共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The fecundity of the forest tent caterpillar varies considerably across its geographic range. Field data indicate that populations in the southern United States (Gulf States) produce nearly twice as many eggs as females from Canada or the Lake States, with little or no difference in the size of adult females. 2. In controlled rearing experiments, female forest tent caterpillar from the southern United States (Louisiana) had much larger clutch sizes than same sized females from northern populations in Michigan or Manitoba, Canada. Increased fecundity in Louisiana females was achieved through a significant reduction in egg size and a concomitant increase in the allocation of resources to egg production. 3. Comparison of 10 forest tent caterpillar populations spanning a 27° latitudinal gradient, validated the results of detailed comparisons among the three populations above by confirming the strong negative correlation between latitude and clutch size. 4. Neonate forest tent caterpillars from Manitoba were significantly larger than larvae from either Michigan or Louisiana. Michigan larvae were intermediate in size. It is postulated that large neonates are advantageous in thermally limiting environments. More than three times as many degree‐days are available to Louisiana neonates during the first 2 weeks after hatching. A consistently favourable climate during the vulnerable post‐hatching period may have allowed the evolution of larger clutches at the expense of neonate size in southern populations. 相似文献
2.
The influence of a positive correlation between clutch size and offspring fitness on the optimal offspring size 总被引:3,自引:0,他引:3
Mark A. McGinley 《Evolutionary ecology》1989,3(2):150-156
Summary The effect is modeled of a positive relationship between clutch size and offspring fitness on the optimal investment in offspring. In species which meet the assumptions of the model, the model predicts a positive correlation between maternal resource level and offspring size. If larger mothers are able to allocate more resources to offspring, then the model would also predict a positive correlation between maternal size and offspring size when the assumptions of the model are met. Thus, this model may help explain both among and within individual variation in offspring size. When offspring are produced in groups and the number of offspring killed per clutch is limited by predator satiation, offspring in larger clutches may experience a higher probability of survival. Such a life style may be found in animals such as sea turtles. Offspring size is positively correlated with maternal size in some members of this group. 相似文献
3.
Optimal offspring sizes in small litters 总被引:1,自引:0,他引:1
Summary Numerous evolutionary models explore the trade-off between offspring size and offspring number. However, such models often fail when the number of offspring is small because optimal litter size (or litter size at optimal offspring size) may fall between the necessarily integer values for real litters. This paper extends a classic model for optimal investment per offspring to the case of small litters and predicts that range in offspring size and the largest (smallest) offspring size should decline (increase) with increased litter size. Application of the model to egg size data from a poeciliid fish,Gambusia hubbsi, reveals a surprisingly close approximation to the largest offspring size and variation in offspring size at small litter sizes. 相似文献
4.
The fungal cultivar of leaf‐cutter ants produces specific enzymes in response to different plant substrates 下载免费PDF全文
Lily Khadempour Kristin E. Burnum‐Johnson Erin S. Baker Carrie D. Nicora Bobbie‐Jo M. Webb‐Robertson Richard A. White III Matthew E. Monroe Eric L. Huang Richard D. Smith Cameron R. Currie 《Molecular ecology》2016,25(22):5795-5805
Herbivores use symbiotic microbes to help derive energy and nutrients from plant material. Leaf‐cutter ants are a paradigmatic example, cultivating their mutualistic fungus Leucoagaricus gongylophorus on plant biomass that workers forage from a diverse collection of plant species. Here, we investigate the metabolic flexibility of the ants’ fungal cultivar for utilizing different plant biomass. Using feeding experiments and a novel approach in metaproteomics, we examine the enzymatic response of L. gongylophorus to leaves, flowers, oats or a mixture of all three. Across all treatments, our analysis identified and quantified 1766 different fungal proteins, including 161 putative biomass‐degrading enzymes. We found significant differences in the protein profiles in the fungus gardens of subcolonies fed different plant substrates. When provided with leaves or flowers, which contain the majority of their energy as recalcitrant plant polymers, the fungus gardens produced more proteins predicted to break down cellulose: endoglucanase, exoglucanase and β‐glucosidase. Further, the complete metaproteomes for the leaves and flowers treatments were very similar, while the mixed substrate treatment closely resembled the treatment with oats alone. This indicates that when provided a mixture of plant substrates, fungus gardens preferentially break down the simpler, more digestible substrates. This flexible, substrate‐specific enzymatic response of the fungal cultivar allows leaf‐cutter ants to derive energy from a wide range of substrates, which likely contributes to their ability to be dominant generalist herbivores. 相似文献
5.
Cannibalism may cause considerable mortality on juvenile fish and it has been hypothesised that it may exercise selection on offspring size in that larger offspring may enjoy a size refuge. For this to be evolutionarily advantageous the survival of individual offspring must compensate for the reduced fecundity implied by larger offspring size. We develop a model which combines standard assumptions of size‐dependent mortality with adult cannibalism to investigate the potential for cannibalism to act as selective force on offspring size. We find that for this potential to be realised, the mortality due to cannibalism must exceed a threshold value that is a decreasing function of non‐cannibalistic predation intensity, cannibalized size range width and the average cannibalized size. If cannibalism exceeds this threshold, the model predicts evolution of offspring size towards refuges above or below cannibalized size range depending on initial offspring size. Cannibalistic mortality cannot be so great that the population is non‐viable, however, the range of parameter values describing cannibalistic intensity allowed within these boundaries is wide. On this basis, we suggest that cannibalism is a potential mechanism for offspring size selection. 相似文献
6.
Abrupt changes in the composition and function of fungal communities along an environmental gradient in the high Arctic 下载免费PDF全文
Oriol Grau József Geml Aaron Pérez‐Haase Josep M. Ninot Tatiana A. Semenova‐Nelsen Josep Peñuelas 《Molecular ecology》2017,26(18):4798-4810
Fungi play a key role in soil–plant interactions, nutrient cycling and carbon flow and are essential for the functioning of arctic terrestrial ecosystems. Some studies have shown that the composition of fungal communities is highly sensitive to variations in environmental conditions, but little is known about how the conditions control the role of fungal communities (i.e., their ecosystem function). We used DNA metabarcoding to compare taxonomic and functional composition of fungal communities along a gradient of environmental severity in Northeast Greenland. We analysed soil samples from fell fields, heaths and snowbeds, three habitats with very contrasting abiotic conditions. We also assessed within‐habitat differences by comparing three widespread microhabitats (patches with high cover of Dryas, Salix, or bare soil). The data suggest that, along the sampled mesotopographic gradient, the greatest differences in both fungal richness and community composition are observed amongst habitats, while the effect of microhabitat is weaker, although still significant. Furthermore, we found that richness and community composition of fungi are shaped primarily by abiotic factors and to a lesser, though still significant extent, by floristic composition. Along this mesotopographic gradient, environmental severity is strongly correlated with richness in all fungal functional groups: positively in saprotrophic, pathogenic and lichenised fungi, and negatively in ectomycorrhizal and root endophytic fungi. Our results suggest complex interactions amongst functional groups, possibly due to nutrient limitation or competitive exclusion, with potential implications on soil carbon stocks. These findings are important in the light of the environmental changes predicted for the Arctic. 相似文献
7.
Eggs are an immobile, vulnerable stage of development and their success often depends on the oviposition decisions of the mother. Studies show that female animals, and sometimes males, may invest parental resources in order to increase the survival of their offspring. Here, we describe a unique form of parental investment in offspring survival. The seed beetle Mimosestes amicus may lay eggs singly, or may cover eggs with additional egg(s). This egg stacking serves to significantly reduce the mortality of the protected egg from parasitism by the parasitic wasp, Uscana semifumipennis. The smaller top eggs serve only as protective shields; they are inviable, and wasps that develop in them suffer negative fitness consequences. Further, we found egg stacking to be inducible; M. amicus increase the number of stacks they lay when parasitoids are present. However, stacking invokes a cost. When wasps are absent, beetles lay more single eggs, and produce more offspring, highlighting the adaptive value of this extraordinary example of behavioural plasticity in parental investment. 相似文献
8.
Abstract. 1. Clutch size in a leaf‐mining moth, Leucoptera sinuella (Reutti), was examined to determine whether the clutch size in natural populations meets the prediction of an optimal strategy, through comparisons between the optimal clutch sizes for offspring and for a mother. 2. A field experiment revealed that premature leaf abscission, egg dropping, and larval competition were important selective forces in determining the clutch size of this leaf miner on its host plant, Salix miyabeana. Then, optimal clutch size was predicted using the theoretical model of Weis et al. (1983 ), from the data obtained in the field experiment. 3. The model predicts that the clutch size that maximises offspring fitness is two, and that the clutch size that maximises reproductive success of the female varies from two to four, depending on the female's survival rate between oviposition events. The predicted clutch size (two) was identical to the clutch size observed most frequently in the field, assuming > 95% survival rate of females. Suitability of the model of Weis et al. (1983 ) was discussed based on these results. 相似文献
9.
Koichi Tanaka 《Population Ecology》1995,37(2):197-202
Within a population of the web-building spiderAgelena limbata, the weight of the first instar nymphs ranged from 1.187 to 6.559 mg. Both intraclutch and interclutch variation were recorded. The mean weights were different among clutches and the coefficients of variation within a clutch ranged from 3.3 to 29.2%. Variation in the nymphal weight was certainly derived from variation in the egg weight because there was a high correlation between the two weights. Factors affecting interclutch variation in nymphal weight were examined by multiple regression analysis. Nymphal weight was positively correlated with the body size and food conditions of female parents, and negatively correlated with the clutch size. Among these three factors, the food conditions of female parents had the largest apparent effect on the interclutch variation. The results suggest that females with larger body size and more food produce larger offspring, and that there is a trade-off between offspring size and clutch size. Heavier nymphs had larger body size (carapace width) and may have larger energy reserves. Heavier nymphs survived experimental starvation for a significantly longer period. 相似文献
10.
To analyse the effects of current income on the nature of size-number trade-off and optimal offspring size, we developed a model in which offspring grow by absorbing current income and reserves. The offspring continue to grow while the current income is available or the reserves exist, and they cease to grow when the reserves are depleted and the current income ceases. We showed that the size-number trade-off is nonlinear in the region where the number of offspring is smaller than the critical number and linear in the region where the number of offspring is greater than the critical number. In the former region, the reserves are not depleted by the time the current income ceases and the offspring cease to grow when the reserves are depleted, whereas in the latter region, the reserves are depleted before the current income ceases and the offspring production is completed when the current income ceases. The optimal offspring size is the same as that shown in Sakai and Harada (Evolution 55 (2001) 467) if this optimal size is realized in the region of nonlinear trade-off, whereas the optimal offspring size is the same as that shown in Smith and Fretwell (Am. Natur. 108 (1974) 499) if this optimal size is realized in the region of linear trade-off. 相似文献
11.
M. Ben‐Yosef Z. Pasternak E. Jurkevitch B. Yuval 《Journal of evolutionary biology》2014,27(12):2695-2705
Insects are often associated with symbiotic micro‐organisms, which allow them to utilize nutritionally marginal diets. Adult fruit flies (Diptera: Tephritidae) associate with extracellular bacteria (Enterobacteriaceae) that inhabit their digestive tract. These flies obtain nutrients by foraging for plant exudates, honeydew and bird droppings scattered on leaves and fruit – a nutritional niche which offers ample amounts of carbohydrates, but low quantities of available nitrogen. We identified the bacteria resident in the gut of the olive fly (Bactrocera oleae) – a worldwide pest of olives and examined their contribution to nitrogen metabolism in the adult insect. By suppressing bacteria in the gut and monitoring female fecundity, we demonstrate that bacteria contribute essential amino acids and metabolize urea into an available nitrogen source for the fly, thus significantly elevating egg production. In an ecological context, bacteria were found to be beneficial to females subsisting on bird droppings, but not on honeydew – two natural food sources. We suggest that a main gut bacterium (Candidatus Erwinia dacicola) forms an inseparable, essential part of this fly's nutritional ecology. The evolution of this symbiosis has allowed adult flies to utilize food substrates which are low or imbalanced in assimilable nitrogen and thereby to overcome the nitrogen limitations of their natural diet. 相似文献
12.
13.
Jeff Leips Jean M. L. Richardson F. Helen Rodd Joseph Travis 《Evolution; international journal of organic evolution》2009,63(5):1341-1347
Given a trade-off between offspring size and number and an advantage to large size in competition, theory predicts that the offspring size that maximizes maternal fitness will vary with the level of competition that offspring experience. Where the strength of competition varies, selection should favor females that can adjust their offspring size to match the offspring's expected competitive environment. We looked for such phenotypically plastic maternal effects in the least killifish, Heterandria formosa , a livebearing, matrotrophic species. Long-term field observations on this species have revealed that some populations experience relatively constant, low densities, whereas other populations experience more variable, higher densities. We compared sizes of offspring born to females exposed during brood development to either low or high experimental densities, keeping the per capita food ration constant. We examined plastic responses to density for females from one population that experiences high and variable densities and another that experiences low and less-variable densities. We found that, as predicted, female H. formosa produced larger offspring at the higher density. Unexpectedly, we found similar patterns of plasticity in response to density for females from both populations, suggesting that this response is evolutionarily conserved in this species. 相似文献
14.
Differential effects of offspring and maternal inbreeding on egg laying and offspring performance in the burying beetle Nicrophorus vespilloides 下载免费PDF全文
Lucy E. Ford Kirsten J. Henderson Per T. Smiseth 《Journal of evolutionary biology》2018,31(7):1047-1057
We investigate the effect of offspring and maternal inbreeding on maternal and offspring traits associated with early offspring fitness in the burying beetle Nicrophorus vespilloides. We conducted two experiments. In the first experiment, we manipulated maternal inbreeding only (keeping offspring outbred) by generating mothers that were outbred, moderately inbred or highly inbred. Meanwhile, in the second experiment, we manipulated offspring inbreeding only (keeping females outbred) by generating offspring that were outbred, moderately inbred or highly inbred. In both experiments, we monitored subsequent effects on breeding success (number of larvae), maternal traits (clutch size, delay until laying, laying skew, laying spread and egg size) and offspring traits (hatching success, larval survival, duration of larval development and average larval mass). Maternal inbreeding reduced breeding success, and this effect was mediated through lower hatching success and greater larval mortality. Furthermore, inbred mothers produced clutches where egg laying was less skewed towards the early part of laying than outbred females. This reduction in the skew in egg laying is beneficial for larval survival, suggesting that inbred females adjusted their laying patterns facultatively, thereby partially compensating for the detrimental effects of maternal inbreeding on offspring. Finally, we found evidence of a nonlinear effect of offspring inbreeding coefficient on number of larvae dispersing. Offspring inbreeding affected larval survival and larval development time but also unexpectedly affected maternal traits (clutch size and delay until laying), suggesting that females adjust clutch size and the delay until laying in response to being related to their mate. 相似文献
15.
Population density is an ecological variable that is hypothesized to be a major agent of selection on offspring size. In high-density populations, high levels of intraspecific competition are expected to favor the production of larger offspring. In contrast, lower levels of intraspecific competition and selection for large offspring should be weaker and more easily overridden by direct selection for increased fecundity in low-density populations. Some studies have found associations between population density and offspring size consistent with this hypothesis. However, their interpretations are often clouded by a number of issues. Here, we use data from a 10-year study of nine populations of the least killifish, Heterandria formosa, to describe the associations of offspring size with habitat type, population density, and predation risk. We found that females from spring populations generally produced larger offspring than females from ponds; however, the magnitude of this difference varied among years. Across all populations, larger offspring were associated with higher densities and lower risks of predation. Interestingly, the associations between the two ecological variables (density and predation risk) and offspring size were largely independent of one another. Our results suggest that previously described genetic differences in offspring size are due to density-dependent natural selection. 相似文献
16.
Relationships between oviposition date, hatch date, and offspring size in the grasshopper Chorthippus brunneus 总被引:1,自引:0,他引:1
Andrew Cherrill 《Ecological Entomology》2002,27(5):521-528
Abstract 1. The grasshopper Chorthippus brunneus has been shown to increase egg size with maternal age under constant laboratory conditions, such that late-laid eggs are larger than early laid eggs. In this study, an increase in the size of eggs (and hatchlings from those eggs) was recorded with date of oviposition in a field cage population. This suggests that the relationship between maternal age and egg size, observed previously in the laboratory, also occurs in the field. There was, however, some evidence that the behaviour of the maternal females in field cages was modified by the onset of autumnal weather at the end of the breeding season. Only a small number of eggs was laid in the last 3 weeks of the summer but these yielded relatively small hatchlings.
2. The date on which eggs were laid was correlated positively with their date of hatch in the following year. A consequence of this relationship, and that between oviposition date and egg size, was that size at hatch increased with date of hatch through most of the spring but then declined as the last few eggs hatched. Temporal variation in size at hatch parallelled temporal variation in the maternal females' investment in egg size in the previous year.
3. An undisturbed field population was monitored to assess whether the temporal variation in size at hatch resulted in size variation at eclosion in subsequent developmental stages. There were negative correlations between size at eclosion and date of eclosion at the third and fourth instars, suggesting that despite their smaller size at hatch, early hatchers experienced more favourable conditions for juvenile growth than late hatchers. The larger size at hatch of late hatchers may enhance their survival and compensate (albeit incompletely) for their reduced opportunity for growth. Female reproductive behaviour may represent an adaptive response to a predictable seasonal decline in offspring fitness at hatch. 相似文献
2. The date on which eggs were laid was correlated positively with their date of hatch in the following year. A consequence of this relationship, and that between oviposition date and egg size, was that size at hatch increased with date of hatch through most of the spring but then declined as the last few eggs hatched. Temporal variation in size at hatch parallelled temporal variation in the maternal females' investment in egg size in the previous year.
3. An undisturbed field population was monitored to assess whether the temporal variation in size at hatch resulted in size variation at eclosion in subsequent developmental stages. There were negative correlations between size at eclosion and date of eclosion at the third and fourth instars, suggesting that despite their smaller size at hatch, early hatchers experienced more favourable conditions for juvenile growth than late hatchers. The larger size at hatch of late hatchers may enhance their survival and compensate (albeit incompletely) for their reduced opportunity for growth. Female reproductive behaviour may represent an adaptive response to a predictable seasonal decline in offspring fitness at hatch. 相似文献
17.
It is now generally recognized that clutch size affects morethan offspring number. In particular, clutch size affects asuite of traits associated with offspring reproductive performance.Optimal clutch size is therefore determined not by the numericallymost productive clutch but by the clutch that maximizes collectiveoffspring reproductive success. Calculation of optimal clutchsize thus requires a consideration of ecological factors operatingduring an intergenerational time frame, spanning the lifetimeof the egglaying adult and the lifetimes of her offspring. Theoptimal clutch cannot define reproductive values in advance,but instead requires that the strategy chosen is the best responseto the set of reproductive values that it itself generates.In this article, we introduce methods for solving this problem,based on an iterative solution of the equation characterizingexpected lifetime reproductive success. We begin by consideringa semelparous organism, in which case lifetime reproductivesuccess is a function only of the state of the organism. Foran iteroparous organism, lifetime reproductive success dependsupon both state and time, so that our methods extend the usualstochastic dynamic programming approach to the evaluation oflifetime reproductive success. The methods are intuitive andeasily used. We consider both semelparous and iteroparous organisms,stable and varying environments, and describe how our methodscan be employed empirically. 相似文献
18.
Crosses between populations or species often display an asymmetry in the fitness of reciprocal F1 hybrids. This pattern, referred to as isolation asymmetry or Darwin''s Corollary to Haldane''s Rule, has been observed in taxa from plants to vertebrates, yet we still know little about which factors determine its magnitude and direction. Here, we show that differences in offspring size predict the direction of isolation asymmetry observed in crosses between populations of a placental fish, Heterandria formosa. In crosses between populations with differences in offspring size, high rates of hybrid inviability occur only when the mother is from a population characterized by small offspring. Crosses between populations that display similarly sized offspring, whether large or small, do not result in high levels of hybrid inviability in either direction. We suggest this asymmetric pattern of reproductive isolation is due to a disruption of parent–offspring coadaptation that emerges from selection for differently sized offspring in different populations. 相似文献
19.
20.
Guinnee MA Gardner A Howard AE West SA Little TJ 《Journal of evolutionary biology》2007,20(2):577-587
Offspring size can have large and direct fitness implications, but we still do not have a complete understanding of what causes offspring size to vary. Daphnia (water fleas) generally produce fewer and larger offspring when food is limited. Here, we use a mathematical model to show that this could be explained by either: (1) an advantage of producing larger eggs when food is limited; or (2) a lower boundary on egg volume (below which eggs do not have sufficient resources to be viable), that is similar in volume to the evolutionarily stable egg volume predicted by standard clutch size models. We tested the first possibilities experimentally by placing offspring from mothers kept at two food treatments (high and low - leading to relatively small and large eggs respectively) into two food treatments (same as maternal treatments, in a fully factorial design) and measuring their fitness (reproduction, age at maturity, and size at maturity). We also tested survival under starvation conditions of offspring produced from mothers at low and high food treatments. We found that (larger) offspring produced by low-food mothers actually had lower fitness as they took longer to reproduce, regardless of their current food treatment. Additionally, we found no survival advantage to being born of a food-stressed mother. Consequently, our results do not support the hypothesis that there is an advantage to producing larger eggs when food is limited. In contrast, data from the literature support the importance of a lower boundary on egg size. 相似文献