首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alcohol use disorder (AUD) and related health conditions result from a complex interaction of genetic, neural and environmental factors, with differential impacts across the lifespan. From its inception, the Collaborative Study on the Genetics of Alcoholism (COGA) has focused on the importance of brain function as it relates to the risk and consequences of alcohol use and AUD, through the examination of noninvasively recorded brain electrical activity and neuropsychological tests. COGA's sophisticated neurophysiological and neuropsychological measures, together with rich longitudinal, multi-modal family data, have allowed us to disentangle brain-related risk and resilience factors from the consequences of prolonged and heavy alcohol use in the context of genomic and social-environmental influences over the lifespan. COGA has led the field in identifying genetic variation associated with brain functioning, which has advanced the understanding of how genomic risk affects AUD and related disorders. To date, the COGA study has amassed brain function data on over 9871 participants, 7837 with data at more than one time point, and with notable diversity in terms of age (from 7 to 97), gender (52% female), and self-reported race and ethnicity (28% Black, 9% Hispanic). These data are available to the research community through several mechanisms, including directly through the NIAAA, through dbGAP, and in collaboration with COGA investigators. In this review, we provide an overview of COGA's data collection methods and specific brain function measures assessed, and showcase the utility, significance, and contributions these data have made to our understanding of AUD and related disorders, highlighting COGA research findings.  相似文献   

2.
3.
4.
The collaborative study on the genetics of alcoholism (COGA) is a multi-site, multidisciplinary project with the goal of identifying how genes are involved in alcohol use disorder and related outcomes, and characterizing how genetic risk unfolds across development and in conjunction with the environment and brain function. COGA is a multi-generational family-based study in which probands were recruited through alcohol treatment centers, along with a set of community comparison families. Nearly 18,000 individuals from >2200 families have been assessed over a period of over 30 years with a rich phenotypic battery that includes semi-structured psychiatric interviews and questionnaire measures, along with DNA collection and electrophysiological data on a large subset. Participants range in age from 7 to 97, with many having longitudinal assessments, providing a valuable opportunity to study alcohol use and problems across the lifespan. Here we provide an overview of data collection methods for the COGA sample, and details about sample characteristics and comorbidity. We also review key research findings that have emerged from analyses of the COGA data. COGA data are available broadly to researchers, and we hope this overview will encourage further collaboration and use of these data to advance the field.  相似文献   

5.
Genome‐wide association studies (GWAS) have revealed hundreds of genetic loci associated with the vulnerability to major psychiatric disorders, and post‐GWAS analyses have shown substantial genetic correlations among these disorders. This evidence supports the existence of a higher‐order structure of psychopathology at both the genetic and phenotypic levels. Despite recent efforts by collaborative consortia such as the Hierarchical Taxonomy of Psychopathology (HiTOP), this structure remains unclear. In this study, we tested multiple alternative structural models of psychopathology at the genomic level, using the genetic correlations among fourteen psychiatric disorders and related psychological traits estimated from GWAS summary statistics. The best‐fitting model included four correlated higher‐order factors – externalizing, internalizing, thought problems, and neurodevelopmental disorders – which showed distinct patterns of genetic correlations with external validity variables and accounted for substantial genetic variance in their constituent disorders. A bifactor model including a general factor of psychopathology as well as the four specific factors fit worse than the above model. Several model modifications were tested to explore the placement of some disorders – such as bipolar disorder, obsessive‐compulsive disorder, and eating disorders – within the broader psychopathology structure. The best‐fitting model indicated that eating disorders and obsessive‐compulsive disorder, on the one hand, and bipolar disorder and schizophrenia, on the other, load together on the same thought problems factor. These findings provide support for several of the HiTOP higher‐order dimensions and suggest a similar structure of psychopathology at the genomic and phenotypic levels.  相似文献   

6.
A major focus of modern human genetics has been the search for genetic variations that contribute to human disease. These studies originated in families and used linkage methods as a primary analytical tool. With continued technical improvements, these family-based linkage studies have been very powerful in identifying genes contributing to monogenic disorders. When these methods were applied to disorders with complex, non-Mendelian patterns of inheritance they largely failed. The development of effective capabilities for Genome Wide Association Studies (GWAS) relegated family-based studies to a peripheral role in human genetics research. Despite the remarkable record of GWAS discoveries, common variations identified in GWAS account for a limited (frequently less than 10%) proportion of the heritable risk of qualitative traits or variance of quantitative traits. Next generation sequencing is facilitating a re-examination of family-based methods with surprising and intriguing results. We propose that rare variants of large effect underlie many linkage peaks, including complex quantitative phenotypes, and review the issues underlying this proposed basis for complex traits.  相似文献   

7.
Genome-wide association studies (GWAS) have rapidly become a standard method for disease gene discovery. A substantial number of recent GWAS indicate that for most disorders, only a few common variants are implicated and the associated SNPs explain only a small fraction of the genetic risk. This review is written from the viewpoint that findings from the GWAS provide preliminary genetic information that is available for additional analysis by statistical procedures that accumulate evidence, and that these secondary analyses are very likely to provide valuable information that will help prioritize the strongest constellations of results. We review and discuss three analytic methods to combine preliminary GWAS statistics to identify genes, alleles, and pathways for deeper investigations. Meta-analysis seeks to pool information from multiple GWAS to increase the chances of finding true positives among the false positives and provides a way to combine associations across GWAS, even when the original data are unavailable. Testing for epistasis within a single GWAS study can identify the stronger results that are revealed when genes interact. Pathway analysis of GWAS results is used to prioritize genes and pathways within a biological context. Following a GWAS, association results can be assigned to pathways and tested in aggregate with computational tools and pathway databases. Reviews of published methods with recommendations for their application are provided within the framework for each approach.  相似文献   

8.
Genome-wide association studies (GWAS) using family data involve association analyses between hundreds of thousands of markers and a trait for a large number of related individuals. The correlations among relatives bring statistical and computational challenges when performing these large-scale association analyses. Recently, several rapid methods accounting for both within- and between-family variation have been proposed. However, these techniques mostly model the phenotypic similarities in terms of genetic relatedness. The familial resemblances in many family-based studies such as twin studies are not only due to the genetic relatedness, but also derive from shared environmental effects and assortative mating. In this paper, we propose 2 generalized least squares (GLS) models for rapid association analysis of family-based GWAS, which accommodate both genetic and environmental contributions to familial resemblance. In our first model, we estimated the joint genetic and environmental variations. In our second model, we estimated the genetic and environmental components separately. Through simulation studies, we demonstrated that our proposed approaches are more powerful and computationally efficient than a number of existing methods are. We show that estimating the residual variance-covariance matrix in the GLS models without SNP effects does not lead to an appreciable bias in the p values as long as the SNP effect is small (i.e. accounting for no more than 1% of trait variance).  相似文献   

9.
Despite a significant genetic contribution to alcohol dependence (AD), few AD-risk genes have been identified to date. In the current study, we aimed to integrate genome-wide association studies (GWASs) and human protein interaction networks to investigate whether a subnetwork of genes whose protein products interact with one another might collectively contribute to AD. By using two discovery GWAS data sets of the Study of Addiction: Genetics and Environment (SAGE) and the Collaborative Study on the Genetics of Alcoholism (COGA), we identified a subnetwork of 39 genes that not only was enriched for genes associated with AD, but also collectively associated with AD in both European Americans (p < 0.0001) and African Americans (p = 0.0008). We replicated the association of the gene subnetwork with AD in three independent samples, including two samples of European descent (p = 0.001 and p = 0.006) and one sample of African descent (p = 0.0069). To evaluate whether the significant associations are likely to be false-positive findings and to ascertain their specificity, we examined the same gene subnetwork in three other human complex disorders (bipolar disorder, major depressive disorder, and type 2 diabetes) and found no significant associations. Functional enrichment analysis revealed that the gene subnetwork was enriched for genes involved in cation transport, synaptic transmission, and transmission of nerve impulses, all of which are biologically meaningful processes that may underlie the risk for AD. In conclusion, we identified a gene subnetwork underlying AD that is biologically meaningful and highly reproducible, providing important clues for future research into AD etiology and treatment.  相似文献   

10.
An important task of human genetics studies is to predict accurately disease risks in individuals based on genetic markers, which allows for identifying individuals at high disease risks, and facilitating their disease treatment and prevention. Although hundreds of genome-wide association studies (GWAS) have been conducted on many complex human traits in recent years, there has been only limited success in translating these GWAS data into clinically useful risk prediction models. The predictive capability of GWAS data is largely bottlenecked by the available training sample size due to the presence of numerous variants carrying only small to modest effects. Recent studies have shown that different human traits may share common genetic bases. Therefore, an attractive strategy to increase the training sample size and hence improve the prediction accuracy is to integrate data from genetically correlated phenotypes. Yet, the utility of genetic correlation in risk prediction has not been explored in the literature. In this paper, we analyzed GWAS data for bipolar and related disorders and schizophrenia with a bivariate ridge regression method, and found that jointly predicting the two phenotypes could substantially increase prediction accuracy as measured by the area under the receiver operating characteristic curve. We also found similar prediction accuracy improvements when we jointly analyzed GWAS data for Crohn’s disease and ulcerative colitis. The empirical observations were substantiated through our comprehensive simulation studies, suggesting that a gain in prediction accuracy can be obtained by combining phenotypes with relatively high genetic correlations. Through both real data and simulation studies, we demonstrated pleiotropy can be leveraged as a valuable asset that opens up a new opportunity to improve genetic risk prediction in the future.  相似文献   

11.
Genetic association studies require that the genotype data from a given person can be correctly linked to the phenotype data from the same person. However, sample misidentification errors sometimes happen, whereby the link becomes invalid for some of the subjects in a study. This can have substantial consequences in terms of power to detect truly associated variants. In family-based studies, Mendelian inconsistencies can be used to detect sample misidentification. Genome-wide association studies (GWAS), however, typically use unrelated individuals, making error detection more problematic. Here we present a method for identifying potential sample misidentifications in GWAS and other genetic association studies building on ideas from forensic sciences. A widely used ad-hoc method for error detection is to check if the sex of an individual matches its X-linked genotype. We generalize this idea to less stringent associations between known genotypes and phenotypes, and show that if several known associations are combined, the power to detect misidentifications increases substantially. Individuals with an unlikely set of phenotypes given their genotypes are flagged as potential errors. We provide analytical and simulation results comparing the odds that the genotype and phenotype are both from the same individual for different numbers of available genotype-p henotype associations and for different information content of the associations. Our method has good sensitivity and specificity with as few as ten moderately informative genotype-phenotype associations. We apply the method to GWAS data from the Danish National Birth Cohort.  相似文献   

12.
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders. Recent studies suggested that calcium channel genes might be involved in the genetic etiology of ASD. CACNA1A, encoding an alpha-1 subunit of voltage-gated calcium channel, has been reported to play an important role in neural development. Previous study detected that a single nucleotide polymorphism (SNP) in CACNA1A confers risk to ASD in Central European population. However, the genetic relationship between autism and CACNA1A in Chinese Han population remains unclear. To explore the association of CACNA1A with autism, we performed a family-based association study. First, we carried out a family-based association test between twelve tagged SNPs and autism in 239 trios. To further confirm the association, the sample size was expanded to 553 trios by recruiting 314 additional trios. In a total of 553 trios, we identified association of rs7249246 and rs12609735 with autism though this would not survive after Bonferroni correction. Our findings suggest that CACNA1A might play a role in the etiology of autism.  相似文献   

13.
14.
Natural genetic variation can have a pronounced influence on human taste perception, which in turn may influence food preference and dietary choice. Genome-wide association studies represent a powerful tool to understand this influence. To help optimize the design of future genome-wide-association studies on human taste perception we have used the well-known TAS2R38-PROP association as a tool to determine the relative power and efficiency of different phenotyping and data-analysis strategies. The results show that the choice of both data collection and data processing schemes can have a very substantial impact on the power to detect genotypic variation that affects chemosensory perception. Based on these results we provide practical guidelines for the design of future GWAS studies on chemosensory phenotypes. Moreover, in addition to the TAS2R38 gene past studies have implicated a number of other genetic loci to affect taste sensitivity to PROP and the related bitter compound PTC. None of these other locations showed genome-wide significant associations in our study. To facilitate further, target-gene driven, studies on PROP taste perception we provide the genome-wide list of p-values for all SNPs genotyped in the current study.  相似文献   

15.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

16.
Das K  Li J  Wang Z  Tong C  Fu G  Li Y  Xu M  Ahn K  Mauger D  Li R  Wu R 《Human genetics》2011,129(6):629-639
Although genome-wide association studies (GWAS) are widely used to identify the genetic and environmental etiology of a trait, several key issues related to their statistical power and biological relevance have remained unexplored. Here, we describe a novel statistical approach, called functional GWAS or fGWAS, to analyze the genetic control of traits by integrating biological principles of trait formation into the GWAS framework through mathematical and statistical bridges. fGWAS can address many fundamental questions, such as the patterns of genetic control over development, the duration of genetic effects, as well as what causes developmental trajectories to change or stop changing. In statistics, fGWAS displays increased power for gene detection by capitalizing on cumulative phenotypic variation in a longitudinal trait over time and increased robustness for manipulating sparse longitudinal data.  相似文献   

17.
Genome-wide association studies (GWAS) have become a preferred method to identify new genetic susceptibility loci. This technique aims to understanding the molecular etiology of common diseases, but in many cases, it has led to the identification of loci with no obvious biological relevance. Herein, we show that previously unrecognized sequence homologies have caused single-nucleotide polymorphism (SNP) microarrays to incorrectly associate a phenotype to a given locus when in fact the linkage is to another distant locus. Using genetic differences between male and female subjects as a model to study the effect of one specific genomic region on the whole SNP microarray, we provide strong evidence that the use of standard methods for GWAS can be misleading. We suggest a new systematic quality control step in the biological interpretation of previous and future GWAS.  相似文献   

18.
Chen L  Liu N  Wang S  Oh C  Carriero NJ  Zhao H 《BMC genetics》2005,6(Z1):S130
Alcoholism is a complex disease. As with other common diseases, genetic variants underlying alcoholism have been illusive, possibly due to the small effect from each individual susceptible variant, gene x environment and gene x gene interactions and complications in phenotype definition. We conducted association tests, the family-based association tests (FBAT) and the backward haplotype transmission association (BHTA), on the Collaborative Study of the Genetics of Alcoholism (COGA) data provided by Genetic Analysis Workshop (GAW) 14. Efron's local false discovery rate method was applied to control the proportion of false discoveries. For FBAT, we compared the results based on different types of genetic markers (single-nucleotide polymorphisms (SNPs) versus microsatellites) and different phenotype definitions (clinical diagnoses versus electrophysiological phenotypes). Significant association results were found only between SNPs and clinical diagnoses. In contrast, significant results were found only between microsatellites and electrophysiological phenotypes. In addition, we obtained the association results for SNPs and microsatellites using COGA diagnosis as phenotype based on BHTA. In this case, the results for SNPs and microsatellites are more consistent. Compared to FBAT, more significant markers are detected with BHTA.  相似文献   

19.
在过去的几年中,人们应用全基因组关联研究(genomewide association studies,GWAS)对多种人类复杂性疾病及性状进行研究,如糖尿病、肿瘤、心血管疾病、神经精神系统疾病、自身免疫性疾病等,且已经鉴定出大量与之密切相关的遗传变异,为进一步探索人类复杂性疾病的遗传特征提供重要线索。但是,由于影响复杂性疾病的因素较多,许多已发现遗传变异对疾病贡献较小,作用机制尚不清楚,现全基因组关联研究亦存在许多问题。今本文就GWAS在复杂性疾病中的应用做一综述,并就其前景做一展望。  相似文献   

20.
Research on Parkinson’s disease (PD) has made remarkable progress in recent decades, due largely to new genomic technologies, such as high throughput sequencing and microarray analyses. Since the discovery of a linkage of a missense mutation of the α-synuclein (αS) gene to a rare familial dominant form of PD in 1996, positional cloning and characterization of a number of familial PD risk factors have established a hypothesis that aggregation of αS may play a major role in the pathogenesis of PD. Furthermore, dozens of sensitizing alleles related to the disease have been identified by genome wide association studies (GWAS) and meta-GWAS, contributing to a better understanding of the pathological mechanisms of sporadic PD. Thus, the knowledge obtained from the association studies will be valuable for “the personal genome” of PD. Besides summarizing such progress, this paper focuses on the role of microRNAs in the field of PD research, since microRNAs might be promising as a biomarker and as a therapeutic reagent for PD. We further refer to a recent view that neurodegenerative diseases, including PD, coexist with metabolic disorders and are stimulated by type II diabetes, the most common disease among elderly populations. The development of genomic approaches may potentially contribute to therapeutic intervention for PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号