首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment.

Methodology/Principal Findings

We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing.

Conclusions/Significance

Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation.  相似文献   

2.
Increases in stand-replacing wildfires in the western USA have widespread implications for ecosystem carbon (C) cycling, in part because the decomposition of trees killed by fire can be a long-term source of CO2 to the atmosphere. Knowledge of the composition and function of decay fungi communities may be important to understanding how wildfire alters C cycles. We assessed the effects of stand-replacing wildfires on the community structure of wood-inhabiting fungi along a 32-yr wildfire chronosequence. Fire was associated with low species richness for up to 4 yr and altered species composition relative to unburned forest for the length of the chronosequence. A laboratory incubation demonstrated that species varied in their capacity to decompose wood; Hypocrea lixii, an indicator of the most recent burn, caused the lowest decomposition rate. Our results show that stand-replacing wildfires have long-term effects on fungal communities, which may have consequences for wood decomposition and C cycling.  相似文献   

3.
Community‐level climate change indicators have been proposed to appraise the impact of global warming on community composition. However, non‐climate factors may also critically influence species distribution and biological community assembly. The aim of this paper was to study how fire–vegetation dynamics can modify our ability to predict the impact of climate change on bird communities, as described through a widely‐used climate change indicator: the community thermal index (CTI). Potential changes in bird species assemblage were predicted using the spatially‐explicit species assemblage modelling framework – SESAM – that applies successive filters to constrained predictions of richness and composition obtained by stacking species distribution models that hierarchically integrate climate change and wildfire–vegetation dynamics. We forecasted future values of CTI between current conditions and 2050, across a wide range of fire–vegetation and climate change scenarios. Fire–vegetation dynamics were simulated for Catalonia (Mediterranean basin) using a process‐based model that reproduces the spatial interaction between wildfire, vegetation dynamics and wildfire management under two IPCC climate scenarios. Net increases in CTI caused by the concomitant impact of climate warming and an increasingly severe wildfire regime were predicted. However, the overall increase in the CTI could be partially counterbalanced by forest expansion via land abandonment and efficient wildfire suppression policies. CTI is thus strongly dependent on complex interactions between climate change and fire–vegetation dynamics. The potential impacts on bird communities may be underestimated if an overestimation of richness is predicted but not constrained. Our findings highlight the need to explicitly incorporate these interactions when using indicators to interpret and forecast climate change impact in dynamic ecosystems. In fire‐prone systems, wildfire management and land‐use policies can potentially offset or heighten the effects of climate change on biological communities, offering an opportunity to address the impact of global climate change proactively.  相似文献   

4.
Wildfire refugia (unburnt patches within large wildfires) are important for the persistence of fire‐sensitive species across forested landscapes globally. A key challenge is to identify the factors that determine the distribution of fire refugia across space and time. In particular, determining the relative influence of climatic and landscape factors is important in order to understand likely changes in the distribution of wildfire refugia under future climates. Here, we examine the relative effect of weather (i.e. fire weather, drought severity) and landscape features (i.e. topography, fuel age, vegetation type) on the occurrence of fire refugia across 26 large wildfires in south‐eastern Australia. Fire weather and drought severity were the primary drivers of the occurrence of fire refugia, moderating the effect of landscape attributes. Unburnt patches rarely occurred under ‘severe’ fire weather, irrespective of drought severity, topography, fuels or vegetation community. The influence of drought severity and landscape factors played out most strongly under ‘moderate’ fire weather. In mesic forests, fire refugia were linked to variables that affect fuel moisture, whereby the occurrence of unburnt patches decreased with increasing drought conditions and were associated with more mesic topographic locations (i.e. gullies, pole‐facing aspects) and vegetation communities (i.e. closed‐forest). In dry forest, the occurrence of refugia was responsive to fuel age, being associated with recently burnt areas (<5 years since fire). Overall, these results show that increased severity of fire weather and increased drought conditions, both predicted under future climate scenarios, are likely to lead to a reduction of wildfire refugia across forests of southern Australia. Protection of topographic areas able to provide long‐term fire refugia will be an important step towards maintaining the ecological integrity of forests under future climate change.  相似文献   

5.

Aim

Despite an increasing number of studies highlighting the impacts of climate change on boreal species, the main factors that will drive changes in species assemblages remain ambiguous. We study how species community composition would change following anthropogenic and natural disturbances. We determine the main drivers of assemblage dissimilarity for bird and beetle communities.

Location

Côte-Nord, Québec, Canada.

Methods

We quantify two climate-induced pathways based on direct and indirect effects on species occurrence under different forest harvest management scenarios. The direct climate effects illustrate the impact of climate variables while the indirect effects are reflected through habitat-based climate change. We develop empirical models to predict the distribution of 127 and 108 species under climate-habitat and habitat-only models, respectively, over the next century. We analyse the regional and the latitudinal species assemblage dissimilarity by decomposing it into balanced variation in species occupancy and occurrence and occupancy and occurrence gradient.

Results

Both pathways increased dissimilarity in species assemblage. At the regional scale, both effects have an impact on decreasing the number of winning species. Yet, responses are much larger in magnitude under mixed climate effects. Regional assemblage dissimilarity reached 0.77 and 0.69 under mixed effects versus 0.09 and 0.10 under indirect effects for beetles and birds, respectively, between RCP8.5 and baseline climate scenarios when considering forest harvesting. Latitudinally, assemblage dissimilarity increased following the climate conditions pattern.

Main conclusions

The two pathways are complementary and alter biodiversity, mainly caused by species turnover. Yet, responses are much larger in magnitude under mixed climate effects. Therefore, inclusion of climatic variables considers aspects other than just those related to forest landscapes, such as life cycles of animal species. Moreover, we expect differences in occupancy between the two studied taxa. This could indicate the potential range of change in boreal species concerning novel environmental conditions.  相似文献   

6.

Aim

Human‐driven impacts constantly threat amphibians, even in largely protected regions such as the Amazon. The Brazilian Amazon is home to a great diversity of amphibians, several of them currently threatened with extinction. We investigated how climate change, deforestation and establishment of hydroelectric dams could affect the geographic distribution of Amazonian amphibians by 2030 and midcentury.

Location

The Brazilian Amazon.

Methods

We overlapped the geographic distribution of 255 species with the location of hydroelectric dams, models of deforestation and climate change scenarios for the future.

Results

We found that nearly 67% of all species and 54% of species with high degree of endemism within the Legal Brazilian Amazon would lose habitats due to the hydroelectric overlapping. In addition, deforestation is also a potential threat to amphibians, but had a smaller impact compared to the likely changes in climate. The largest potential range loss would be caused by the likely increase in temperature. We found that five amphibian families would have at least half of the species with over 50% of potential distribution range within the Legal Brazilian Amazon limits threatened by climate change between 2030 and 2050.

Main conclusions

Amphibians in the Amazon are highly vulnerable to climate change, which may cause, directly or indirectly, deleterious biological changes for the group. Under modelled scenarios, the Brazilian Government needs to plan for the development of the Amazon prioritizing landscape changes of low environmental impact and economic development to ensure that such changes do not cause major impacts on amphibian species while reducing the emission of greenhouse gases.
  相似文献   

7.
After decades of suppression, fire is returning to forests of the western United States through wildfires and prescribed burns. These fires may aid restoration of vegetation structure and processes, which could improve conditions for wildlife species and reduce severe wildfire risk. Understanding response of wildlife species to fires is essential to forest restoration because contemporary fires may not have the same effects as historical fires. Recent fires in the Chiricahua Mountains of southeastern Arizona provided opportunity to investigate long‐term effects of burn severity on habitat selection of a native wildlife species. We surveyed burned forest for squirrel feeding sign and related vegetation characteristics to frequency of feeding sign occurrence. We used radio‐telemetry within fire‐influenced forest to determine home ranges of Mexican fox squirrels, Sciurus nayaritensis chiricahuae, and compared vegetation characteristics within home ranges to random areas available to squirrels throughout burned conifer forest. Squirrels fed in forest with open understory and closed canopy cover. Vegetation within home ranges was characterized by lower understory density, consistent with the effects of low‐severity fire, and larger trees than random locations. Our results suggest that return of low‐severity fire can help restore habitat for Mexican fox squirrels and other native wildlife species with similar habitat affiliations in forests with a historical regime of frequent, low‐severity fire. Our study contributes to an understanding of the role and impact of fire in forest ecosystems and the implications for forest restoration as fire returns to the region.  相似文献   

8.
Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species‐specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species‐specific, spatially explicit forest landscape model (LANDIS‐II) to evaluate forest response to climate–wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium–high emission scenario (A2) in combination with corresponding climate‐specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought‐tolerant species over less drought‐tolerant species relative to baseline, and this change was greatest at mid‐elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape‐level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome‐based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant species are no longer able to establish. The potential exists for substantial community composition change and forest simplification beyond this century.  相似文献   

9.

Aim

Life in mountains is associated with multiple features that increase the risk of demographic collapses in populations – small geographic ranges, short breeding seasons, specialization to harsh climates – leading to the hypothesis that extinction risk is exacerbated in species inhabiting higher elevations. Here, we implement the first test of this hypothesis across the amphibian tree of life – the tetrapods with the largest proportion of montane species, and nature's most threatened animals.

Location

Global.

Time Period

Present.

Major Taxa Studied

Class Amphibia.

Methods

We collated a dataset spanning 8042 species from across all three amphibian orders (Anura, Caudata and Gymnophiona). We preformed phylogenetic logistic regressions to test the predictions that extinction risk increases with elevation, and whether this effect is caused by factors previously hypothesised to drive high-elevation declines, including restrictions on species' geographic ranges, variation in their life histories and the presence of infectious disease.

Results

Globally, extinction risk increases towards higher elevations. At order-level, this relationship holds for frogs and salamanders. Even when controlling for geographic range size, life histories and infectious disease, extinction risk increases with elevation for amphibians combined and frogs globally, and in the Americas. In contrast, whereas extinction risk is greater among high-elevation Eurasian amphibians, this relationship is explained by larger body sizes and lower fecundity.

Main Conclusions

Our analyses indicate that after considering factors previously thought to explain the increase in extinction risk towards higher elevations (e.g., geographic range size, disease), elevation remains a significant predictor of amphibian extinction risk. Given that the only available tests of this hypothesis in other tetrapods (birds and reptiles) conflict with our findings, we suggest that physiological or life-history features of amphibians may explain this observed phenomenon.  相似文献   

10.

Aim

The African Guineo-Congolian (GC) region is a global biodiversity hotspot with high species endemism, bioclimatic heterogeneity, complex landscape features, and multiple biogeographic barriers. Bioclimatic and geographic variables influence global patterns of species richness and endemism, but their relative importance varies across taxa and regions and is poorly understood for many faunas. Here, we test the hypothesis that turnover in endemic amphibians of the GC biodiversity hotspot is influenced mainly by the geographic distance between grid cells and secondarily by rainfall- and temperature-related variables.

Location

West and Central Africa.

Major Taxa Studied

Amphibians.

Methods

We compiled species-occurrence records via field sampling, online databases, and taxonomic literature. Our study used 1205 unique georeferenced records of 222 amphibian species endemic to the GC region. Patterns of species richness were mapped onto a grid with a spatial resolution of 0.5° × 0.5°. We estimated weighted endemism and tested whether endemism was higher than the expected species richness (randomization test). We quantified species turnover using generalized dissimilarity modelling to evaluate the processes underlying observed patterns of species richness in GC endemic amphibians. We explored bioregionalization using agglomerative hierarchical clustering based on the unweighted pair group method with arithmetic averages.

Results

We identified seven areas within the lower GC region – forests in Cameroon, Gabon, Southern Nigeria, Equatorial Guinea, Republic of Congo, Democratic Republic of Congo, and Cote d'Ivoire – as having high species richness of endemic amphibians. The randomization test returned four major areas of significant weighted endemism: Nigeria-Cameroon mountains, forest regions of the Democratic Republic of Congo, Cote d'Ivoire, and Ghana. Our analysis revealed five bioregions for amphibian endemism, four of which were located within the lower Guineo-Congolian forest. Species turnover was strongly related to the geographic distance between grid cells; contributing bioclimatic variables included precipitation of the warmest quarter, mean temperature of the wettest quarter, and mean diurnal temperature range.

Main Conclusions

Our results indicate that geographic distance between grid cells is the primary determinant of turnover in GC endemic amphibians, with secondary but significant effects of rainfall- and temperature-related variables. Our study identifies key areas of endemic amphibian richness that could be prioritized for conservation actions.  相似文献   

11.
12.
Wildfires are rare in the disturbance history of Hawaiian forests but may increase in prevalence due to invasive species and global climate change. We documented survival rates and adaptations facilitating persistence of native woody species following 2002–2003 wildfires in Hawaii Volcanoes National Park, Hawaii. Fires occurred during an El Niño drought and were ignited by lava flows. They burned across an environmental gradient occupied by two drier shrub-dominated communities and three mesic/wet Metrosideros forest communities. All the 19 native tree, shrub, and tree fern species demonstrated some capacity of postfire persistence. While greater than 95% of the dominant Metrosideros trees were top-killed, more than half survived fires via basal sprouting. Metrosideros trees with diameters >20 cm sprouted in lower percentages than smaller trees. At least 17 of 29 native woody species colonized the postfire environment via seedling establishment. Although the native biota possess adaptations facilitating persistence following wildfire, the presence of highly competitive invasive plants and ungulates will likely alter postfire succession.  相似文献   

13.
Background: Boreal forest understory plant communities are known to be resilient to fire – the species composition of stands after a fire is quite similar to the pre-fire composition. However, we know little about recovery of individual plants within particular locations in forest stands (i.e. plot-level changes) since we usually do not have pre-fire data for plots.

Aims: We wanted to determine whether species recruited into the same or different locations in a Pinus banksiana stand that experienced a severe wildfire.

Methods: We used pre-existing permanent plots to evaluate the cover of understory after an unplanned wildfire.

Results: Across the entire stand nine of 47 species showed a significant change in cover. The largest change in a plant functional group was in the mosses, with all species present before fire being eliminated. There was no change in species diversity or total cover. At the plot level, species composition showed a much greater change. An average of 47% of the species present in a plot before the fire were absent in the same plot after the fire, and the total species turnover in plots was 88% of the species present before the fire. The plots showed a similar shift in species composition.

Conclusions: These results confirm that boreal forest communities show a high degree of resilience to fire, but within a forest stand species will be found in different locations following fire, potentially exposing them to a different set of biotic and abiotic conditions in these new locations.  相似文献   

14.
The effect of wildfire on ecosystem function is gaining interest since climate change is expected to increase fire frequency and intensity in many forest systems. Fire alters the nutritional status of forest ecosystems, affecting ecosystem function and productivity, but further studies evaluating changes in leaf nutrient traits induced by forest wildfires are still needed. We used a 17-year-old Pinus canariensis wildfire chronosequence to elucidate the nature of nutrient limitations in natural and unmanaged pine forest in the Canary Islands. Pine needles were sampled in winter and spring and analysed for N and P concentrations. As expected, we found the lowest leaf N and leaf P in recently burned plots. However, the leaf N:P ratio was higher in burned versus unburned plots, suggesting that the decrease in P availability due to the fire is larger than that of N. For all leaf traits and sampling dates, leaf trait values in burned plots matched those observed in unburned plots 17 years after a fire. The N:P ratio found in P. canariensis needles was one of the lowest values reported in the literature for woody species, and suggests that all pine trees in the chronosequence are unambiguously limited by low N availability. Our results show that these N-limited pine forests retained N more efficiently than P 4 years after a wildfire; however, leaf N recovery is slower than P recovery, suggesting that the mechanisms responsible for pine N limitation operate continuously in these forests.  相似文献   

15.
Spatiotemporal Variations of Fire Frequency in Central Boreal Forest   总被引:1,自引:0,他引:1  
Determination of the direct causal factors controlling wildfires is key to understanding wildfire–vegetation–climate dynamics in a changing climate and for developing sustainable management strategies for biodiversity conservation and maintenance of long-term forest productivity. In this study, we sought to understand how the fire frequency of a large mixedwood forest in the central boreal shield varies as a result of temporal and spatial factors. We reconstructed the fire history of an 11,600-km2 area located in the northwestern boreal forest of Ontario, using archival data of large fires occurring since 1921 and dendrochronological dating for fires prior to 1921. The fire cycle decreased from 295 years for the period of 1820–1920 to approximately 100 years for the period of 1921–2008. Spatially, fire frequency increased with latitude, attributable to higher human activities that have increased fragmentation and fire suppression in the southern portion of the study area. Fire frequency also increased with distance to waterbodies, and was higher on Podzols that were strongly correlated with moderate drainage and coniferous vegetation. The temporal increase of fire frequency in the central region, unlike western and eastern boreal forests where fire frequency has decreased, may be a result of increased warm and dry conditions associated with climate change in central North America, suggesting that the response of wildfire to global climate change may be regionally individualistic. The significant spatial factors we found in this study are in agreement with other wildfire studies, indicating the commonality of the influences by physiographic features and human activities on regional fire regimes across the boreal forest. Overall, wildfire in the central boreal shield is more frequent than that in the wetter eastern boreal region and less frequent than that in the drier western boreal region, confirming a climatic top-down control on the fire activities of the entire North American boreal forest.  相似文献   

16.

Background

We evaluated the direct and indirect influence of climate, land use, phylogenetic structure, species richness and endemism on the distribution of New World threatened amphibians.

Methodology/Principal Findings

We used the WWF’s New World ecoregions, the WWFs amphibian distributional data and the IUCN Red List Categories to obtain the number of threatened species per ecoregion. We analyzed three different scenarios urgent, moderate, and the most inclusive scenario. Using path analysis we evaluated the direct and indirect effects of climate, type of land use, phylogenetic structure, richness and endemism on the number of threatened amphibians in New World ecoregions. In all scenarios we found strong support for direct influences of endemism, the cover of villages and species richness on the number of threatened species in each ecoregion. The proportion of wild area had indirect effects in the moderate and the most inclusive scenario. Phylogenetic composition was important in determining the species richness and endemism in each ecoregion. Climate variables had complex and indirect effects on the number of threatened species.

Conclusion/Significance

Land use has a more direct influence than climate in determining the distribution of New World threatened amphibians. Independently of the scenario analyzed, the main variables influencing the distribution of threatened amphibians were consistent, with endemism having the largest magnitude path coefficient. The importance of phylogenetic composition could indicate that some clades may be more threatened than others, and their presence increases the number of threatened species. Our results highlight the importance of man-made land transformation, which is a local variable, as a critical factor underlying the distribution of threatened amphibians at a biogeographic scale.  相似文献   

17.
全球变化背景下野火研究进展   总被引:5,自引:2,他引:3  
野火是森林和多种植被生态系统面临的最重要自然干扰,也是一种重要的自然灾害;而人类活动已在全球范围内显著影响了野火的发生与分布,因此野火成为全球变化及其环境影响研究的关键议题之一。本文基于国际野火研究的文献搜索和统计分析,从野火的观测-评估-预警技术、野火时空格局研究、气候变化和人类活动对野火的影响、野火的环境-生态-进化效应等方面入手,综述了自21世纪以来的国际野火研究进展。概括起来,遥感技术的快速发展,推动了野火观测的时空分辨率不断提高,对野火时空格局的刻画从单一因子向多重指标的火烧体系评估转变。气候变化在某些区域已经显著影响了野火的发生频率,预计随着全球变暖野火风险将进一步加大,并且极端大火的发生机制和生态影响越来越受到关注。人类活动一方面通过增加火源提高了野火频率,另一方面又通过提高生态系统管理的强度、扑救火灾以及降低可燃物的连通性抑制了野火的发生。植被在长期演化过程中形成了一系列适应火的功能机制,这些功能属性影响着生态系统对野火的响应,并对火后生态恢复和重建具有科学指导价值。未来野火研究将向跨时空尺度、观测和模拟深度融合、典型机制和大尺度效应相结合的方向发展。  相似文献   

18.
In the Sierra Nevada, distributions of forest tree species are largely controlled by the soil-moisture balance. Changes in temperature or precipitation as a result of increased greenhouse gas concentrations could lead to changes in species distributions. In addition, climatic change could increase the frequency and severity of wildfires. We used a forest gap model developed for Sierra Nevada forests to investigate the potential sensitivity of these forests to climatic change, including a changing fire regime. Fuel moisture influences the fire regime and couples fire to climate. Fires are also affected by fuel loads, which accumulate according to forest structure and composition. These model features were used to investigate the complex interactions between climate, fire, and forest dynamics. Eight hypothetical climate-change scenarios were simulated, including two general circulation model (GCM) predictions of a 2 × CO2 world. The response of forest structure,species composition, and the fire regime to these changes in the climate were examined at four sites across an elevation gradient. Impacts on woody biomass and species composition as a result of climatic change were site specific and depended on the environmental constraints of a site and the environmental tolerances of the tree species simulated. Climatic change altered the fire regime both directly and indirectly. Fire frequency responded directly to climate's influence on fuel moisture, whereas fire extent was affected by changes that occurred in either woody biomass or species composition. The influence of species composition on fuel-bed bulk density was particularly important. Future fires in the Sierra Nevada could be both more frequent and of greater spatial extent if GCM predictions prove true. Received 5 May 1998; accepted 4 November 1998.  相似文献   

19.
Understanding how climate change may influence forest carbon (C) budgets requires knowledge of forest growth relationships with regional climate, long‐term forest succession, and past and future disturbances, such as wildfires and timber harvesting events. We used a landscape‐scale model of forest succession, wildfire, and C dynamics (LANDIS‐II) to evaluate the effects of a changing climate (A2 and B1 IPCC emissions; Geophysical Fluid Dynamics Laboratory General Circulation Models) on total forest C, tree species composition, and wildfire dynamics in the Lake Tahoe Basin, California, and Nevada. The independent effects of temperature and precipitation were assessed within and among climate models. Results highlight the importance of modeling forest succession and stand development processes at the landscape scale for understanding the C cycle. Due primarily to landscape legacy effects of historic logging of the Comstock Era in the late 1880s, C sequestration may continue throughout the current century, and the forest will remain a C sink (Net Ecosystem Carbon Balance > 0), regardless of climate regime. Climate change caused increases in temperatures limited simulated C sequestration potential because of augmented fire activity and reduced establishment ability of subalpine and upper montane trees. Higher temperatures influenced forest response more than reduced precipitation. As the forest reached its potential steady state, the forest could become C neutral or a C source, and climate change could accelerate this transition. The future of forest ecosystem C cycling in many forested systems worldwide may depend more on major disturbances and landscape legacies related to land use than on projected climate change alone.  相似文献   

20.
《Palaeoworld》2021,30(3):551-561
Yunnan at southeastern margin of the Tibetan Plateau is subject to frequent wildfires each year, while its wildfire history remains poorly known due to the lack of studies on palaeofire in the region. In this study, we report a local fire from the late Pliocene of northwestern Yunnan, based on macroscopic fossil charcoals recovered from the Sanying Formation of Lanping Basin. These sedimentary charcoals exhibit silky lustre in the light and complete homogenization of adjacent xylem cell walls, characterizing the result of incomplete combustion during the late Pliocene. Our preliminary taxonomic analysis indicates that the studied charcoals are dominated by conifers, suggesting higher importance of coniferous elements as fuel sources in the fire. We assert a conifer-rich source forest for the fire event by also considering plant remains of other types, i.e., needle fragments, small shoots, fruits and seeds, from the same sampling layer. Since conifers are commonly prone to wildfires, this type of forest might have a close link with the fire by serving highly flammable fuels. We consider that the regionally seasonal drought during the late Pliocene might also take responsibility, because in the dry season forest fuels such as ground litter would become ignitable after intensive desiccation. As modern wildfires in northwestern Yunnan are closely coupled with conifer-dominant forests and seasonally dry climate, we assume this correlation might have been established by the late Pliocene. Our study may bring attention to potential roles of wildfire on local and/or regional flora and vegetation evolution in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号