首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
One of the most persistent questions in comparative developmental biology concerns whether there are general rules by which ontogeny and phylogeny are related. Answering this question requires conceptual and analytic approaches that allow biologists to examine a wide range of developmental events in well-structured phylogenetic contexts. For evolutionary biologists, one of the most dominant approaches to comparative developmental biology has centered around the concept of heterochrony. However, in recent years the focus of studies of heterochrony largely has been limited to one aspect, changes in size and shape. I argue that this focus has restricted the kinds of questions that have been asked about the patterns of developmental change in phylogeny, which has narrowed our ability to address some of the most fundamental questions about development and evolution. Here I contrast the approaches of growth heterochrony with a broader view of heterochrony that concentrates on changes in developmental sequence. I discuss a general approach to sequence heterochrony and summarize newly emerging methods to analyze a variety of kinds of developmental change in explicit phylogenetic contexts. Finally, I summarize a series of studies on the evolution of development in mammals that use these new approaches.  相似文献   

2.
Body size is significantly correlated with number of vertebrae (pleomerism) in multiple vertebrate lineages, indicating that change in number of body segments produced during somitogenesis is an important factor in evolutionary change in body size, but the role of segmentation in the evolution of extreme sizes, including gigantism, has not been examined. We explored the relationship between body size and vertebral count in basal snakes that exhibit gigantism. Boids, pythonids and the typhlopid genera, Typhlops and Rhinotyphlops, possess a positive relationship between body size and vertebral count, confirming the importance of pleomerism; however, giant taxa possessed fewer than expected vertebrae, indicating that a separate process underlies the evolution of gigantism in snakes. The lack of correlation between body size and vertebral number in giant taxa demonstrates dissociation of segment production in early development from somatic growth during maturation, indicating that gigantism is achieved by modifying development at a different stage from that normally selected for changes in body size.  相似文献   

3.
    
The ontogeny of the axial skeleton, in particular the caudal skeleton, is described from embryos to adult specimens in common wolffish, Anarhichas lupus. The eggs were incubated at constant temperatures of 7.0, 11.0 and 13.0 °C. High egg mortality and structural changes in skeletal development (fusion of parts, absence of distal radials and most of dorsal and anal fin rays, abnormal neural arches and dorsal fin rays) were observed at 13 °C. The frequencies of some anomalies were lower at 11 °C than at 13 °C. The main reason of structural changes of the skeleton at high temperature is the breaking of normal correlations between developmental rates of some cartilaginous structures and other tissues and organs of the embryo. These data suggest an epigenetic mechanism of skeletal evolution.  相似文献   

4.
    
Some adaptive radiations are notable for extreme interspecific diversification in one or a few adult traits. How and why have trait differences evolved? Natural and sexual selection often provide answers to the question of why. An answer to the question of how is to be found in the genetic control of the phenotypic traits, especially in the early stages of development, when interspecific differences first become expressed. Recent studies of the molecular genetic control of beak development in Darwin's finches have shown that a signalling molecule (BMP4) plays a key role in the development of large and deep beaks. Expression of this molecule occurs earlier (heterochrony) and at higher levels in species with deep beaks compared with species with more pointed beaks. The implication of this finding is that variation in the regulation of one or a few genes that are expressed early could be the source of evolutionarily significant variation that is subject to natural selection in speciation and adaptive radiation. This view is reinforced by parallel findings with the same signalling molecule in the development of jaw morphology in cichlid fish of the Great Lakes of Africa. Further research into regulatory mechanisms is to be expected, as well as extension to other examples of radiation such as honeycreepers in Hawaii and Anolis lizards in the Caribbean. © 2006 The Linnean Society of London, Biological Journal of the Linnean Society, 2006, 88 , 17–22.  相似文献   

5.
    
The shape of the craniofacial skeleton is constantly changing through ontogeny and reflects a balance between developmental patterning and mechanical‐load‐induced remodeling. Muscles are a major contributor to producing the mechanical environment that is crucial for “normal” skull development. Here, we use an F5 hybrid population of Lake Malawi cichlids to characterize the strength and types of associations between craniofacial bones and muscles. We focus on four bones/bone complexes, with different developmental origins, alongside four muscles with distinct functions. We used micro‐computed tomography to extract 3D information on bones and muscles. 3D geometric morphometrics and volumetric measurements were used to characterize bone and muscle shape, respectively. Linear regressions were performed to test for associations between bone shape and muscle volume. We identified three types of associations between muscles and bones: weak, strong direct (i.e., muscles insert directly onto bone), and strong indirect (i.e., bone is influenced by muscles without a direct connection). In addition, we show that although the shape of some bones is relatively robust to muscle‐induced mechanical stimulus, others appear to be highly sensitive to muscular input. Our results imply that the roles for muscular input on skeletal shape extend beyond specific points of origin or insertion and hold significant potential to influence broader patterns of craniofacial geometry. Thus, changes in the loading environment, either as a normal course of ontogeny or if an organism is exposed to a novel environment, may have pronounced effects on skeletal shape via near and far‐ranging effects of muscular loading.  相似文献   

6.
7.
    
Patterns of early embryonic development have traditionally been viewed as invariant within vertebrate taxa. It has been argued that the specific differences which are found arise during the later stages of development. These differences may be a result of allometry, heterochrony or changes in relative growth rates. To test whether early embryonic development is indeed invariant, or whether selection of adult characteristics can alter embryonic growth, we compared embryonic development in birds selected for different patterns of postnatal growth. Using quail lines selected for high and low body mass, we compared somite formation, and muscle and feather development. We obtained data that showed changes in the rate of myotome formation in the brachial somites which contribute to muscle formation in the limbs and thorax. We think these observations are connected with intraspecific changes in adult morphology, ie., breast muscle size. Our findings suggest that selection for late ontogenetic/adult stages affects early embryonic development.  相似文献   

8.
  总被引:2,自引:0,他引:2  
We described the developmental stages for the embryonic, larval and early juvenile periods of Nile tilapia Oreochromis niloticus to elucidate sequential events of craniofacial development. Craniofacial development of cichlids, especially differentiation and morphogenesis of the pharyngeal skeleton, progresses until about 30 days postfertilization (dpf). Because there is no comprehensive report describing the sequential processes of craniofacial development up to 30 dpf, we newly defined 32 stages using a numbered staging system. For embryonic development, we defined 18 stages (stages 1-18), which were grouped into seven periods named the zygote, cleavage, blastula, gastrula, segmentation, pharyngula and hatching periods. For larval development, we defined seven stages (stages 19-25), which were grouped into two periods, early larval and late larval. For juvenile development until 30 dpf, we defined seven stages (stages 26-32) in the early juvenile period. This developmental staging system for Nile tilapia O. niloticus will benefit researchers investigating skeletogenesis throughout tilapia ontogeny and will also facilitate comparative evolutionary developmental biology studies of haplochromine cichlids, which comprise the species flocks of Lakes Malawi and Victoria.  相似文献   

9.
    
Anatomical landmarks are defined as biologically meaningful loci that can be unambiguously defined and repeatedly located with a high degree of accuracy and precision. The neurocranial surface is characteristically void of such loci. We define a new class of landmarks, termed fuzzy landmarks, that will allow us to represent the form of the neurocranium. A fuzzy landmark represents the position of a biological structure that is precisely delineated, but occupies an area that is larger than a single point in the observer's reference system. In this study, we present a test case in which the cranial bosses are evaluated as fuzzy landmarks. Five fuzzy landmarks (the cranial bosses) and three traditional landmarks were placed repeatedly by a single observer on three-dimensional (3D) computed tomography (CT) surface reconstructions of pediatric dry skulls and skulls of pediatric patients, and directly on four of the same dry skulls using a 3Space digitizer. Thirty landmark digitizing trials from CT scans show an average error of 1.15 mm local to each fuzzy landmark, while the average error for the last ten trials was 0.75 mm, suggesting a learning curve. Data collected with the 3Space digitizer was comparable. Measurement error of fuzzy landmarks is larger than that of traditional landmarks, but is acceptable, especially since fuzzy landmarks allow inclusion of areas that would otherwise go unsampled. The information obtained is valuable in growth studies, clinical evaluation, and volume measurements. Our method of fuzzy landmarking is not limited to cranial bosses, and can be applied to any other anatomical features with fuzzy boundaries. Am J Phys Anthropol 107:113–124, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
    
Six known proteins bind to the insulin-like growth factor (IGF) with high affinity. Igfbp5 encodes one of these proteins, which regulates the activity of IGF, but also exerts IGF-independent actions. Using in situ hybridization to detect cells expressing Igfbp5 mRNA, we show that Igfbp5 is expressed in a dynamic pattern in the mouse embryonic craniofacial region. At early stages corresponding to the completion of neural crest migration, Igfbp5 mRNA was found predominantly in the epithelia, whereas when the craniofacial mesenchyme has begun its differentiation into skeletal tissue, Igfbp5-expressing cells surrounded the developing cartilages and bones. Embryos transgenically expressing Igfbp5 in restricted areas of the mesenchyme fated to form craniofacial bones revealed decreased ossification and even deletion of head bones areas. Transgenic expression of a mutant Igfbp5, encoding a product with reduced binding affinity for IGF, led to no skeletal abnormalities, suggesting that the observed negative effects on skeletal development rely on a mechanism that depends on binding to IGF.  相似文献   

11.
12.
    
Striking conservation in various organisms suggests that cellular nucleic acid binding protein (CNBP) plays a fundamental biological role across different species. Recently, it was reported that CNBP is required for forebrain formation during chick and mouse embryogenesis. In this study, we have used the zebrafish model system to expand and contextualize the basic understanding of the molecular mechanisms of CNBP activity during vertebrate head development. We show that zebrafish cnbp is expressed in the anterior CNS in a similar fashion as has been observed in early chick and mouse embryos. Using antisense morpholino oligonucleotide knockdown assays, we show that CNBP depletion causes forebrain truncation while trunk development appears normal. A substantial reduction in cell proliferation and an increase in cell death were observed in the anterior regions of cnbp morphant embryos, mainly within the cnbp expression territory. In situ hybridization assays show that CNBP depletion does not affect CNS patterning while it does cause depletion of neural crest derivatives. Our data suggest an essential role for CNBP in mediating neural crest expansion by controlling proliferation and cell survival rather than via a cell fate switch during rostral head development. This possible role of CNBP may not only explain the craniofacial anomalies observed in zebrafish but also those reported for mice and chicken and, moreover, demonstrates that CNBP plays an essential and conserved role during vertebrate head development.  相似文献   

13.
    
We investigated the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita‐Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event‐pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi‐ simultaneity is seen in the chondrogenesis of the forelimb and the hind limb. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
    
Phenotypic plasticity allows organisms to change their phenotype in response to shifts in the environment. While a central topic in current discussions of evolutionary potential, a comprehensive understanding of the genetic underpinnings of plasticity is lacking in systems undergoing adaptive diversification. Here, we investigate the genetic basis of phenotypic plasticity in a textbook adaptive radiation, Lake Malawi cichlid fishes. Specifically, we crossed two divergent species to generate an F3 hybrid mapping population. At early juvenile stages, hybrid families were split and reared in alternate foraging environments that mimicked benthic/scraping or limnetic/sucking modes of feeding. These alternate treatments produced a variation in morphology that was broadly similar to the major axis of divergence among Malawi cichlids, providing support for the flexible stem theory of adaptive radiation. Next, we found that the genetic architecture of several morphological traits was highly sensitive to the environment. In particular, of 22 significant quantitative trait loci (QTL), only one was shared between the environments. In addition, we identified QTL acting across environments with alternate alleles being differentially sensitive to the environment. Thus, our data suggest that while plasticity is largely determined by loci specific to a given environment, it may also be influenced by loci operating across environments. Finally, our mapping data provide evidence for the evolution of plasticity via genetic assimilation at an important regulatory locus, ptch1. In all, our data address long‐standing discussions about the genetic basis and evolution of plasticity. They also underscore the importance of the environment in affecting developmental outcomes, genetic architectures, morphological diversity and evolutionary potential.  相似文献   

15.
    
Variation between the sexes during ontogeny is frequently overlooked in discussions of the phylogenetic patterns of adult sexual dimorphism. Different growth trajectories can produce identical degrees and direction of adult dimorphism and the possibility exists that similarities in adults may be the result of differing growth patterns, suggesting independent evolutionary pathways among species to the seemingly identical adult morphology. We quantified the sexual dimorphism in craniofacial skeletal growth of Cavia porcellus, the guinea pig, using longitudinally collected radiographs. Guinea pigs have male-biased sexual dimorphism in size and in growth parameters, despite literature reports to the contrary. These results, analyzed with equivalent data for five species of rodents, and two outgroups representing similarly sized mammals, a rabbit and a marsupial, indicate that some aspects of sexual differences in growth follow phylogenetic lines, while others are a function of whether the species has male- or female-biased dimorphism.  相似文献   

16.
17.
    
The morphogenesis and sequence of ossification and chondrification of skeletal elements of the jaws, and hyoid arch and gill arches of Puntius semifasciolatus are described. These data provide a baseline for further studies and enable comparisons with other described cypriniforms. Some general patterns of ossification in the hyoid arch and branchial arches in cypriniforms were notable. First, the overall development is from anterior to posterior, with the exception of the fifth ceratobranchial bone, which ossifies first. Second, where ossification of iterated elements is sequential, it tends to proceed from posterior to anterior, even when more posterior chondrifications are the smallest in the series. Ossification of the ceratobranchial, epibranchial and pharyngobranchial bones tends to proceed from ventral to dorsal. The comparisons revealed small sets of skeletal elements whose ossification sequence appears to be relatively conserved across cyprinid cypriniforms. Several potentially key timing changes in the ossification sequence of the jaws, hyoid arch and gill arches were identified, such as the accelerated timing of ossification of the fifth ceratobranchial bone, which may be unique to cypriniforms.  相似文献   

18.
    
  相似文献   

19.
Embryonic lung maturation in the H-2 congenic pair, B10.A and B10, proceeds at different rates. The dependence of this heterochronic development on maternal haplotype suggests the involvement of a parentally imprinted gene. Since B10.A (H-2b) and B10 (H-2b) mice are genetically identical except for a 3-18 cM region of chromosome 17 that includes the H-2 complex, we sought a promising candidate gene(s) involved in regulating the rate of lung development from genes encoded in this region. The best candidate is the gene encoding the type II insulin-like growth factor receptor (IGF-IIR), whose ligand is the growth factor IGF-II. Only the maternal copy of this gene is expressed in postimplantation embryos. This receptor does not appear to transduce mitogenic signals; instead, IGF-IIR appears to regulate the levels of its ligand available to the growth-promoting type I IGF receptor (IGF-IR). Using in situ hybridization and indirect immunofluorescence, we demonstrate that IGF-IIR mRNA and protein are localized throughout the pulmonary mesenchyme, as well as in branching epithelia of the pseudoglandular and canalicular stages. We also examined the levels of IGF-IIR mRNA and protein expression by RNase protection assay and ligand blotting during the embryonic period of lung development in B10.A and B10 mice, and found that there is a highly significant positive correlation of IGF IIR levels with progressive development in both strains. Further, slower developing B10.A lungs contain significantly higher levels of IGF-IIR mRNA and protein than the more rapidly developing B10 lungs. These results suggest that haplotype-dependent elevation of IGF-IIR levels reduces the available concentration of IGF-II, resulting in a decreased rate of morphogenesis in B10.A mice. Heterochronic lung maturation, then, appears consequent to variable extracellular levels of this important growth factor. These results may be of clinical importance to predicting susceptibility to Respiratory Distress Syndrome in prenatal newborns. © Wiley-Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号