首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
The ability of plants to respond to natural enemies might depend on the availability of genetic variation for the optimal phenotypic expression of defence. Selfing can affect the distribution of genetic variability of plant fitness, resistance and tolerance to herbivores and pathogens. The hypothesis of inbreeding depression influencing plant defence predicts that inbreeding would reduce resistance and tolerance to damage by natural enemies relative to outcrossing. In a field experiment entailing experimentally produced inbred and outcrossed progenies, we assessed the effects of one generation of selfing on Datura stramonium resistance and tolerance to three types of natural enemies, herbivores, weevils and a virus. We also examined the effect of damage on relative growth rate (RGR), flower, fruit, and seed production in inbred and outcrossed plants. Inbreeding significantly reduced plant defence to natural enemies with an increase of 4% in herbivore damage and 8% in viral infection. These results indicate inbreeding depression in total resistance. Herbivory increased 10% inbreeding depression in seed number, but viral damage caused inbred and outcrossed plants to have similar seed production. Inbreeding and outcrossing effects on fitness components were highly variable among families, implying that different types or numbers of recessive deleterious alleles segregate following inbreeding in D. stramonium. Although inbreeding did not equally alter all the interactions, our findings indicate that inbreeding reduced plant defence to herbivores and pathogens in D. stramonium.  相似文献   

2.
3.
The interaction between the European wild parsnip Pastinaca sativa and its coevolved florivore the parsnip webworm Depressaria pastinacella, established in North America for over 150 years, has resulted in evolution of local chemical phenotype matching. The recent invasion of New Zealand by webworms, exposing parsnips there to florivore selection for the first time, provided an opportunity to assess rates of adaptive response in a real‐time experiment. We planted reciprocal common gardens in the USA and NZ with seeds from (1) US populations with a long history of webworm association; (2) NZ populations that had never been infested and (3) NZ populations infested for 3 years (since 2007) or 6 years (since 2004). We measured impacts of florivory on realized fitness, reproductive effort and pollination success and measured phenotypic changes in infested NZ populations relative to uninfested NZ populations to determine whether rapid adaptive evolution in response to florivory occurred. Irrespective of country of origin or location, webworms significantly reduced plant fitness. Webworms reduced pollination success in small plants but not in larger plants. Although defence chemistry remained unchanged, plants in infested populations were larger after 3–6 years of webworm florivory. As plant size is a strong predictor of realized fitness, evolution of large size as a component of florivore tolerance may occur more rapidly than evolution of enhanced chemical defence.  相似文献   

4.
Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two‐ and three‐trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si‐mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical‐mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores.  相似文献   

5.
Although very common under natural conditions, the consequences of multiple enemies (parasites, predators, herbivores, or even 'chemical' enemies like insecticides) on investment in defence has scarcely been investigated. In this paper, we present a simple model of the joint evolution of two defences targeted against two enemies. We illustrate how the respective level of each defence can be influenced by the presence of the two enemies. Furthermore, we investigate the influences of direct interference and synergy between defences. We show that, depending on certain conditions (costs, interference or synergy between defences), an increase in selection pressure by one enemy can have dramatic effects on defence against another enemy. It is generally admitted that increasing the encounter rate with a second natural enemy can decrease investment in defence against a first enemy, but our results indicate that it may sometimes favour resistance against the first enemy. Moreover, we illustrate that the global defence against one enemy can be lower when only this enemy is present: this has important implications for experimental measures of resistance, and for organisms that invade an area with less enemies or whose community of enemies is reduced. We discuss possible implications of the existence of multiple enemies for conservation biology, biological control and chemical control.  相似文献   

6.
7.
8.
Plant resistance and tolerance to herbivores, parasites, pathogens, and abiotic factors may involve two types of costs. First, resistance and tolerance may be costly in terms of plant fitness. Second, resistance and tolerance to multiple enemies may involve ecological trade-offs. Our study species, the stinging nettle ( Urtica dioica L.) has significant variation among seed families in resistance and tolerance as well as costs of resistance and tolerance to the holoparasitic plant Cuscuta europaea L. Here we report on variation among seed families (i.e. genetic) in tolerance to nutrient limitation and in resistance to both mammalian herbivores (i.e. number of stinging trichomes) and an invertebrate herbivore (i.e. inverse of the performance of a generalist snail, Arianta arbustorum). Our results indicate direct fitness costs of snail resistance in terms of host reproduction whereas we did not detect fitness costs of mammalian resistance or tolerance to nutrient limitation. We further tested for ecological trade-offs among tolerance or resistance to the parasitic plant, herbivore resistance, and tolerance to nutrient limitation in the stinging nettle. Tolerance of nettles to nutrient limitation and resistance to mammalian herbivores tended to correlate negatively. However, there were no significant correlations among resistance and tolerance to the different natural enemies (i.e. parasitic plants, snails, and mammals). The results of this greenhouse study thus suggest that resistance and tolerance of nettles to diverse enemies are free to evolve independently of each other but not completely without direct costs in terms of plant fitness.  相似文献   

9.
Plant–microbe protection symbioses occur when a symbiont defends its host against enemies (e.g., insect herbivores); these interactions can have important influences on arthropod abundance and composition. Understanding factors that generate context-dependency in protection symbioses will improve predictions on when and where symbionts are most likely to affect the ecology and evolution of host species and their associated communities. Of particular relevance are changes in abiotic contexts that are projected to accompany global warming. For example, increased drought stress can enhance the benefits of fungal symbiosis in plants, which may have multi-trophic consequences for plant-associated arthropods. Here, we tracked colonization of fungal endophyte-symbiotic and aposymbiotic Poa autumnalis (autumn bluegrass) by Rhopalosiphum padi (bird-cherry-oat aphids) and their parasitoids (Aphelinus sp.) following manipulations of soil water levels. Endophyte symbiosis significantly reduced plant colonization by aphids. Under low water, symbiotic plants also supported a significantly higher proportion of aphids that were parasitized by Aphelinus and had higher above-ground biomass than aposymbiotic plants, but these endophyte-mediated effects disappeared under high water. Thus, the multi-trophic consequences of plant-endophyte symbiosis were contingent on the abiotic context, suggesting the potential for complex responses in the arthropod community under future climate shifts.  相似文献   

10.
Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium‐dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops.  相似文献   

11.
Abiotic stress is one of the major factors limiting plant growth and yield globally. Though substantial progress has been made in breeding and genetic manipulation of plants to enhance abiotic stress tolerance, the task remains as a challenge even today. Investigations on the priming activity of various chemicals in plants for enhancing abiotic stress tolerance have been undertaken over the past few years. Priming with γ-amino butyric acid (GABA) and β-amino butyric acid (BABA) gains greater attention, because priming with these non-protein amino acids equips the plants to resist abiotic stresses effectively without suffering costly energy investments in operating defence mechanisms. It is well documented that the protective effect of non-protein amino acids like BABA and GABA on plants is due to a potentiation of natural defence mechanisms against abiotic stresses but at the same time not activating the complete defence arsenal before the stress exposure. The exact mode of action of priming with GABA/BABA in plants is still a puzzle, though their importance as signaling molecules during stress is undoubtful. The better understanding of molecular, physiological, and ecological aspects of GABA/BABA priming might lead to the emergence of this technique as a successful strategy for enhancing the abiotic stress(es) tolerance potential of plants in the field, without compromising much on productivity.  相似文献   

12.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   

13.
14.
Members of the Pathogenesis Related (PR) 10 protein family have been identified in a variety of plant species and a wide range of functions ranging from defense to growth and development has been attributed to them. PR10 protein possesses ribonuclease (RNase) activity, interacts with phytohormones, involved in hormone-mediated signalling, afforded protection against various phytopathogenic fungi, bacteria, and viruses particularly in response to biotic and abiotic stresses. The resistance mechanism of PR10 protein may include activation of defense signalling pathways through possible interacting proteins involved in mediating responses to pathogens, degradation of RNA of the invading pathogens. Moreover, several morphological changes have been shown to accompany the enhanced abiotic stress tolerance. In this review, the possible mechanism of action of PR10 protein against biotic and abiotic stress has been discussed. Furthermore, our findings also confirmed that the in vivo Nitric oxide (NO) is essential for most of environmental abiotic stresses and disease resistance against pathogen infection. The proper level of NO may be necessary and beneficial, not only in plant response to the environmental abiotic stress, but also to biotic stress. The updated information on this interesting group of proteins will be useful in future research to develop multiple stress tolerance in plants.  相似文献   

15.
Understanding the functional economics that drives plant investment of resources requires investigating the interface between plant phenotypes and the variation in ecological conditions. While allocation to defence represents a large portion of the carbon budget, this axis is usually neglected in the study of plant economic spectrum. Using a novel geometrical approach, we analysed the co‐variation in a comprehensive set of functional traits related to plant growth strategies, as well as chemical defences against herbivores on all 15 Cardamine species present in the Swiss Alps. By extracting geometrical information of the functional space, we observed clustering of plants into three main syndromes. Those different strategies of growth form and defence were also distributed within distinct elevational bands demonstrating an association between the functional space and the ecological conditions. We conclude that plant strategies converge into clear syndromes that trade off abiotic tolerance, growth and defence within each elevation zone.  相似文献   

16.
Resistance and tolerance represent two general strategies of plant defence against herbivores. Since resources available for allocation to defence are limited and resistance and tolerance are likely to serve the same functions for plants, the occurrence of trade offs between these two strategies has been assumed. We review the empirical evidence for tolerance–resistance tradeoffs by means of meta‐analysis of genetic correlations between resistance and tolerance obtained from 31 ecological and agricultural studies published during 1980–2003 and conducted on 17 different plant species. The sign of the relationship between tolerance and resistance differed depending on the type of plants examined. Tolerance and resistance tended to be positively correlated in crops and negatively correlated in wild plants, but the mean correlation coefficients in both plant types were not significantly different from zero. The magnitude of correlations was affected neither by the tolerance measure (reduction in growth or in fitness in damaged plants) nor by the resistance measure used (inverse of damage, antibiosis, antixenosis, or specific resistance trait). In wild plants correlations between resistance and tolerance were significantly negative (r=?0.069) only in studies where resistance was assessed as a specific chemical or mechanical resistance trait, but this correlation is based only on two studies. No difference in the mean resistance–tolerance correlations was found between studies conducted in the field and in the greenhouse; in both cases mean correlations tended to be positive. The results of our analysis indicate that conditions under which a negative association between resistance and tolerance occurs and, thus, the evolution of multiple defensive strategies in plants is constrained, are much more restrictive than previously assumed. However, the currently available studies are still scarce and taxonomically skewed to allow a thorough analysis of sources of variation in resistance–tolerance relationship. Specifically, we need more studies examining the relationship between specific resistance and tolerance traits, studies on perennial plants and under different environmental conditions.  相似文献   

17.
One of the influential hypotheses invoked to explain why species become invasive following introduction is that release from natural enemies favours a shift in investment from defence to traits enhancing growth and reproduction. Silene latifolia was introduced from Europe (EU) to North America (NA) c. 200 years ago where it experiences lower damage by natural enemies. A common garden experiment in EU using seeds from 20 EU and 20 NA populations revealed (1) genetically‐based differences in life history between plants from EU and NA; plants from NA have evolved a weedy phenotype that flowers earlier, and has a two‐ to threefold higher reproductive potential; (2) higher susceptibility of NA plants to fungal infection, fruit predation, and aphid infestation. These results suggest that the invasive NA phenotype has evolved at the expense of defensive abilities. Despite this increased susceptibility to enemies, NA populations still outperformed EU populations in this common garden.  相似文献   

18.
Providing sufficient food to burgeoning population from the steadily shrinking arable land seems to be very difficult in near future and is one of the foremost challenges for plant scientists. In addition, there are several biotic and abiotic stresses which frequently encounter crop plants during various stages of life cycle, resulting in considerable yield losses. Environmental stresses, including drought, flooding, salinity, temperature (both low and high), high radiation, and xenobiotics induce toxicity, membrane damage, excessive reactive oxygen species (ROS) production, reduced photosynthesis, and altered nutrient acquisition. Several indigenous defence mechanisms (physiological and molecular) are triggered in plants on exposure to environmental cues. Enhancement of resistance of crop plants to environmental stresses has been the topic of prime interest for agriculturalists and plant scientists since long. Development of water and salinity stress-tolerant crops through genetic engineering provides an avenue towards the reclamation of farmlands that have been lost due to salinity and lack of irrigation water/rainfall. Understanding the complexity of stress tolerance mechanisms in orthodox or model plants at the genetic and molecular levels improves feasibility of enhancing tolerance of sensitive crop plants.  相似文献   

19.
20.
To grow and thrive plants must be able to adapt to both adverse environmental conditions and attack by a variety of pests. Elucidating the sophisticated mechanisms plants have developed to achieve this has been the focus of many studies. What is less well understood is how plants respond when faced with multiple stressors simultaneously. In this study, we assess the response of Zea mays (maize) to the combinatorial stress of flooding and infestation with the insect pest Spodoptera frugiperda (fall armyworm). This combined stress leads to elevated production of the defence hormone salicylic acid, which does not occur in the individual stresses, and the resultant salicylic acid-dependent increase in S. frugiperda resistance. Remodelling of phenylpropanoid pathways also occurs in response to this combinatorial stress leading to increased production of the anti-insect C-glycosyl flavones (maysins) and the herbivore-induced volatile phenolics, benzyl acetate, and phenethyl acetate. Furthermore, changes in cellular redox status also occur, as indicated by reductions in peroxidase and polyphenol oxidase activity. These data suggest that metabolite changes important for flooding tolerance and anti-insect defence may act both additively and synergistically to provide extra protection to the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号