首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wetlands on the Qinghai-Tibet Plateau are experiencing serious degradation, with more than 90,000 hectares of marshland converted to wet meadow or meadow after 40 years of drainage. However, little is known about the effects of wetland conversion on soil C stocks and the quality of soil organic carbon (SOC) (defined by the proportion of labile versus more resistant organic carbon compounds). SOC, microbial biomass carbon, light fraction organic carbon (LFOC), dissolved organic carbon, and the chemical composition of SOC in the soil surface layer (0–10 cm), were investigated along a wetland degradation gradient (marsh, wet meadow, and meadow). Wetland degradation caused a 16 % reduction in the carbon stocks from marsh (178.7 ± 15.2 kg C m?2) to wet meadow (150.6 ± 21.5 kg C m?2), and a 32 % reduction in C stocks of the 0–10 cm soil layer from marsh to meadow (122.2 ± 2.6 kg C m?2). Wetland degradation also led to a significant reduction in SOC quality, represented by the lability of the carbon pool as determined by a density fractionation method (L LFOC), and a significant increase in the stability of the carbon pool as reflected by the alkyl-C:O-alkyl-C ratio. 13C NMR spectroscopy showed that the labile form of C (O-alkyl-C) declined significantly after wetland degradation. These results assist in explaining the transformation of organic C in these plateau wetland soils and suggest that wetland degradation not only caused SOC loss, but also decreased the quality of the SOC of the surface soil.  相似文献   

2.
The long-term use of cropland and cropland reclamation from natural ecosystems led to soil degradation. This study investigated the effect of the long-term use of cropland and cropland reclamation from natural ecosystems on soil organic carbon (SOC) content and density over the past 35 years. Altogether, 2140 topsoil samples (0–20 cm) were collected across Northeast China. Landsat images were acquired from 1985 to 2020 through Google Earth Engine, and the reflectance of each soil sample was extracted from the Landsat image that its time was consistent with sampling. The hybrid model that included two individual SOC prediction models for two clustering regions was built for accurate estimation after k-means clustering. The probability hybrid model, a combination between the hybrid model and classification probabilities of pixels, was introduced to enhance the accuracy of SOC mapping. Cropland reclamation results were extracted from the land cover time-series dataset at a 5-year interval. Our study indicated that: (1) Long-term use of cropland led to a 3.07 g kg−1 and 6.71 Mg C ha−1 decrease in SOC content and density, respectively, and the decrease of SOC stock was 0.32 Pg over the past 35 years; (2) nearly 64% of cropland had a negative change in terms of SOC content from 1985 to 2020; (3) cropland reclamation track changed from high to low SOC content, and almost no cropland was reclaimed on the “Black soils” after 2005; (4) cropland reclamation from wetlands resulted in the highest decrease, and reclamation period of years 31–35 decreased when SOC density and SOC stock were 16.05 Mg C ha−1 and 0.005 Pg, respectively, while reclamation period of years 26–30 from forest witnessed SOC density and stock decreases of 8.33 Mg C ha−1 and 0.01 Pg, respectively. Our research results provide a reference for SOC change in the black soil region of Northeast China and can attract more attention to the area of the protection of “Black soils” and natural ecosystems.  相似文献   

3.
Temperate wetlands in the Northern Hemisphere have high long-term carbon sequestration rates, and play critical roles in mitigating regional and global atmospheric CO2 increases at the century timescale. We measured soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) from 11 typical freshwater wetlands (Heilongjiang Province) and one saline wetland (Jilin Province) in Northeast China, and estimated carbon sequestration rates using 210Pb and 137Cs dating technology. Effects of climate, net primary productivity, and nutrient availability on carbon sequestration rates (Rcarbon) were also evaluated. Chronological results showed that surface soil within the 0–40 cm depth formed during the past 70–205 years. Soil accretion rates ranged from 2.20 to 5.83 mm yr−1, with an average of 3.84 ± 1.25 mm yr−1 (mean ± SD). Rcarbon ranged from 61.60 to 318.5 gC m−2 yr−1 and was significantly different among wetland types. Average Rcarbon was 202.7 gC m−2 yr−1 in the freshwater wetlands and 61.6 gC m−2 yr−1 in the saline marsh. About 1.04 × 108 tons of carbon was estimated to be captured by temperate wetland soils annually in Heilongjiang Province (in the scope of 45.381–51.085°N, 125.132–132.324°E). Correlation analysis showed little impact of net primary productivity (NPP) and soil nutrient contents on Rcarbon, whereas climate, specifically the combined dynamics of temperature and precipitation, was the predominant factor affecting Rcarbon. The negative relationship observed between Rcarbon and annual mean temperature (T) indicates that warming in Northeast China could reduce Rcarbon. Significant positive relationships were observed between annual precipitation (P), the hydrothermal coefficient (defined as P/AT, where AT was accumulative temperature ≥10 °C), and Rcarbon, indicating that a cold, humid climate would enhance Rcarbon. Current climate change in Northeast China, characterized by warming and drought, may form positive feedbacks with Rcarbon in temperate wetlands and accelerate carbon loss from wetland soils.  相似文献   

4.
Land use induced changes of organic carbon storage in soils of China   总被引:29,自引:0,他引:29  
Using the data compiled from China's second national soil survey and an improved method of soil carbon bulk density, we have estimated the changes of soil organic carbon due to land use, and compared the spatial distribution and storage of soil organic carbon (SOC) in cultivated soils and noncultivated soils in China. The results reveal that ~ 57% of the cultivated soil subgroups ( ~ 31% of the total soil surface) have experienced a significant carbon loss, ranging from 40% to 10% relative to their noncultivated counterparts. The most significant carbon loss is observed for the non‐irrigated soils (dry farmland) within a semiarid/semihumid belt from northeastern to southwestern China, with the maximum loss occurring in northeast China. On the contrary, SOC has increased in the paddy and irrigated soils in northwest China. No significant change is observed for forest soils in southern China, grassland and desert soils in northwest China, as well as irrigated soils in eastern China. The SOC storage and density under noncultivated conditions in China are estimated to ~ 77.4 Pg (1015 g) and ~ 8.8 kg C m?2, respectively, compared to a SOC storage of ~ 70.3 Pg and an average SOC density of ~ 8.0 kg C m?2 under the present‐day conditions. This suggests a loss of ~ 7.1 Pg SOC and a decrease of ~ 0.8 kg C m?2 SOC density due to increasing human activities, in which the loss in organic horizons has contributed to ~ 77%. This total loss of SOC in China induced by land use represents ~ 9.5% of the world's SOC decrease. This amount is equivalent to ~ 3.5 ppmv of the atmospheric CO2 increase. Since ~ 78% of the currently cultivated soils in China have been degraded to a low/medium productivities and are responsible for most of the SOC loss, an improved land management, such as the development of irrigated and paddy land uses, would have a considerable potential in restoring the SOC storage. Assuming a restoration of ~ 50% of the lost SOC during the next 20–50 years, the soils in China would absorb ~ 3.5 Pg of carbon from the atmosphere.  相似文献   

5.
High productivity and waterlogged conditions make many freshwater wetlands significant carbon sinks. Most wetland carbon studies focus on boreal peatlands, however, with less attention paid to other climates and to the effects of hydrogeomorphic settings and the importance of wetland vegetation communities on carbon sequestration. This study compares six temperate wetland communities in Ohio that belong to two distinct hydrogeomorphic types: an isolated depressional wetland site connected to the groundwater table, and a riverine flow‐through wetland site that receives water from an agricultural watershed. Three cores were extracted in each community and analyzed for total carbon content to determine the soil carbon pool. Sequestration rates were determined by radiometric dating with 137Cs and 210Pb on a set of composite cores extracted in each of the six communities. Cores were also extracted in uplands adjacent to the wetlands at each site. Wetland communities had accretion rates ranging from 3.0 to 6.2 mm yr?1. The depressional wetland sites had higher (P < 0.001) organic content (146 ± 4.2 gC kg?1) and lower (P < 0.001) bulk density (0.55 ± 0.01 Mg m?3) than the riverine ones (50.1 ± 6.9 gC kg?1 and 0.74 ± 0.06 Mg m?3). The soil carbon was 98–99% organic in the isolated depressional wetland communities and 85–98% organic in the riverine ones. The depressional wetland communities sequestered 317 ± 93 gC m?2 yr?1, more (P < 0.01) than the riverine communities that sequestered 140 ± 16 gC m?2 yr?1. The highest sequestration rate was found in the Quercus palustris forested wetland community (473 gC m?2 yr?1), while the wetland community dominated by water lotus (Nelumbo lutea) was the most efficient of the riverine communities, sequestering 160 gC m?2 yr?1. These differences in sequestration suggest the importance of addressing wetland types and communities in more detail when assessing the role of wetlands as carbon sequestering systems in global carbon budgets.  相似文献   

6.
白洋淀湿地区土壤有机碳密度及储量的空间分布特征   总被引:2,自引:0,他引:2  
李瑾璞  于秀波  夏少霞  赵玮  王树涛  许策 《生态学报》2020,40(24):8928-8935
湿地生态系统碳储量是陆地生态系统碳循环的重要组成部分,提供重要的生态系统服务功能。白洋淀湿地是国家重要生态湿地和华北平原最大的淡水湿地,同时是雄安新区的核心水系,湿地区土壤碳储量的估算研究将为湿地生态系统服务评估和湿地生态恢复提供数据支撑。研究通过对白洋淀湿地7种不同地类的105个土壤剖面进行分层取样,揭示了其湿地土壤有机碳密度及储量的空间分布特征,结果表明:(1)白洋淀湿地区土壤有机碳含量整体偏低,在各层土壤中,淹水芦苇湿地的有机碳含量均显著高于其他植被类型,约为其他类型土壤碳含量的3倍左右。(2)在各植被类型中土壤有机碳含量均以表层(0-20 cm)最高,其分配比例均集中在30%左右,随着土壤剖面深度的增加,湿地土壤的有机碳含量逐渐减少。(3)不同植被类型土壤有机碳含量与土壤有机碳密度的差异显著,具体表现为:乔木园地 < 旱地 < 常绿针叶林 < 落叶阔叶林 < 水田 < 台田芦苇 < 淹水芦苇。(4)根据估算,白洋淀湿地区的土壤有机碳储量约为5816.77×103Mg。随着雄安新区环境治理工作的推进,白洋淀湿地区生态系统固碳将呈现持续向好态势,结合生态恢复和土地布局优化,尽量减少雄安新区建设中土地流转带来的碳排放影响,对提高区域生态效益具有重要意义。  相似文献   

7.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

8.
三江源国家公园是青藏高原生态屏障的核心单元,准确评估其土壤碳氮特征是区域生态功能认知和分区管理的重要基础。基于54个样点调查数据,结合高程、坡度、坡向及2000—2018年的年均气温、降水、归一化植被指数等生态因子,采用增强回归树模型研究了三江源国家公园表层(0—30 cm)土壤有机碳(SOC)、全氮(TN)密度的空间格局和等级区划及储量特征。结果表明三江源国家公园SOC密度和TN密度分别为(5.41±3.12)kg/m~2(平均值±标准差,下同)和(0.57±0.27)kg/m~2,其空间变异均主要受降水和归一化植被指数影响。澜沧江源园区和黄河源园区SOC和TN密度分别为(9.39±0.89) kg/m~2和(0.92±0.09)kg/m~2、(8.26±2.33) kg/m~2和(0.80±0.20)kg/m~2,约为长江源园区的2倍。SOC和TN密度等级在澜沧江源园区呈现出中心高周围低的特征,在黄河源园区和长江源园区分别表现出从北到南和从东南到西北逐渐降低的格局。三江源国家公园SOC储量和TN储量分别为0.60 Pg和0.06 Pg,其中澜沧江源园区、黄河源园区、长江源园区的储量...  相似文献   

9.
Soil organic carbon stocks in China and changes from 1980s to 2000s   总被引:12,自引:0,他引:12  
The estimation of the size and changes of soil organic carbon (SOC) stocks is of great importance for decision makers to adopt proper measures to protect soils and to develop strategies for mitigation of greenhouse gases. In this paper, soil data from the Second State Soil Survey of China (SSSSC) conducted in the early 1980s and data published in the last 5 years were used to estimate the size of SOC stocks over the whole profile and their changes in China in last 20 years. Soils were identified as paddy, upland, forest, grassland or waste‐land soils and an improved soil bulk density estimation method was used to estimate missing bulk density data. In the early 1980s, total SOC stocks were estimated at 89.61 Pg (1 Pg=103 Tg=1015 g) in China's 870.94 Mha terrestrial areas covered by 2473 soil series. In the paddy, upland, forest and grassland soils the respective total SOC stocks were 2.91 Pg on 29.87 Mha, 10.07 Pg on 125.89 Mha, 34.23 Pg on 249.32 Mha and 37.71 Pg on 278.51 Mha, respectively. The SOC density of the surface layer ranged from 3.5 Mg ha−1 in Gray Desery grassland soils to 252.6 Mg ha−1 in Mountain Meadow forest soils. The average area‐weighted total SOC density in paddy soils (97.6 Mg ha−1) was higher than that in upland soils (80 Mg ha−1). Soils under forest (137.3 Mg ha−1) had a similar average area‐weighted total SOC density as those under grassland (135.4 Mg ha−1). The annual estimated SOC accumulation rates in farmland and forest soils in the last 20 years were 23.61 and 11.72 Tg, respectively, leading to increases of 0.472 and 0.234 Pg SOC in farmland and forest areas, respectively. In contrast, SOC under grassland declined by 3.56 Pg due to the grassland degradation over this period. The resulting estimated net SOC loss in China's soils over the last 20 years was 2.86 Pg. The documented SOC accumulation in farmland and forest soils could thus not compensate for the loss of SOC in grassland soils in the last 20 years. There were, however, large regional differences: Soils in China's South and Eastern parts acted mainly as C sinks, increasing their average topsoil SOC by 132 and 145 Tg, respectively. In contrast, in the Northwest, Northeast, Inner Mongolia and Tibet significant losses of 1.38, 0.21, 0.49 and 1.01 Pg of SOC, respectively, were estimated over the last 20 years. These results highlight the importance to take measures to protect grassland and to improve management practices to increase C sequestration in farmland and forest soils.  相似文献   

10.
Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon storage, especially in soils, often exceeds that of other terrestrial ecosystems. More than half of the coastal wetlands in the US are located in the northern Gulf of Mexico, yet these wetlands continue to be degraded at an alarming rate, resulting in a significant loss of stored carbon and reduction in capacity for carbon sequestration. We provide estimates of surface soil carbon densities for wetlands in the northern Gulf of Mexico coastal region, calculated from field measurements of bulk density and soil carbon content in the upper 10–15 cm of soil. We combined these estimates with soil accretion rates derived from the literature and wetland area estimates to calculate surface soil carbon pools and accumulation rates. Wetlands in the northern Gulf of Mexico coastal region potentially store 34–47 Mg C ha?1 and could potentially accumulate 11,517 Gg C year?1. These estimates provide important information that can be used to incorporate the value of wetlands in the northern Gulf of Mexico coastal region in future wetland management decisions related to global climate change. Estimates of carbon sequestration potential should be considered along with estimates of other ecosystem services provided by wetlands in the northern Gulf of Mexico coastal region to strengthen and enhance the conservation, sustainable management, and restoration of these important natural resources.  相似文献   

11.
胶州湾滨海湿地土壤有机碳时空分布及储量   总被引:1,自引:1,他引:0  
訾园园  郗敏  孔范龙  李悦  杨玲 《生态学杂志》2016,27(7):2075-2083
在胶州湾选取芦苇、碱蓬、光滩及大米草4种典型滨海湿地类型,分季节和层次采集土壤样品,测定土壤有机碳含量,分析滨海湿地土壤有机碳的时空分布及储量.结果表明: 垂直方向上,除光滩湿地沿剖面呈先减小后稍有上升的趋势外,其他湿地均随土壤深度的增加而减小;水平方向上,湿地土壤有机碳含量表现为大米草湿地>光滩湿地>碱蓬湿地>芦苇湿地;季节上,湿地土壤有机碳含量表现为春季>夏季>秋季>冬季.土壤有机碳含量与土壤含盐量、含水率、TN及C/N呈正相关,与土壤容重、pH值呈负相关.不同类型湿地土壤剖面有机碳密度表现为光滩湿地>芦苇湿地>碱蓬湿地,湿地类型对土壤有机碳含量和有机碳密度分布的影响存在一定差异.因储碳层厚度及储碳层内有机碳密度的差异,光滩湿地单位面积有机碳储量明显高于碱蓬和芦苇湿地,具有较大的储碳潜能,对研究区滨海湿地起到一定的碳汇作用.  相似文献   

12.
Wood from short rotation coppices (SRCs) is discussed as bioenergy feedstock with good climate mitigation potential inter alia because soil organic carbon (SOC) might be sequestered by a land-use change (LUC) from cropland to SRC. To test if SOC is generally enhanced by SRC over the long term, we selected the oldest Central European SRC plantations for this study. Following the paired plot approach soils of the 21 SRCs were sampled to 80 cm depth and SOC stocks, C/N ratios, pH and bulk densities were compared to those of adjacent croplands or grasslands. There was no general trend to SOC stock change by SRC establishment on cropland or grassland, but differences were very site specific. The depth distribution of SOC did change. Compared to cropland soils, the SOC density in 0–10 cm was significantly higher under SRC (17 ± 2 in cropland and 21 ± 2 kg C m−3 in SRC). Under SRC established on grassland SOC density in 0–10 cm was significantly lower than under grassland. The change rates of total SOC stocks by LUC from cropland to SRC ranged from −1.3 to 1.4 Mg C ha−1 yr−1 and −0.6 Mg C ha−1 yr−1 to +0.1 Mg C ha−1 yr−1 for LUC from grassland to SRC, respectively. The accumulation of organic carbon in the litter layer was low (0.14 ± 0.08 Mg C ha−1 yr−1). SOC stocks of both cropland and SRC soils were correlated with the clay content. No correlation could be detected between SOC stock change and soil texture or other abiotic factors. In summary, we found no evidence of any general SOC stock change when cropland is converted to SRC and the identification of the factors determining whether carbon may be sequestered under SRC remains a major challenge.  相似文献   

13.
Storage,patterns and environmental controls of soil organic carbon in China   总被引:12,自引:0,他引:12  
Based on the data from China’s second national soil survey and field observations in northwest China, we estimated soil organic carbon (SOC) storage in China and investigated its spatial and vertical distribution. China’s SOC storage in a depth of 1 meter was estimated as 69.1 Pg (1015 g), with an average density of 7.8 kg m−2. About 48% of the storage was concentrated in the top 30 cm. The SOC density decreased from the southeast to the northwest, and increased from arid to semi-humid zone in northern China and from tropical to cold-temperate zone in the eastern part of the country. The vertical distribution of SOC differed in various climatic zones and biomes; SOC distributed deeper in arid climate and water-limited biomes than in humid climate. An analysis of general linear model suggested that climate, vegetation, and soil texture significantly influenced spatial pattern of SOC, explaining 78.2% of the total variance, and that climate and vegetation interpreted 78.9% of the total variance in the vertical SOC distribution.  相似文献   

14.
周文昌  牟长城  刘夏  顾韩 《生态学报》2012,32(20):6387-6395
火干扰在湿地生态系统中起着重要的作用,尽管湿地占全球陆地生态系统很小一部分,却是陆地生态系统一个重要的碳汇。然而关于火干扰对我国小兴安岭森林沼泽生态系统土壤碳库影响的研究鲜有报道。因此选取两种森林沼泽典型地段进行土壤取样,研究火干扰对小兴安岭白桦(Betula platyphylla)沼泽和落叶松(Larix gmelinii)-苔草(Carex schmidtii)沼泽地表凋落物和土壤碳储量(0—50 cm)的影响。研究结果表明:①重度火烧使得白桦沼泽地表凋落物量和碳储量降低了36.36%(0.50 kg/m2)和35.52%(0.23 kg C/m2),而轻度火烧无显著影响;轻度火烧和重度火烧落叶松-苔草沼泽地表凋落物量和碳储量分别减少了45.32%(0.99 kg/m2)和44.66%(0.42 kg C/m2)、50.42%(1.10 kg/m2)和49.71%(0.47 kg C/m2);②白桦沼泽和落叶松-苔草沼泽两者对照样地、轻度火烧样地、重度火烧样地的土壤碳储量(0—50 cm)分别为(23.55±6.34)kg C/m2、(18.50±8.16)kg C/m2、(32.50±7.22)kg C/m2和(20.89±2.59)kg C/m2、(23.52±16.03)kg C/m2、(21.75±6.60)kg C/m2,然而火干扰对两种森林沼泽土壤碳储量(0—50 cm)影响不显著。研究结果可为我国东北开展森林湿地计划火烧和碳管理提供理论依据。  相似文献   

15.
Carbon sequestration in freshwater wetlands in Costa Rica and Botswana   总被引:1,自引:0,他引:1  
Tropical wetlands are typically productive ecosystems that can introduce large amounts of carbon into the soil. However, high temperatures and seasonal water availability can hinder the ability of wetland soils to sequester carbon efficiently. We determined the carbon sequestration rate of 12 wetland communities in four different tropical wetlands—an isolated depressional wetland in a rainforest, and a slow flowing rainforest swamp, a riverine flow-through wetland with a marked wet and dry season, a seasonal floodplain of an inland delta—with the intention of finding conditions that favor soil carbon accumulation in tropical wetlands. Triplicate soil cores were extracted in these communities and analyzed for total carbon content to determine the wetland soil carbon pool. We found that the humid tropic wetlands had greater carbon content (P ≤ 0.05) than the tropical dry ones (96.5 and 34.8 g C kg?1, respectively). While the dry tropic wetlands had similar sequestration rates (63 ± 10 g Cm?2 y?1 on average), the humid tropic ones differed significantly (P < 0.001), with high rates in a slow-flowing slough (306 ± 77 g Cm?2 y?1) and low rates in a tropical rain forest depressional wetland (84 ± 23 g Cm?2 y?1). The carbon accumulating in all of these wetlands was mostly organic (92–100%). These results suggest the importance of differentiating between types of wetland communities and their hydrology when estimating overall rates at which tropical wetlands sequester carbon, and the need to include tropical wetland carbon sequestration in global carbon budgets.  相似文献   

16.
The ongoing and projected warming in the northern high latitudes (NHL; poleward of 60 °N) may lead to dramatic changes in the terrestrial carbon cycle. On the one hand, warming and increasing atmospheric CO2 concentration stimulate vegetation productivity, taking up CO2. On the other hand, warming accelerates the decomposition of soil organic matter (SOM), releasing carbon into the atmosphere. Here, the NHL terrestrial carbon storage is investigated based on 10 models from the Coupled Carbon Cycle Climate Model Intercomparison Project. Our analysis suggests that the NHL will be a carbon sink of 0.3 ± 0.3 Pg C yr?1 by 2100. The cumulative land organic carbon storage is modeled to increase by 38 ± 20 Pg C over 1901 levels, of which 17 ± 8 Pg C comes from vegetation (43%) and 21 ± 16 Pg C from the soil (8%). Both CO2 fertilization and warming enhance vegetation growth in the NHL. Although the intense warming there enhances SOM decomposition, soil organic carbon (SOC) storage continues to increase in the 21st century. This is because higher vegetation productivity leads to more turnover (litterfall) into the soil, a process that has received relatively little attention. However, the projected growth rate of SOC begins to level off after 2060 when SOM decomposition accelerates at high temperature and then catches up with the increasing input from vegetation turnover. Such competing mechanisms may lead to a switch of the NHL SOC pool from a sink to a source after 2100 under more intense warming, but large uncertainty exists due to our incomplete understanding of processes such as the strength of the CO2 fertilization effect, permafrost, and the role of soil moisture. Unlike the CO2 fertilization effect that enhances vegetation productivity across the world, global warming increases the productivity at high latitudes but tends to reduce it in the tropics and mid‐latitudes. These effects are further enhanced as a result of positive carbon cycle–climate feedbacks due to additional CO2 and warming.  相似文献   

17.
A large carbon pool and small sink in boreal Holocene lake sediments   总被引:5,自引:0,他引:5  
Model‐based estimates suggest that lake sediments may be a significant, long‐term sink for organic carbon (C) at regional to global scales. These models have used various approaches to predict sediment storage at broad scales from very limited data sets. Here, we report a large‐scale direct assessment of the standing stock and sedimentation rate of C for a representative set of lakes in Finland. The 122 lakes were selected from the statistically selected Nordic Lake Survey database, they cover the entire country and the water quality represents the average lake water quality in Finland. Unlike all prior estimates, these data use sediment cores that comprise the entire sediment record. The data show that within Finland, aquatic ecosystems contain the second largest areal C stocks (19 kg C m?2) after peatlands (72 kg C m?2), and exceed by significant amounts stocks in the forest soil (uppermost 75cm; 7.2 kg C m?2) and woody biomass (3.4 kg C m?2). Kauppi et al. (1997). The Finnish estimate extrapolated over the boreal region gives a total C pool in lakes 19–27 Pg C, significantly lower than the previous model‐based estimates.  相似文献   

18.
郭绪虎  肖德荣  田昆  余红忠 《生态学报》2013,33(5):1425-1432
选取滇西北高原湿地纳帕海湖滨带优势植物茭草(Zizania caducifolia)、水葱(Scirpus tabernaemontani)和刘氏荸荠(Heleocharis liouana),研究其生物量及其凋落物分解特征,结果表明:水葱、茭草、刘氏荸荠为纳帕海湿地湖滨带单优植物群落,均具有较高的地上生物量,不同植物群落地上生物量不同,其中,茭草地上生物量(853.6±58.2)g·m-2·a-1显著高于水葱(730.7±7.8)g·m-2·a-1与刘氏荸荠(338.9±32.6) g·m-2·a-1的地上生物量.3种植物群落凋落物分解速率不同、并随月平均气温升高均呈增加的趋势,其中,刘氏荸荠分解速率k值最大(0.067±0.0026)、茭草(0.062±0.0072)其次、水葱最小(0.039±0.0062).凋落物经过1年的分解,水葱、茭草和刘氏荸荠凋落物存留率分别为(62.0±8.8)%、(47.5±9.0)%和(44.5±7.9)%.综合3种湖滨带植物地上生物量与凋落物年分解,水葱地上生物量年存留量(453.1±4.9)g·m-2·a-1显著高于茭草(405.4±27.7)g·m-2·a-1和刘氏荸荠(150.9±14.5) g·m-2·a-1.研究进一步表明滇西北高原湿地湖滨带植物具有极高的生物量存留率,成为该类型湿地生态系统碳汇功能的基础,其碳汇过程及其贡献率需要进一步深入研究.  相似文献   

19.
Zhang F W  Liu A H  Li Y N  Zhao L  Wang Q X  Du M Y 《农业工程》2008,28(2):453-462
Using the CO2 flux data measured by the eddy covariance method in the northeast of Qinghai-Tibetan Plateau in 2005, we analyzed the carbon flux dynamics in relation to meteorological and biotic factors. The results showed that the alpine wetland ecosystem was the carbon source, and it emitted 316.02 gCO2 · m−2 to atmosphere in 2005 with 230.16 gCO2 · m−2 absorbed in the growing season from May to September and 546.18 gCO2 · m−2 released in the non-growing season from January to April and from October to December. The maximum of the averaged daily CO2 uptake rates and release rates was (0.45 ± 0.0012) mgCO2 · m−2 · s−1 (Mean ± SE) in July and (0.22 ± 0.0090) mgCO2 · m−2 · s−1 in August, respectively. The averaged diurnal variation showed a single-peaked pattern in the growing season, but exhibited very small fluctuation in the non-growing season. Net ecosystem exchange (NEE) and gross primary production (GPP) were all correlated with some meteorological factors, and they showed a negatively linear correlation with aboveground biomass, while a positive correlation existed between the ecosystem respiration (Res) and those factors.  相似文献   

20.
Natural wetlands are critically important to global change because of their role in modulating atmospheric concentrations of CO2, CH4, and N2O. One 4‐year continuous observation was conducted to examine the exchanges of CH4 and N2O between three wetland ecosystems and the atmosphere as well as the ecosystem respiration in the Sanjiang Plain in Northeastern China. From 2002 to 2005, the mean annual budgets of CH4 and N2O, and ecosystem respiration were 39.40 ± 6.99 g C m?2 yr?1, 0.124 ± 0.05 g N m?2 yr?1, and 513.55 ± 8.58 g C m?2 yr?1 for permanently inundated wetland; 4.36 ± 1.79 g C m?2 yr?1, 0.11 ± 0.12 g N m?2 yr?1, and 880.50 ± 71.72 g C m?2 yr?1 for seasonally inundated wetland; and 0.21 ± 0.1 g C m?2 yr?1, 0.28 ± 0.11 g N m?2 yr?1, and 1212.83 ± 191.98 g C m?2 yr?1 for shrub swamp. The substantial interannual variation of gas fluxes was due to the significant climatic variability which underscores the importance of long‐term continuous observations. The apparent seasonal pattern of gas emissions associated with a significant relationship of gas fluxes to air temperature implied the potential effect of global warming on greenhouse gas emissions from natural wetlands. The budgets of CH4 and N2O fluxes and ecosystem respiration were highly variable among three wetland types, which suggest the uncertainties in previous studies in which all kinds of natural wetlands were treated as one or two functional types. New classification of global natural wetlands in more detailed level is highly expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号