altitudinal and latitudinal environmental gradients in explaining plant community composition and richness. On the basis of species abundance patterns, our summit communities were separated into two major groups: Puna and Páramo. Floristic similarity declined with increasing geographic distance between study‐sites, the correlation being stronger in the more insular Páramo than in the Puna (corresponding to higher species turnover rates within the Páramo). Ordination analysis (CCA) showed that precipitation, maximum temperature and rock cover were the strongest predictors of community similarity across all summits. Generalized linear model (GLM) quasi‐Poisson regression indicated that across all summits species richness increased with maximum air temperature and above‐ground necromass and decreased on summits where scree was the dominant substrate. Our results point to different environmental variables as key factors for explaining vertical and latitudinal species turnover and species richness patterns on high Andean summits, offering a powerful tool to detect contrasting latitudinal and altitudinal effects of climate change across the tropical Andes.  相似文献   

3.
Changes in growth forms frequently accompany plant adaptive radiations, including páramo–a high‐elevation treeless habitat type of the northern Andes. We tested whether diverse group of Senecio inhabiting montane forests and páramo represented such growth form changes. We also investigated the role of Andean geography and environment in structuring genetic variation of this group. We sampled 108 populations and 28 species of Senecio (focusing on species from former genera Lasiocephalus and Culcitium) and analyzed their genetic relationships and patterns of intraspecific variation using DNA fingerprinting (AFLPs) and nuclear DNA sequences (ITS). We partitioned genetic variation into environmental and geographical components. ITS‐based phylogeny supported monophyly of a LasiocephalusCulcitium clade. A grade of herbaceous alpine Senecio species subtended the LasiocephalusCulcitium clade suggesting a change from the herbaceous to the woody growth form. Both ITS sequences and the AFLPs separated a group composed of the majority of páramo subshrubs from other group(s) comprising both forest and páramo species of various growth forms. These morphologically variable group(s) further split into clades encompassing both the páramo subshrubs and forest lianas, indicating independent switches among the growth forms and habitats. The finest AFLP genetic structure corresponded to morphologically delimited species except in two independent cases in which patterns of genetic variation instead reflected geography. Several morphologically variable species were genetically admixed, which suggests possible hybrid origins. Latitude and longitude accounted for 5%–8% of genetic variation in each of three AFLP groups, while the proportion of variation attributed to environment varied between 8% and 31% among them. A change from the herbaceous to the woody growth form is suggested for species of high‐elevation Andean Senecio. Independent switches between habitats and growth forms likely occurred within the group. Hybridization likely played an important role in species diversification.  相似文献   

4.
ABSTRACT

Background: Woody bamboos of the genus Chusquea grow along a broad range of elevations in the Venezuelan Andes. Their growth-form and density vary along the cloud forest – páramo gradient. In this article, we related ecophysiological traits and population genetic diversity information to explain the distribution of growth-form patterns of Chusquea in the Merida Andes, Venezuela.

Aims: We quantified differences in the ecophysiological response and genetic diversity of scandent cloud forest and shrub-like páramo bamboos of the genus Chusquea, taking in account the differences in their flowering patterns, growth-form and habitat.

Methods: We related low temperature resistance, water relations and leaf gas exchange variables to the growth-form, habitat, flowering patterns and genetic diversity in species of Chusquea. The genetic diversity study was based on Inter Sequence Simple Repeats and Random Amplified Polymorphic DNA markers analysis of cloud forest and páramo populations.

Results: Scandent cloud forest and shrub-like páramo species of Chusquea had a very similar ecophysiological response for all the variables analysed during wet and dry seasons and were capable of enduring freezing temperatures through moderate supercooling. Species associated with the cloud forest – páramo gradient maintained low stomatal conductance and transpiration rates that favoured high leaf water potentials, without limiting photosynthetic rates. Shrub-like bamboos growing above the continuous forest line had a small decline in net photosynthesis rates, associated with an increase in water use efficiency. Both scandent and shrub-like bamboos had a remarkably high genetic diversity, comparable to non-clonal species.

Conclusions: Species of Chusquea in the Venezuelan Andes are a physiologically relatively homogeneous group across a broad elevation gradient. Population genetic diversity appears to be more related with their flowering pattern and habitat conditions than with their growth form.  相似文献   

5.
Páramo is the neotropical high elevation ecosystem in the northern Andes and Central America consisting of multiple dissected open areas above 3000 m a.s.l. Complex evolutionary processes that occurred within these ecosystems gave rise to a unique tropical Andean flora. Previous phytogeographical classifications for Colombian páramos have been based on subjective assessments of species distributions. However, a detailed floristic analysis highlighting affinities between páramo regions in Colombia has not yet been proposed. The aim of this study is to provide an analytical scenario for the patterns of regional plant diversity in a hierarchical framework based on the biogeographical history of the páramos, based on 30 localities of the Colombian páramos. Parsimony analysis of endemicity (PAE) and Jaccard similarity indices were applied to a presence/absence data matrix of páramo angiosperm species. Altitudinal distribution of species was used to determine the percentage of the páramo flora endemic to this ecosystem. Genera are shared among páramos, whereas species composition is highly endemic. 86% of the páramo angiosperm plant species is endemic to this ecosystem. The Colombian Páramo areas can be grouped using PAE into five biogeographical units, based on angiosperm species composition. These are: (1) Páramos de la Cordillera Oriental; (2) Páramos de la Cordillera Central and Macizo Colombiano; (3) Páramos de Antioquia; (4) Páramos del Norte; (5) Páramos de la Cordillera Occidental.  相似文献   

6.
The frequent occurrence of all year-round below zero temperatures in tropical high mountains constitutes a most stressful climatic factor that plants have to confront. Polylepis forests are found well above the continuous forest line and are distributed throughout the Andean range. These trees require particular traits to overcome functional limitations imposed on them at such altitudes. Considering seedling and sapling stages as filter phases in stressful environments, some functional aspects of the regeneration of Polylepis sericea, a species associated to rock outcrops in the Venezuelan Andes, were studied. We characterized microclimatic conditions within a forest, in a forest gap and surrounding open páramo and determined low temperature resistance mechanisms in seedlings, saplings and ramets. Conditions in the forest understory were more stable compared to the forest gaps and open surrounding páramo. Minimum temperatures close to the ground were 3.6 °C lower in the open páramo compared to the forest understory. Maximum temperatures were 9.0 °C higher in the open páramo. Ice nucleation and injury temperatures occurred between ?6 and ?8 °C for both ramets and saplings, an evidence of frost avoidance to low nighttime temperatures. In this particular forest, this resistance ability is determinant in their island-like distribution in very specific less severe temperature habitats.  相似文献   

7.
8.
Aim Central America is a biogeographically interesting area because of its location between the rich and very different biota of North and South America. We aim to assess phytogeographical patterns in the bryophyte floras of oak forests and páramo of the Cordillera de Talamanca, Costa Rica. Location Tropical America, in particular the montane area of Cordillera de Talamanca, Costa Rica. Methods The analysis is based on a new critical inventory of the montane bryophyte flora of Cordillera de Talamanca. All species were assigned to phytogeographical elements on the basis of their currently known distribution. Absolute and percentage similarities were employed to evaluate floristic affinities. Results A total of 401 species [191 hepatics (liverworts), one hornwort, 209 mosses] are recorded; of these, 251 species (128 hepatics, one hornwort, 122 mosses) occur in oak forests. Ninety‐three per cent of all oak forest species are tropical in distribution, the remaining 7% are temperate (4%) and cosmopolitan (3%) species. The neotropical element includes almost 74% of the species, the wide tropical element (pantropical, amphi‐atlantic, amphi‐pacific) only 19%. A significant part of the neotropical species from oak forests are species with tropical Andean‐centred ranges (27%). As compared with bryophyte species, vascular plant genera in the study region are represented by fewer neotropical, more temperate and more amphi‐pacific taxa. Bryophyte floras of different microhabitats within the oak forest and epiphytic bryophyte floras on Quercus copeyensis in primary, early secondary and late secondary oak forest show a similar phytogeographical make‐up to the total oak forest bryophyte flora. Comparison of oak forest and páramo reveals a greater affinity of the páramo bryophyte flora to temperate regions and the great importance of the páramo element in páramo. Surprisingly, oak forests have more Central American endemics than páramo. Main conclusions (1) Providing first insights into the phytogeographical patterns of the bryophyte flora of oak forests and páramo, we are able to confirm general phytogeographical trends recorded from vascular plant genera of the study area although the latter were more rich in temperate taxa. (2) Andean‐centred species are a conspicuous element in the bryophyte flora of Cordillera de Talamanca, reflecting the close historical connection between the montane bryophyte floras of Costa Rica and South America. (3) High percentages of Central American endemics in the bryophyte flora of the oak forests suggest the importance of climatic changes associated with Pleistocene glaciations for allopatric speciation.  相似文献   

9.
Neotropical ecosystems between treeline and snowline, called páramos, stretch along Andean ranges from Costa Rica to northern Peru. The páramo climate is characterized by regular night frosts occurring throughout the year. Páramo plants use two strategies to deal with freezing temperatures. They either avoid ice formation in the tissues or tolerate extracellular ice formation. We tested the microclimate hypothesis, which suggests that the freezing resistance of the páramo plants is determined by plant height, that is, that taller plants experience a milder microclimate and avoid freezing, whereas smaller plants are exposed to the more extreme thermal conditions near the ground and tolerate them. We measured the temperature at which ice formed inside the plants (the ‘exotherm’), and compared it with the temperature at which 50% damage to the tissue occurred (Lt50); a significant difference between the exotherm and Lt50 would indicate freezing tolerance whereas the absence of a difference would indicate avoidance by supercooling. We analysed the freezing resistance of 38 common Ecuadorian páramo species. We found no correlation between plant height and freezing resistance mechanism or injury temperature and reject the microclimate hypothesis. Tolerant plants reach higher altitudes than avoidant plants, but their altitudinal ranges largely overlap and the Lt50 does not differ between them. These results suggest that there is no qualitative difference between the two strategies to survive the páramo frosts. Shrub leaves were injured at significantly lower temperatures than other life forms, such as herbs, which may reflect leaf anatomical differences among the plants.  相似文献   

10.
Aim Understanding large‐scale patterns of beta diversity and endemism is essential for ecoregional conservation planning. We present a study of spatial patterns of faunal diversification and biogeographical relationships in the Andean region of Colombia. This region has a great geomorphological complexity, as it is formed by several mountain ranges with different geologic origins. We hypothesize that this complexity results in a high turnover in species composition among subregions. Location The Andean region of Colombia, including the Santa Marta and Macarena mountain ranges. Methods The region was divided into subregions, represented by the eastern and western slopes of each of the three Andean cordilleras, the Cauca and Magdalena valley bottoms, and the peripheral mountain ranges of Perijá, Macarena and Sierra Nevada de Santa Marta. Species lists for five animal taxa (rodents, bats, birds, frogs and butterflies) were compiled for each subregion and similarities in species composition were determined by cluster analysis. To explore biogeographical relationships, species were classified into one of four distributional categories: endemic, tropical Andean, Andean‐Central American and wide continental distribution. Results The highest species richness in the region was found in the Pacific and eastern versants of the Andes, and the lowest in the Cauca and Magdalena valley bottoms. Inter‐Andean slopes were intermediate in species richness. However, when species richness was calculated per unit area, the most diverse regions were the Santa Marta and Macarena ranges, the Cauca Valley watershed and the Pacific slope. Although each taxonomic group had a different branching pattern, dendrograms indicated five common subregional clusterings: (1) Perijá‐Sierra Nevada, (2) the Pacific slope, (3) the eastern Andean slope, (4) the Cauca and Magdalena valley bottoms, and (5) the inter‐Andean slopes. Clustering patterns of inter‐Andean slopes varied among taxa. In birds, bats and rodents, grouping was by opposite slopes of the same valley, whereas frogs were grouped by mountain ranges and butterflies by valleys and their respective slopes. Seventy‐five per cent of species in all taxa were found in less than five subregions. The fauna of the Magdalena and Cauca valley bottoms was composed mostly of lowland species with wide geographical distributions, whereas the cordilleran fauna was mostly restricted to the tropical Andes. Main conclusions The western and eastern versants of the Andes have the highest species richness, but are also the largest subregions. On a per unit area basis, the peripheral ranges (Santa Marta and Macarena) are the richest, followed by the western portion of the Andes (the Cauca Valley watershed and the Pacific versant). Clustering patterns in dendrograms suggest two major patterns of differentiation of the Andean fauna: one elevational (lowlands vs. highlands) and one horizontal (among ranges and/or slopes). Biogeographical affinities of the inter‐Andean valley bottoms are with the lowland faunas of tropical America. In contrast, Andean faunas diversified locally, resulting in the evolution of a large number of endemic species, particularly among the less vagile taxa. Three different main branches of Andean fauna can be recognized, one confined to the Pacific, another to the eastern (Amazonian‐Llanos) versant of the Andes, and the third one composed by the inter‐Andean slopes of the Cauca and Magdalena valleys. The identification of five main biogeographical units in the Andean region of Colombia has important implications for the conservation of the regional biota. Conservation initiatives that seek to preserve representative samples of the regional biodiversity should take into account the patterns of diversification described here, and the evolutionary processes that gave rise to these patterns.  相似文献   

11.
This study puts together genetic data and an approximate bayesian computation (ABC) approach to infer the time at which the tree Geoffroea spinosa colonized the Galápagos Islands. The genetic diversity and differentiation between Peru and Galápagos population samples, estimated using three chloroplast spacers and six microsatellite loci, reveal significant differences between two mainland regions separated by the Andes mountains (Inter Andean vs. Pacific Coast) as well as a significant genetic differentiation of island populations. Microsatellites identify two distinct geographical clusters, the Galápagos and the mainland, and chloroplast markers show a private haplotype in the Galápagos. The nuclear distinctiveness of the Inter Andean populations suggests current restricted pollen flow, but chloroplast points to cross‐Andean dispersals via seeds, indicating that the Andes might not be an effective biogeographical barrier. The ABC analyses clearly point to the colonization of the Galápagos within the last 160 000 years and possibly as recently as 4750 years ago (475 generations). Founder events associated with colonization of the two islands where the species occurs are detected, with Española having been colonized after Floreana. We discuss two nonmutually exclusive possibilities for the colonization of the Galápagos, recent natural dispersal vs. human introduction.  相似文献   

12.
Tropical alpine peatlands are important carbon reservoirs and are a critical component of local hydrological cycles. In high elevation peatlands slow decomposition rates result from a nutrient‐poor substrate resistant to decay. The responses of páramo peatland ecosystems to increased nutrient additions and physical disturbance due to agricultural activities are unknown. Here, we conducted a two‐year fertilization and physical disturbance experiment in a Sphagnum—dominated peatland in the Central Andes of Colombia. We hypothesized that fertilization and physical disturbance will diminish the ability of the peat to store organic matter by increasing decomposition and that vascular plants will displace Sphagnum as the dominant plant group. We simulated cattle activity by adding manure as a fertilizer and physical disturbance as a proxy for cattle trampling. Species composition varied in proportion to the intensity of disturbance. Sphagnum cover was reduced under any disturbance treatment. Non‐native grasses usually found in cattle pastures invaded treatments with fertilizer additions or physical disturbance. Overall aboveground plant biomass doubled in fertilized treatments, suggesting that plant biomass production was nutrient limited. Decomposition rates tripled in disturbed treatments as compared to controls. This reduces the ability of the peatland to store organic matter. Andean peatlands are prized ecological assets; however, our results show that the El Morro páramo peatland experienced increased decomposition rates over short time periods after small‐scale disturbances. This created profound consequences for the ecological services offered by these peatlands.  相似文献   

13.
ABSTRACT

Background: Tropical high mountains present extreme daily temperature variations, frequent high air evaporative demands and seasonal differences in soil water availability. Plants have adapted to these conditions through different avoidance-tolerance mechanisms. This review focuses on plant-growth forms and their adaptive strategies.

Aims: This integrated review of páramo plant traits aims at contributing to understanding the functioning of plant-growth forms and their significance on ecosystem properties under environmental climate and land-use changes.

Methods: Plant responses are presented along avoidance-tolerance gradients considering three main aspects: freezing resistance, water relations and gas exchange characteristics. Results from 45 herbaceous and 42 woody species along elevational gradients in the Venezuelan high Andes were analysed.

Results: Leaf supercooling is the common avoidance response of woody plants to night-time freezing temperatures, while herbaceous plants tolerate frost. Trees and caulescent rosettes maintain more positive leaf water potentials under water deficit conditions compared to more tolerant herbaceous species. All plant growth-forms showed strong stomatal control under dry-season conditions.

Conclusions: Páramo plant growth-forms may be separated according to an avoidance-tolerance gradient in response to water deficit and low temperature resistance. Woody growth-forms tend to avoid both freezing and water stress, while herbaceous forms tolerate frost and resist an unfavourable water status. Grasses and cushion plants are at the tolerant extreme of the gradient and coincide in that both reach the highest elevations in the páramo. Andean giant rosettes are freezing avoidant, particularly susceptible to water deficit and the most vulnerable, of all growth-forms, to changing environmental conditions.  相似文献   

14.
A new genus of broad‐nosed weevils belonging to the tribe Naupactini (Coleoptera: Curculionidae) is described, based on six species from the Páramo–Puna subregion (Andean region) of South America. Three species are new and three have been transferred from the genus Asymmathetes (Asymmathetes nigrans, Asymmathetes rugicollis, and Asymmathetes vulcanorum). The new genus is recognized by the black, denuded, and shiny tegument, the well‐developed pre‐epistome, the elytral base curved backwards on middle, the reduction of the hindwings, and the widely separated procoxae, closer to the anterior than to the posterior margin of the prosternum. A cladistic analysis of the six species of the new genus plus five out‐groups (Amitrus, Amphideritus, Asymmathetes, Melanocyphus, and Trichocyphus), using 49 morphological characters, resulted in a single cladogram. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 54–71.  相似文献   

15.
In this study, we aimed to assess the processes controlling compositional change in a Northern Andean páramo highly affected by human‐induced disturbances over the last few decades (La Rusia, Colombia). Along the 3000–3800 m asl altitudinal range, we randomly sampled fifty 10 × 10 m plots. Therein, we measured altitude and variables related to soil conditions (i.e., moisture, nutrient contents, bulk density, and texture), occurrence of human‐induced disturbances (i.e., fire, vegetation clearing, potato cultivation, and cattle grazing), and land‐use history. We also recorded richness and abundance of plant species, identifying them as exotic or native. We differentiated four groups of plots according to their species composition. The groups had significant differences in altitude, soil conditions, land‐use history, and particularly, in richness of exotic species and exotic/native cover ratio. They could be ascribed to shrub‐ and grass‐páramo vegetation types based on their relative dominance of woody and herbaceous species; however, these groups were not arranged according to the hypothetical composition of altitudinal belts, but rather formed a mosaic of patches. This mosaic was determined not only by altitude but also by soil conditions and disturbance history of sites. Our results corroborate recent findings which highlight shrub‐ and grass‐páramo vegetation types as patches of contrasting species composition and structure that depend on local environmental variables, as well as human‐induced disturbances as a major determinant of compositional discontinuities in these ‘high mountain’ tropical ecosystems.  相似文献   

16.
TheOxalis tuberosa alliance is a group of morphologically similarOxalis species allied to the Andean tuber crop oca,O. tuberosa. Originally described by cytologists as a dozen species sharing a base chromosome number rare inOxalis (x = 8), the alliance as defined here includes additional species for which cytological information is not yet available but which are supported as members on molecular and/or morphological grounds. The alliance includes members found in the Andean region from Venezuela to northern Argentina, with one species at high elevations in Central America. They occur from the high Andean steppes (páramo and puna) to the cloud forests of middle elevations and include both restricted endemics and variable widespread species complexes. Geographical and altitudinal distributions of members of the alliance and selectedOxalis species outside the alliance were compared with a combined phylogenetic analysis of DNA sequence data of ITS and ncpGS (chloroplast-expressed glutamine synthetase). Groups within the alliance (i.e., major clades on the molecular trees) occur across widespread, overlapping regions in the Andes, with only partial ecological separation. The hypothesis that theO. tuberosa alliance may have developed in the Andes of southern Peru and northwestern Bolivia and radiated southward and, especially, northward along the Andean axis is suggested by patterns of distributions of members of the alliance and outgroups. In spite of uncertain species delimitations, it is clear that the alliance includes many endemic species and ecotypes that have very restricted distributions. As relatives of the Andean tuber cropOxalis tuberosa, the genetic diversity represented by this geographical variability should be a high priority for conservation.  相似文献   

17.
Species richness and diversity of Carabidae (Coleoptera), as well as rates of endemicity, are studied along altitudinal transects in the páramo of Ecuadorian Andes, from 3500 to 5000 m. Whereas a global tendency to reduction of species richness is evident from 4200 m upwards, two zones of high diversity and high proportion of endemic species occur at 3800–4000 m and at 4200–4400 m. Species turnover between grass páramo and superpáramo is significantly higher in drier mountains, especially in the Western Cordillera, than in humid mountains of the Eastern Cordillera. The altitudinal range of Carabid species tends globally to decrease along the vertical gradient, but with important local variations due to microenvironmental factors, especially humidity rate. When compared with recent phytogeographical studies, these results tend to support the idea that the majority of tussockgrass páramo is a secondary anthropogenic ecosystem. On the contrary, it is argued that the xeric landscape of the Chimborazo “arenal” is primordial, based on the presence of a stenotopic and possibly relict species, Pelmatellus andium Bates 1891.  相似文献   

18.
Research on the phylogeny of a distinct group of Andean Senecio, previously considered as Lasiocephalus, resulted in the discovery of two new species, which are here described and illustrated. Senecio josei Sklená?, which grows in rocky habitats in grass páramo in southern Ecuador, is characterized by linear leaves and a racemose or paniculate synflorescence. Senecio superparamensis Sklená? is characterized by grayish–white pubescence, solitary capitula and leafy stems, and inhabits superpáramos in northern and central Ecuador.  相似文献   

19.
Aim To identify the bioclimatic niche of the endangered Andean cat (Leopardus jacobita), one of the rarest and least known felids in the world, by developing a species distribution model. Location South America, High Andes and Patagonian steppe. Peru, Bolivia, Chile, Argentina. Methods We used 108 Andean cat records to build the models, and 27 to test them, applying the Maxent algorithm to sets of uncorrelated bioclimatic variables from global databases, including elevation. We based our biogeographical interpretations on the examination of the predicted geographic range, the modelled response curves and latitudinal variations in climatic variables associated with the locality data. Results Simple bioclimatic models for Andean cats were highly predictive with only 3–4 explanatory variables. The climatic niche of the species was defined by extreme diurnal variations in temperature, cold minimum and moderate maximum temperatures, and aridity, characteristic not only of the Andean highlands but also of the Patagonian steppe. Argentina had the highest representation of suitable climates, and Chile the lowest. The most favourable conditions were centrally located and spanned across international boundaries. Discontinuities in suitable climatic conditions coincided with three biogeographical barriers associated with climatic or topographic transitions. Main conclusions Simple bioclimatic models can produce useful predictions of suitable climatic conditions for rare species, including major biogeographical constraints. In our study case, these constraints are also known to affect the distribution of other Andean species and the genetic structure of Andean cat populations. We recommend surveys of areas with suitable climates and no Andean cat records, including the corridor connecting two core populations. The inclusion of landscape variables at finer scales, crucially the distribution of Andean cat prey, would contribute to refine our predictions for conservation applications.  相似文献   

20.
Abstract. Plant microclimates of three tropical superpáramo sites at 4100–4600 m a.s.l. in Ecuador were monitored over a five-month period and results were evaluated in local and biogeographical contexts. Soil temperatures tended to decrease with altitude, whereas quantum flux density (QFD) exhibited no consistent altitudinal pattern. Leaf temperatures of prostrate rosette and cushion plants exhibited diurnal amplitudes of 30 °C independent of altitude, while herbaceous perennials and woody shrubs, which were situated higher above the soil surface, had lower maxima and lower daily amplitudes as a result of aerodynamic coupling to the atmosphere. Long-term growth measurements and an analysis of a stem cross-section of the shrub Loricaria indicated that growth conditions at 4060 m a.s.l. were constant over a 4-yr to > 25-yr period. Means and frequency distributions of QFD as well as soil and leaf temperatures in the Ecuadorean Andes closely resemble growing season averages at high alpine sites in the European Central Alps at 2600 m a.s.l. Equivalent growth conditions in equatorial tropical páramo sites and seasonal temperate zone mountains extending to the arctic, suggest that, aside from the duration of the growing season, similar abiotic selection pressures operate on high elevation plants in humid mountain ecosystems, which are largely independent of latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号