首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate-induced changes in snow cover can greatly impact winter soil microclimate and spring water supply. These effects, in turn, can influence plant and microbial activity and the strength of leaching processes, potentially altering the distribution and storage of soil organic carbon (SOC) across different soil depths. However, few studies have examined how changes in snow cover will affect SOC stocks, and even less is known about the impact of snow cover on SOC dynamics along soil profiles. By selecting 11 snow fences along a 570 km climate gradient in Inner Mongolia, covering arid, temperate, and meadow steppes, we measured plant and microbial biomass, community composition, SOC content, and other soil parameters from topsoil to a depth of 60 cm. We found that deepened snow increased aboveground and belowground plant biomass, as well as microbial biomass. Plant and microbial carbon input were positively correlated with grassland SOC stocks. More importantly, we found that deepened snow altered SOC distribution along vertical soil profiles. The increase in SOC caused by deepened snow was much greater in the subsoil (+74.7%; 40–60 cm) than that in the topsoil (+19.0%; 0–5 cm). Additionally, the controls on SOC content under deepened snow differed between the topsoil and subsoil layers. The increase in microbial and root biomass jointly enhanced topsoil C accumulation, while the increase in leaching processes became critical in promoting subsoil C accumulation. We conclude that under deepened snow, the subsoil had a high capacity to sink C by incorporating C leached from the topsoil, suggesting that the subsoil, originally thought to be climate insensitive, could have a higher response to precipitation changes due to vertical C transport. Our study highlights the importance of considering soil depth when assessing the impacts of snow cover changes on SOC dynamics.  相似文献   

2.
Subsoil contains more than half of soil organic carbon (SOC) globally and is conventionally assumed to be relatively unresponsive to warming compared to the topsoil. Here, we show substantial changes in carbon allocation and dynamics of the subsoil but not topsoil in the Qinghai‐Tibetan alpine grasslands over 5 years of warming. Specifically, warming enhanced the accumulation of newly synthesized (14C‐enriched) carbon in the subsoil slow‐cycling pool (silt‐clay fraction) but promoted the decomposition of plant‐derived lignin in the fast‐cycling pool (macroaggregates). These changes mirrored an accumulation of lipids and sugars at the expense of lignin in the warmed bulk subsoil, likely associated with shortened soil freezing period and a deepening root system. As warming is accompanied by deepening roots in a wide range of ecosystems, root‐driven accrual of slow‐cycling pool may represent an important and overlooked mechanism for a potential long‐term carbon sink at depth. Moreover, given the contrasting sensitivity of SOC dynamics at varied depths, warming studies focusing only on surface soils may vastly misrepresent shifts in ecosystem carbon storage under climate change.  相似文献   

3.
Southeast Asia has the highest rate of tropical rainforest deforestation worldwide, and large deforested areas have been replaced ultimately by the highly invasive grass Imperata cylindrica. However, information on the carbon (C) budget with such land transition is very scarce. This study presents the dynamics of soil C following rainforest destruction and the subsequent establishment of Imperata grassland in the lowland humid tropics of Indonesian Borneo using stable C isotopes. To evaluate the relative contribution of organic matter originating from primary forest (C3) and grasslands (C4), we compared soil C stock and natural 13C abundance from six sites to a depth of 100 cm using samples with a wide range of soil textures. Twelve years after the first soil sampling in the grasslands, we re‐sampled to examine temporal changes in soil organic matter. The grassland topsoil (0–5 cm) is an active layer with rapid decomposition and incorporation of fresh C (mean residence time: 7.5 year) and a substantial proportion of the stable C pool (37%). The decline in forest‐derived C was slight, even at 5–10 cm depths, and subsoil (20–100 cm depth) forest‐derived C did not change along the forest‐to‐grassland chronosequence. Grassland‐derived C stock increased significantly in the subsurface and subsoils (5–100 cm). Simulation indicated that total soil C stock (0–100 cm) increased by 18.6 Mg ha?1 from initial primary forest (58.0 Mg ha?1) to a new equilibrium state of the grassland (76.6 Mg ha?1) after 30–50 years of grassland establishment. This research indicates that the soil did not function as a CO2 source when the deforested area was replaced by Imperata grassland on the Ultisols of the Asian humid tropics. Instead, increased soil C stocks offset CO2 emissions, with the C offset accounting for 6.6–7.4% of the loss of biomass C stock.  相似文献   

4.
草地生态系统作为陆地生态系统的重要组成部分,在全球碳循环中发挥着重要作用。以内蒙古短花针茅荒漠草原不同放牧强度样地为研究对象,通过分析地上植物、凋落物、根系、土壤中有机碳和土壤轻组有机碳,研究草原植被-土壤系统有机碳组分储量的变化特征,从碳储量角度为合理利用草原提供指导。研究结果表明:(1)不同放牧强度荒漠草原地上植物碳储量为11.98—44.51 g/m~2,凋落物碳储量10.43—36.12 g/m~2,根系(0—40cm)碳储量502.30—804.31 g/m~2,且对照区(CK)均显著高于中度放牧区(MG)、重度放牧区(HG);(2)0—40cm土壤碳储量为7817.43—9694.16 g/m~2,其中轻度放牧区(LG)碳储量为9694.16 g/m~2,显著高于CK、HG(P0.05);(3)植被—土壤系统的碳储量为8342.14—10494.80 g/m~2,LGMGCKHG,有机碳主要储存于土壤当中,占比约90.54%—93.71%,适度放牧利用有利于发挥草地生态系统的碳汇功能;(4)土壤轻组有机碳储量为484.20—654.62 g/m~2,LG储量最高,表明适度放牧有助于草原土壤营养物质的循环和积累。  相似文献   

5.
土壤微生物胞外酶可有效反映气候变暖对土壤微生物功能和土壤有机质分解的影响.目前关于气候变暖对土壤微生物胞外酶活性(EEAs)影响的相关研究主要关注有机碳含量较丰富的表层土壤(0~20 cm),而对深层土壤(>20 cm)EEAs的研究仍较缺乏.因此,本研究关注土壤增温对亚热带不同深度(0~10 cm、10~20 cm、20~40 cm和40~60 cm)EEAs的影响及主要调控因素,其中微生物胞外酶包括参与碳循环的β-葡萄糖苷酶(BG)、纤维二糖水解酶(CBH)、酚氧化酶(PHO)和过氧化物氧化酶(PEO).结果表明: 土壤增温提高了0~10 cm和10~20 cm土壤所有胞外酶的活性(18%~69%).在20 cm以下的深层土壤中,土壤增温仅显著提高了20~40 cm的PHO(10%),而对其余胞外酶的活性无显著影响或有一定的抑制作用(13%~31%).冗余分析(RDA)结果表明: 在微生物可利用有机碳较丰富的表层土壤中,铵态氮(NH4+-N)和土壤含水率(M)是调控EEAs的主要因素,增温增强了微生物与植物之间的养分竞争,因而提高EEAs以获取微生物所需的养分NH4+-N;而在微生物底物有效性较低的深层土壤中,EEAs主要受可溶性有机质(可溶性有机碳和可溶性有机氮)和微生物生物量(MBC)的影响,增温提高深层土壤可溶性有机质的含量,为微生物提供更多的底物,减少微生物对EEAs的需求,进而降低EEAs.本研究发现,不同深度EEAs对土壤增温具有不同响应,且土壤增温条件下表层和深层土壤的EEAs具有明显不同的调控因素.因此,加强不同深度土壤微生物的研究对于准确评估生态系统碳循环对全球变暖的响应具有重要意义.  相似文献   

6.

Dissolved organic carbon (DOC) from Oa horizons has been proposed to be an important contributor for subsoil organic carbon stocks. We investigated the fate of DOC by directly injecting a DOC solution from 13C labelled litter into three soil depths at beech forest sites. Fate of injected DOC was quantified with deep drilling soil cores down to 2 m depth, 3 and 17 months after the injection. 27 ± 26% of the injected DOC was retained after 3 months and 17 ± 22% after 17 months. Retained DOC was to 70% found in the first 10 cm below the injection depth and on average higher in the topsoil than in the subsoil. After 17 months DOC in the topsoil was largely lost (− 19%) while DOC in the subsoil did not change much (− 4.4%). Data indicated a high stabilisation of injected DOC in the subsoils with no differences between the sites. Potential mineralisation as revealed by incubation experiments however, was not different between DOC injected in topsoil or subsoils underlining the importance of environmental factors in the subsoil for DOC stabilisation compared to topsoil. We conclude that stability of DOC in subsoil is primary driven by its spatial inaccessibility for microorganisms after matrix flow while site specific properties did not significantly affect stabilisation. Instead, a more fine-textured site promotes the vertical transport of DOC due to a higher abundance of preferential flow paths.

  相似文献   

7.
Reforestation of formerly cultivated land is widely understood to accumulate above‐ and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above‐ and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0–7.5 cm) were offset by significant SOM losses in subsoils (35–60 cm). Here, we extended the observation period in this long‐term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light‐fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay‐sized particles. Isotopic signatures showed relatively large accumulations of forest‐derived carbon in surface soils, and little to no accumulation of forest‐derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long‐term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long‐term soil data deeper than 30 cm.  相似文献   

8.
9.
Sequestration of soil organic carbon (SOC) has been recognized as an opportunity to off‐set global carbon dioxide (CO2) emissions. Flipping (full inversion to 1–3 m) is a practice used on New Zealand's South Island West Coast to eliminate water‐logging in highly podzolized sandy soils. Flipping results in burial of SOC formed in surface soil horizons into the subsoil and the transfer of subsoil material low in SOC to the “new” topsoil. The aims of this study were to quantify changes in the storage and stability of SOC over a 20‐year period following flipping of high‐productive pasture grassland. Topsoils (0–30 cm) from sites representing a chronosequence of flipping (3–20 years old) were sampled (2005/07) and re‐sampled (2017) to assess changes in topsoil carbon stocks. Deeper samples (30–150 cm) were also collected (2017) to evaluate the changes in stocks of SOC previously buried by flipping. Density fractionation was used to determine SOC stability in recent and buried topsoils. Total SOC stocks (0–150 cm) increased significantly by 69 ± 15% (179 ± 40 Mg SOC ha‐1) over 20 years following flipping. Topsoil burial caused a one‐time sequestration of 160 ± 14 Mg SOC ha‐1 (30–150 cm). The top 0–30 cm accumulated 3.6 Mg SOC ha‐1 year‐1. The chronosequence and re‐sampling revealed SOC accumulation rates of 1.2–1.8 Mg SOC ha‐1 year‐1 in the new surface soil (0–15 cm) and a SOC deficit of 36 ± 5% after 20 years. Flipped subsoils contained up to 32% labile SOC (compared to <1% in un‐flipped subsoils) thus buried SOC was preserved. This study confirms that burial of SOC and the exposure of SOC depleted subsoil results in an overall increase of SOC stocks of the whole soil profile and long‐term SOC preservation.  相似文献   

10.
桑亚转  尤杨  李多才  安玉峰  侯扶江 《生态学报》2023,43(15):6364-6377
土壤质量是维持陆地生态系统稳定性与功能多样性的基础。放牧作为草地资源最广泛的利用方式之一,其对草地土壤质量的影响却缺乏量化标准,且两者之间的作用机理尚不明确。以祁连山高寒草原两个季节性牧场为研究对象,结合生态系统耦合与生态系统多功能性,探究了放牧对高寒草原土壤质量的影响与潜在机制。试验结果表明:基于最小数据集,不同放牧率下土壤质量指数差异显著(P<0.05),冬季牧场和春秋季牧场放牧率分别在2.45头月-1 hm-2和0.80头月-1 hm-2时土壤质量指数最高。土壤速效磷、有机碳、氮磷比和土壤pH是决定冬季牧场土壤质量的关键因子,而春秋季牧场中则是土壤有机碳、碳氮比和土壤pH;两个季节性牧场土壤质量指数与物种丰富度指数(P<0.05)和香浓维纳多样性指数(P<0.0001)呈显著正相关。高寒草原季节性牧场放牧地植物群落物种多样性与土壤因子耦合度在0.67—0.81之间,平均耦合度为0.74,属于中度协调;随着放牧率的增加,生态系统多功能性指数逐渐减低且与土壤质量指数变化趋势相似,...  相似文献   

11.
草原土壤有机碳含量的控制因素   总被引:3,自引:0,他引:3  
基于374个高寒草原和温带草原土壤样品的测试结果,运用多元逐步回归分析模型定量评估了土壤环境因子对土壤有机碳(SOC)含量的影响.结果表明:高寒草原土壤有机碳含量(20.18 kg C/m2)高于温带草原(9.23 kg C/m2).土壤理化生物学因子对高寒草原和温带草原SOC含量(10 cm)变化的贡献分别是87.84%和75.00%.其中,土壤总氮含量和根系对高寒草原SOC含量变化的贡献均大于对温带草原SOC含量变化的相应贡献.土壤水分是温带草原SOC含量变化的主要限制性因素,其对SOC含量变化的贡献达33.27%.高寒草原土壤C/N比显著高于温带草原土壤的相应值,揭示了青藏高原高寒草原较高的SOC含量是由于较低的土壤微生物活性所导致.  相似文献   

12.
基于激光雷达数据的森林表层土壤机质空间格局反演   总被引:1,自引:0,他引:1  
森林土壤是陆地生态系统的主要碳库,其有机质含量是估算碳储量的基础数据,也是评价土壤碳汇功能的重要指标.利用2009年8月采集的凉水自然保护区激光雷达(LiDAR)数据和55块固定样地土壤有机质含量数据,结合偏最小二乘算法,反演森林表层土壤有机质的空间格局,提取并筛选出与土壤有机质分布相关的变量,分析并确定变量(强度、点数、高程、坡度和坡向)值与土壤有机质含量的相关关系,建立土壤有机质含量的预测模型并检验.结果表明:研究区域表层土壤有机质含量与强度、点数和高程3变量呈极显著相关(r分别为0.765、0.423和0.475);基于此3变量的预测模型对研究区域表层土壤有机质含量的预测结果可靠(精度83.3%,R2=0.725,RMSE=1.955).研究区林缘和郁闭度较小林分的表层土壤有机质含量<100 g·kg-1;大部分区域表层土壤有机质含量为I00~ 150 g·kg-1,少部分区域为150 ~318.4 g· kg-1.  相似文献   

13.
黑土坡耕地有机碳变化及固碳潜力分析   总被引:2,自引:0,他引:2  
翟国庆  韩明钊  李永江  王恩姮 《生态学报》2020,40(16):5751-5760
东北黑土区自开垦以来有机质含量逐渐降低,有机碳库长期处于亏缺状态,理论上也具有较大的固碳潜力。以典型黑土区长期传统作业的坡耕地(30—60 a)为研究对象,通过测定不同坡位(坡上侵蚀区和坡下沉积区)、不同土层(表土和底土)有机碳分布特征,估算不同开垦年限黑土固碳潜力及其恢复至固碳潜力所需的时间。结果表明:(1)总有机碳、有机碳密度以及碳饱和水平均表现为沉积区显著大于侵蚀区,表土显著大于底土,且均在开垦30a坡耕地达到最大值;(2)固碳潜力表现为侵蚀区(1.24—2.89 kg/m~2)显著大于沉积区(0.79—1.04 kg/m~2),底土(0.83—3.59 kg/m~2)显著大于表土(0.6—2.53 kg/m~2),随着开垦年限的增加表现为开垦30 a显著小于开垦40 a、60 a;(3)黑土坡耕地(30—60 a)侵蚀区和沉积区土壤(0—50 cm)达到固碳潜力分别需要20—181 a和13—66 a。黑土坡耕地固碳潜力的时空变异性在农业经营以及修复管理过程中需引起重视,以实现黑土资源的可持续利用。  相似文献   

14.
Zoe G. Cardon 《Plant and Soil》1995,187(2):277-288
Atmospheric CO2 concentrations can influence ecosystem carbon storage through net primary production (NPP), soil carbon storage, or both. In assessing the potential for carbon storage in terrestrial ecosystems under elevated CO2, both NPP and processing of soil organic matter (SOM), as well as the multiple links between them, must be examined. Within this context, both the quantity and quality of carbon flux from roots to soil are important, since roots produce specialized compounds that enhance nutrient acquisition (affecting NPP), and since the flux of organic compounds from roots to soil fuels soil microbial activity (affecting processing of SOM).From the perspective of root physiology, a technique is described which uses genetically engineered bacteria to detect the distribution and amount of flux of particular compounds from single roots to non-sterile soils. Other experiments from several labs are noted which explore effects of elevated CO2 on root acid phosphatase, phosphomonoesterase, and citrate production, all associated with phosphorus nutrition. From a soil perspective, effects of elevated CO2 on the processing of SOM developed under a C4 grassland but planted with C3 California grassland species were examined under low (unamended) and high (amended with 20 g m–2 NPK) nutrients; measurements of soil atmosphere 13C combined with soil respiration rates show that during vegetative growth in February, elevated CO2 decreased respiration of carbon from C4 SOM in high nutrient soils but not in unamended soils.This emphasis on the impacts of carbon loss from roots on both NPP and SOM processing will be essential to understanding terrestrial ecosystem carbon storage under changing atmospheric CO2 concentrations.Abbreviations SOM soil organic matter - NPP net primary productivity - NEP net ecosystem productivity - PNPP p-nitrophenyl phosphate  相似文献   

15.
Soil organic carbon (SOC) dynamics is regulated by a complex interplay of factors such as climate and potential anthropogenic activities. Livestocks play a key role in regulating the C cycle in grasslands. However, the interrelationship between SOC and these drivers remains unclear at different soil layers, and their potential relationships network have rarely been quantitatively assessed. Here, we completed a six‐year manipulation experiment of grazing exclusion (no grazing: NG) and increasing grazing intensity (light grazing: LG, medium grazing: MG, heavy grazing: HG). We tested light fraction organic carbon (LFOC) and heavy fraction organic carbon (HFOC) in 12 plots along grazing intensity in three soil layers (topsoil: 0–10 cm, mid‐soil: 10–30 cm, subsoil: 30–50 cm) to assess the drivers of SOC. Grazing significantly reduced SOC of the soil profile, but with significant depth and time dependencies. (1) SOC and SOC stability of the topsoil is primarily regulated by grazing duration (years). Specifically, grazing duration and grazing intensity increased the SOC lability of topsoil due to an increase in LFOC. (2) Grazing intensity was the major factor affecting the mid‐soil SOC dynamics, among which MG had significantly lower SOC than did NG. (3) Subsoil organic carbon dynamics were mainly regulated by climatic factors. The increase in mean annual temperature (MAT) may have promoted the turnover of LFOC to HFOC in the subsoil. Synthesis and applications. When evaluating the impacts of grazing on soil organic fraction, we need to consider the differences in sampling depth and the duration of grazing years. Our results highlight that the key factors influencing SOC dynamics differ among soil layers. Climatic and grazing factors have different roles in determining SOC in each soil layer.  相似文献   

16.
森林土壤是陆地生态系统的主要碳库,其有机质含量是估算碳储量的基础数据,也是评价土壤碳汇功能的重要指标.利用2009年8月采集的凉水自然保护区激光雷达(LiDAR)数据和55块固定样地土壤有机质含量数据,结合偏最小二乘算法,反演森林表层土壤有机质的空间格局,提取并筛选出与土壤有机质分布相关的变量,分析并确定变量(强度、点数、高程、坡度和坡向)值与土壤有机质含量的相关关系,建立土壤有机质含量的预测模型并检验.结果表明: 研究区域表层土壤有机质含量与强度、点数和高程3变量呈极显著相关(r分别为0.765、0.423和0.475);基于此3变量的预测模型对研究区域表层土壤有机质含量的预测结果可靠(精度83.3%,R2=0.725,RMSE=1.955).研究区林缘和郁闭度较小林分的表层土壤有机质含量<100 g·kg-1;大部分区域表层土壤有机质含量为100~150 g·kg-1,少部分区域为150~318.4 g·kg-1.  相似文献   

17.
蔺佳玮  张全智  王传宽 《生态学报》2023,43(21):8793-8802
干扰作为森林恢复和生态演替的重要影响因子,通过其改变植被群落的组成和微环境,进而影响森林生态系统碳动态及固碳潜力。针对帽儿山地区阔叶红松原始林不同时期皆伐后形成的次生林干扰系列,包括林木采伐一次(NS,林龄56a)、采伐两次(MS,林龄25a)和采伐两次且扰动表层土壤(YD,林龄15a)的次生林,采用森林清查和异速生长方程结合的方法,旨在量化干扰方式对温带森林恢复进程中生态系统碳密度及分配格局的影响。结果表明:YD、MS和NS的0—50 cm各层次土壤有机碳含量的波动范围依次分别为10.46—29.27 mg/g、6.37—108.40 mg/g、5.21—114.34 mg/g;且随土层的加深土壤有机碳含量显著降低。表层土壤(0—20 cm)有机碳含量在各干扰处理间存在显著差异(P<0.01),而深层土壤有机碳含量差异不显著;土壤有机碳含量与容重呈显著负相关关系。表层土壤有机碳密度占土壤总有机碳密度(0—100 cm)的50%以上,YD的表层土壤有机碳密度(30.91 t/hm2)显著低于MS(54.09 t/hm2)和NS(55.1...  相似文献   

18.
盛浩  宋迪思  周萍  夏燕维  张杨珠 《生态学报》2017,37(14):4676-4685
了解底土溶解性有机质(DOM)的数量和化学结构对土地利用变化的响应,对科学评价区域土壤有机质动态和碳库稳定性具有重要意义。通过选取花岗岩红壤丘陵区同一景观单元的天然林地(常绿阔叶林)以及由此转变而来的杉木人工林、板栗园和坡耕地,采用化学分析结合光谱扫描(紫外光谱、二维荧光光谱和傅里叶变换红外光谱)技术,研究底土(0.2—1 m)和表土(0—0.2 m)DOM数量和结构对土地利用变化的响应差异,结果表明:58%—87%的DOM贮存在底土中。天然林地土壤的DOM数量最为丰富,底土DOM的宏观化学结构比表土更为简单,以碳水化合物、类蛋白为主。天然林转变为其他利用方式后,底土DOM的损失量(26%—41%)超过表土(12%—49%),冬季比夏季更为凸显;这反映底土DOM数量对人为干扰和植被变化的高度敏感性。同时,底土DOM宏观化学结构趋于复杂化,芳香类、烷烃类和烯烃类的化学抗性物质出现积累的现象。DOM光谱曲线形状、特定峰值、特征值对土地利用的响应敏感,对人为干扰后植被、土壤有机质的变化具有生态指示意义。研究显示,天然林地转变为其他利用方式后,不仅导致底土DOM的损失,也显著降低土壤有机质品质,长期上削弱底土的碳库稳定性和碳吸存能力。  相似文献   

19.
对贡嘎南山-拉轨岗日山南坡高寒草原生态系统表层(0~20cm)土壤活性有机碳分布特征研究表明:表层(0~20 cm)土壤活性有机碳平均为(2.4986±0.7864) g/kg,占表层土壤有机碳的(12.7926±21.00)%.在海拔4424~4804m范围内,随着海拔升高,表层(0~20cm)土壤活性有机碳含量表现出先减少后增加的分布特征,有机碳活度也表现出先减少后增加的分布特征.影响表层土壤活性有机碳含量最关键的环境因子是地上生物量、0~10cm地下生物量、30~40cm地下生物量、20~30cm土壤含水量、0~20cm土壤容重、20~40cm土壤容重和土壤全N量;影响表层土壤有机碳活度最关键的环境因子则是植被盖度、20~30cm地下生物量、0~10cm土壤含水量、10~20cm土壤含水量、20~30cm土壤含水量、土壤有机质、土壤速效K和土壤全N量.  相似文献   

20.
A significant challenge in predicting terrestrial ecosystem response to global changes comes from the relatively poor understanding of the processes that control pools and fluxes of plant nutrients in soil. In addition, individual global changes are often studied in isolation, despite the potential for interactive effects among them on ecosystem processes. We studied the response of gross N mineralization and microbial respiration after 6 years of application of three global change factors in a grassland field experiment in central Minnesota (the BioCON experiment). BioCON is a factorial manipulation of plant species diversity (1, 4, 9 and 16 prairie species), atmospheric [CO2] (ambient and elevated: 560 μmol mol?1), and N inputs (ambient and ambient +4 g N m?2 yr?1). We hypothesized that gross N mineralization would increase with increasing levels of all factors because of stimulated plant productivity and thus greater organic inputs to soils. However, we also hypothesized that N addition would enhance, while elevated [CO2] and greater diversity would temper, gross N mineralization responses because of increased and reduced plant tissue N concentrations, respectively. In partial support of our hypothesis, gross N mineralization increased with greater diversity and N addition, but not with elevated [CO2]. The ratio of gross N mineralization to microbial respiration (i.e. the ‘yield’ of inorganic N mineralized per unit C respired) declined with greater diversity and [CO2] suggesting increasing limitation of microbial processes by N relative to C in these treatments. Based on these results, we conclude that the plant supply of organic matter primarily controls gross N mineralization and microbial respiration, but that the concentration of N in organic matter input secondarily influences these processes. Thus, in systems where N limits plant productivity these global change factors could cause different long‐term ecosystem trajectories because of divergent effects on soil N and C cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号