首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The number of cattle herds placed under movement restrictions in Great Britain (GB) due to the suspected presence of bovine tuberculosis (bTB) has progressively increased over the past 25 years despite an intensive and costly test-and-slaughter control program. Around 38% of herds that clear movement restrictions experience a recurrent incident (breakdown) within 24 months, suggesting that infection may be persisting within herds. Reactivity to tuberculin, the basis of diagnostic testing, is dependent on the time from infection. Thus, testing efficiency varies between outbreaks, depending on weight of transmission and cannot be directly estimated. In this paper, we use Approximate Bayesian Computation (ABC) to parameterize two within-herd transmission models within a rigorous inferential framework. Previous within-herd models of bTB have relied on ad-hoc methods of parameterization and used a single model structure (SORI) where animals are assumed to become detectable by testing before they become infectious. We study such a conventional within-herd model of bTB and an alternative model, motivated by recent animal challenge studies, where there is no period of epidemiological latency before animals become infectious (SOR). Under both models we estimate that cattle-to-cattle transmission rates are non-linearly density dependent. The basic reproductive ratio for our conventional within-herd model, estimated for scenarios with no statutory controls, increases from 1.5 (0.26–4.9; 95% CI) in a herd of 30 cattle up to 4.9 (0.99–14.0) in a herd of 400. Under this model we estimate that 50% (33–67) of recurrent breakdowns in Britain can be attributed to infection missed by tuberculin testing. However this figure falls to 24% (11–42) of recurrent breakdowns under our alternative model. Under both models the estimated extrinsic force of infection increases with the burden of missed infection. Hence, improved herd-level testing is unlikely to reduce recurrence unless this extrinsic infectious pressure is simultaneously addressed.  相似文献   

2.
Several statistical methods have been proposed for estimating the infection prevalence based on pooled samples, but these methods generally presume the application of perfect diagnostic tests, which in practice do not exist. To optimize prevalence estimation based on pooled samples, currently available and new statistical models were described and compared. Three groups were tested: (a) Frequentist models, (b) Monte Carlo Markov‐Chain (MCMC) Bayesian models, and (c) Exact Bayesian Computation (EBC) models. Simulated data allowed the comparison of the models, including testing the performance under complex situations such as imperfect tests with a sensitivity varying according to the pool weight. In addition, all models were applied to data derived from the literature, to demonstrate the influence of the model on real‐prevalence estimates. All models were implemented in the freely available R and OpenBUGS software and are presented in Appendix S1. Bayesian models can flexibly take into account the imperfect sensitivity and specificity of the diagnostic test (as well as the influence of pool‐related or external variables) and are therefore the method of choice for calculating population prevalence based on pooled samples. However, when using such complex models, very precise information on test characteristics is needed, which may in general not be available.  相似文献   

3.
BackgroundLike many infectious diseases, there is no practical gold standard for diagnosing clinical visceral leishmaniasis (VL). Latent class modeling has been proposed to estimate a latent gold standard for identifying disease. These proposed models for VL have leveraged information from diagnostic tests with dichotomous serological and PCR assays, but have not employed continuous diagnostic test information.Methods/Principal findingsIn this paper, we employ Bayesian latent class models to improve the identification of canine visceral leishmaniasis using the dichotomous PCR assay and the Dual Path Platform (DPP) serology test. The DPP test has historically been used as a dichotomous assay, but can also yield numerical information via the DPP reader. Using data collected from a cohort of hunting dogs across the United States, which were identified as having either negative or symptomatic disease, we evaluate the impact of including numerical DPP reader information as a proxy for immune response. We find that inclusion of DPP reader information allows us to illustrate changes in immune response as a function of age.Conclusions/SignificanceUtilization of continuous DPP reader information can improve the correct discrimination between individuals that are negative for disease and those with clinical VL. These models provide a promising avenue for diagnostic testing in contexts with multiple, imperfect diagnostic tests. Specifically, they can easily be applied to human visceral leishmaniasis when diagnostic test results are available. Also, appropriate diagnosis of canine visceral leishmaniasis has important consequences for curtailing spread of disease to humans.  相似文献   

4.
The transmission dynamics of infectious diseases have been traditionally described through a time-inhomogeneous Poisson process, thus assuming exponentially distributed levels of disease tolerance following the Sellke construction. Here we focus on a generalization using Weibull individual tolerance thresholds under the susceptible-exposed-infectious-removed class of models which is widely employed in epidemics. Applications with experimental foot-and-mouth disease and historical smallpox data are discussed, and simulation results are presented. Inference is carried out using Markov chain Monte Carlo methods following a Bayesian approach. Model evaluation is performed, where the adequacy of the models is assessed using methodology based on the properties of Bayesian latent residuals, and comparison between 2 candidate models is also considered using a latent likelihood ratio-type test that avoids problems encountered with relevant methods based on Bayes factors.  相似文献   

5.
In many areas of the world, Potato virus Y (PVY) is one of the most economically important disease problems in seed potatoes. In Taiwan, generation 2 (G2) class certified seed potatoes are required by law to be free of detectable levels of PVY. To meet this standard, it is necessary to perform accurate tests at a reasonable cost. We used a two‐stage testing design involving group testing which was performed in Taiwan's Seed Improvement and Propagation Station to identify plants infected with PVY. At the first stage of this two‐stage testing design, plants are tested in groups. The second stage involves no retesting for negative test groups and exhaustive testing of all constituent individual samples from positive test groups. In order to minimise costs while meeting government standards, it is imperative to estimate optimal group size. However, because of limited test accuracy, classification errors for diagnostic tests are inevitable; to get a more accurate estimate, it is necessary to adjust for these errors. Therefore, this paper describes an analysis of diagnostic test data in which specimens are grouped for batched testing to offset costs. The optimal batch size is determined by various cost parameters as well as test sensitivity, specificity and disease prevalence. Here, the Bayesian method is employed to deal with uncertainty in these parameters. Moreover, we developed a computer program to determine optimal group size for PVY tests such that the expected cost is minimised even when using imperfect diagnostic tests of pooled samples. Results from this research show that, compared with error free testing, when the presence of diagnostic testing errors is taken into account, the optimal group size becomes smaller. Higher diagnostic testing costs, lower costs of false negatives or smaller prevalence can all lead to a larger optimal group size. Regarding the effects of sensitivity and specificity, optimal group size increases as sensitivity increases; however, specificity has little effect on determining optimal group size. From our simulated study, it is apparent that the Bayesian method can truly update the prior information to more closely approximate the intrinsic characteristics of the parameters of interest. We believe that the results of this study will be useful in the implementation of seed potato certification programmes, particularly those which require zero tolerance for quarantine diseases in certified tubers.  相似文献   

6.
Although contact network models have yielded important insights into infectious disease transmission and control throughout the last decade, researchers have just begun to explore the dynamic nature of contact patterns and their epidemiological significance. Most network models have assumed that contacts are static through time. Developing more realistic models of the social interactions that underlie the spread of infectious diseases thus remains an important challenge for both data gatherers and modelers. In this article, we review some recent data-driven and process-driven approaches that capture the dynamics of human contact, and discuss future challenges for the field.  相似文献   

7.
Fitting models with Bayesian likelihood-based parameter inference is becoming increasingly important in infectious disease epidemiology. Detailed datasets present the opportunity to identify subsets of these data that capture important characteristics of the underlying epidemiology. One such dataset describes the epidemic of bovine tuberculosis (bTB) in British cattle, which is also an important exemplar of a disease with a wildlife reservoir (the Eurasian badger). Here, we evaluate a set of nested dynamic models of bTB transmission, including individual- and herd-level transmission heterogeneity and assuming minimal prior knowledge of the transmission and diagnostic test parameters. We performed a likelihood-based bootstrapping operation on the model to infer parameters based only on the recorded numbers of cattle testing positive for bTB at the start of each herd outbreak considering high- and low-risk areas separately. Models without herd heterogeneity are preferred in both areas though there is some evidence for super-spreading cattle. Similar to previous studies, we found low test sensitivities and high within-herd basic reproduction numbers (R0), suggesting that there may be many unobserved infections in cattle, even though the current testing regime is sufficient to control within-herd epidemics in most cases. Compared with other, more data-heavy approaches, the summary data used in our approach are easily collected, making our approach attractive for other systems.  相似文献   

8.
There is increasing recognition that genetic diversity can affect the spread of diseases, potentially affecting plant and livestock disease control as well as the emergence of human disease outbreaks. Nevertheless, even though computational tools can guide the control of infectious diseases, few epidemiological models can simultaneously accommodate the inherent individual heterogeneity in multiple infectious disease traits influencing disease transmission, such as the frequently modeled propensity to become infected and infectivity, which describes the host ability to transmit the infection to susceptible individuals. Furthermore, current quantitative genetic models fail to fully capture the heritable variation in host infectivity, mainly because they cannot accommodate the nonlinear infection dynamics underlying epidemiological data. We present in this article a novel statistical model and an inference method to estimate genetic parameters associated with both host susceptibility and infectivity. Our methodology combines quantitative genetic models of social interactions with stochastic processes to model the random, nonlinear, and dynamic nature of infections and uses adaptive Bayesian computational techniques to estimate the model parameters. Results using simulated epidemic data show that our model can accurately estimate heritabilities and genetic risks not only of susceptibility but also of infectivity, therefore exploring a trait whose heritable variation is currently ignored in disease genetics and can greatly influence the spread of infectious diseases. Our proposed methodology offers potential impacts in areas such as livestock disease control through selective breeding and also in predicting and controlling the emergence of disease outbreaks in human populations.  相似文献   

9.
Phylodynamics - the field aiming to quantitatively integrate the ecological and evolutionary dynamics of rapidly evolving populations like those of RNA viruses - increasingly relies upon coalescent approaches to infer past population dynamics from reconstructed genealogies. As sequence data have become more abundant, these approaches are beginning to be used on populations undergoing rapid and rather complex dynamics. In such cases, the simple demographic models that current phylodynamic methods employ can be limiting. First, these models are not ideal for yielding biological insight into the processes that drive the dynamics of the populations of interest. Second, these models differ in form from mechanistic and often stochastic population dynamic models that are currently widely used when fitting models to time series data. As such, their use does not allow for both genealogical data and time series data to be considered in tandem when conducting inference. Here, we present a flexible statistical framework for phylodynamic inference that goes beyond these current limitations. The framework we present employs a recently developed method known as particle MCMC to fit stochastic, nonlinear mechanistic models for complex population dynamics to gene genealogies and time series data in a Bayesian framework. We demonstrate our approach using a nonlinear Susceptible-Infected-Recovered (SIR) model for the transmission dynamics of an infectious disease and show through simulations that it provides accurate estimates of past disease dynamics and key epidemiological parameters from genealogies with or without accompanying time series data.  相似文献   

10.
Despite temporally forced transmission driving many infectious diseases, analytical insight into its role when combined with stochastic disease processes and non-linear transmission has received little attention. During disease outbreaks, however, the absence of saturation effects early on in well-mixed populations mean that epidemic models may be linearised and we can calculate outbreak properties, including the effects of temporal forcing on fade-out, disease emergence and system dynamics, via analysis of the associated master equations. The approach is illustrated for the unforced and forced SIR and SEIR epidemic models. We demonstrate that in unforced models, initial conditions (and any uncertainty therein) play a stronger role in driving outbreak properties than the basic reproduction number R0, while the same properties are highly sensitive to small amplitude temporal forcing, particularly when R0 is small. Although illustrated for the SIR and SEIR models, the master equation framework may be applied to more realistic models, although analytical intractability scales rapidly with increasing system dimensionality. One application of these methods is obtaining a better understanding of the rate at which vector-borne and waterborne infectious diseases invade new regions given variability in environmental drivers, a particularly important question when addressing potential shifts in the global distribution and intensity of infectious diseases under climate change.  相似文献   

11.
Group Testing Regression Models with Fixed and Random Effects   总被引:1,自引:0,他引:1  
Summary Group testing, where subjects are tested in pools rather than individually, has a long history of successful application in infectious disease screening. In this article, we develop group testing regression models to include covariate effects that are best regarded as random. We present approaches to fit mixed effects models using maximum likelihood, investigate likelihood ratio and score tests for variance components, and evaluate small sample performance using simulation. We illustrate our methods using chlamydia and gonorrhea data collected by the state of Nebraska as part of the Infertility Prevention Project.  相似文献   

12.
The goal of this paper is to analyse the scaling properties of childhood infectious disease time-series data. We present a scaling analysis of the distribution of epidemic sizes of measles, rubella, pertussis, and mumps outbreaks in Canada. This application provides a new approach in assessing infectious disease dynamics in a large vaccinated population. An inverse power-law (IPL) distribution function has been fit to the time series of epidemic sizes, and the results assessed against an exponential benchmark model. We have found that the rubella epidemic size distribution and that of measles in highly vaccinated periods follow an IPL. The IPL suggests the presence of a scale-invariant network for these diseases as a result of the heterogeneity of the individual contact rates. By contrast, it was found that pertussis and mumps were characterized by a uniform network of transmission of the exponential type, which suggests homogeneity in the contact rate or, more likely, boiled down heterogeneity by large intermixing in the population. We conclude that the topology of the network of infectious contacts depends on the disease type and its infection rate. It also appears that the socio-demographic structure of the population may play a part (e.g. pattern of contacts according to age) in the structuring of the topology of the network. The findings suggest that there is relevant information hidden in the variation of the common contagious disease time-series data, and that this information can have a bearing on the strategy of vaccination programs.  相似文献   

13.

Background

Estimates of the sensitivity and specificity for new diagnostic tests based on evaluation against a known gold standard are imprecise when the accuracy of the gold standard is imperfect. Bayesian latent class models (LCMs) can be helpful under these circumstances, but the necessary analysis requires expertise in computational programming. Here, we describe open-access web-based applications that allow non-experts to apply Bayesian LCMs to their own data sets via a user-friendly interface.

Methods/Principal Findings

Applications for Bayesian LCMs were constructed on a web server using R and WinBUGS programs. The models provided (http://mice.tropmedres.ac) include two Bayesian LCMs: the two-tests in two-population model (Hui and Walter model) and the three-tests in one-population model (Walter and Irwig model). Both models are available with simplified and advanced interfaces. In the former, all settings for Bayesian statistics are fixed as defaults. Users input their data set into a table provided on the webpage. Disease prevalence and accuracy of diagnostic tests are then estimated using the Bayesian LCM, and provided on the web page within a few minutes. With the advanced interfaces, experienced researchers can modify all settings in the models as needed. These settings include correlation among diagnostic test results and prior distributions for all unknown parameters. The web pages provide worked examples with both models using the original data sets presented by Hui and Walter in 1980, and by Walter and Irwig in 1988. We also illustrate the utility of the advanced interface using the Walter and Irwig model on a data set from a recent melioidosis study. The results obtained from the web-based applications were comparable to those published previously.

Conclusions

The newly developed web-based applications are open-access and provide an important new resource for researchers worldwide to evaluate new diagnostic tests.  相似文献   

14.
15.
Dendukuri N  Joseph L 《Biometrics》2001,57(1):158-167
Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada.  相似文献   

16.
McMahan CS  Tebbs JM  Bilder CR 《Biometrics》2012,68(3):793-804
Summary Array-based group-testing algorithms for case identification are widely used in infectious disease testing, drug discovery, and genetics. In this article, we generalize previous statistical work in array testing to account for heterogeneity among individuals being tested. We first derive closed-form expressions for the expected number of tests (efficiency) and misclassification probabilities (sensitivity, specificity, predictive values) for two-dimensional array testing in a heterogeneous population. We then propose two "informative" array construction techniques which exploit population heterogeneity in ways that can substantially improve testing efficiency when compared to classical approaches that regard the population as homogeneous. Furthermore, a useful byproduct of our methodology is that misclassification probabilities can be estimated on a per-individual basis. We illustrate our new procedures using chlamydia and gonorrhea testing data collected in Nebraska as part of the Infertility Prevention Project.  相似文献   

17.
MOTIVATION: Selecting a small number of relevant genes for accurate classification of samples is essential for the development of diagnostic tests. We present the Bayesian model averaging (BMA) method for gene selection and classification of microarray data. Typical gene selection and classification procedures ignore model uncertainty and use a single set of relevant genes (model) to predict the class. BMA accounts for the uncertainty about the best set to choose by averaging over multiple models (sets of potentially overlapping relevant genes). RESULTS: We have shown that BMA selects smaller numbers of relevant genes (compared with other methods) and achieves a high prediction accuracy on three microarray datasets. Our BMA algorithm is applicable to microarray datasets with any number of classes, and outputs posterior probabilities for the selected genes and models. Our selected models typically consist of only a few genes. The combination of high accuracy, small numbers of genes and posterior probabilities for the predictions should make BMA a powerful tool for developing diagnostics from expression data. AVAILABILITY: The source codes and datasets used are available from our Supplementary website.  相似文献   

18.
Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed to CDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state‐space models to infer the temporal dynamics of CDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed to CDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short. CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within the GYE carnivore community or is periodically reintroduced from distant regions with larger host populations.  相似文献   

19.
Given that bluetongue (BT) may potentially be transmitted by semen, that the disease has significantly expanded in recent years, and that millions of doses of cattle semen are annually traded throughout the world, the transmission of bluetongue virus (BTV) by semen could have severe consequences in the cattle industry. The hypothesis that infected bulls could excrete BTV in their semen led to restrictions on international trade of ruminant semen and the establishment of measures to prevent BTV transmission by semen. However, neither the risk of BTV transmission by semen nor the effectiveness of these measures was estimated quantitatively. The objective of the study was to assess, in case of introduction of BTV into a bovine semen collection centre (SCC), both the risk of BTV transmission by bovine semen and the risk reduction achieved by some of the preventive measures, by means of a stochastic risk assessment model. The model was applied to different scenarios, depending on for example the type of diagnostic test and the interval between the controls (testing) of donor bulls, or the rate of BTV spread within the SCC.Enzyme-linked immunosorbant assay (ELISA) controls of donor bulls every 60 days seemed to be an ineffective method for reducing the risk of BTV transmission in contrast to polymerase chain reaction (PCR) tests every 28 days. An increase in the rate of spread within the SCC resulted in a reduced risk of BTV transmission by semen. The storage of semen for 30 days prior to dispatch seemed to be an efficient way of reducing the risk of transmission by semen.The sensitivity analysis identified the probability of BTV shedding in semen as a crucial parameter in the probability of BTV transmission by semen. However, there is a great degree of uncertainty associated with this parameter, with significant differences depending on the BTV serotype.  相似文献   

20.
The spread of pathogens fundamentally depends on the underlying contacts between individuals. Modeling the dynamics of infectious disease spread through contact networks, however, can be challenging due to limited knowledge of how an infectious disease spreads and its transmission rate. We developed a novel statistical tool, INoDS (Identifying contact Networks of infectious Disease Spread) that estimates the transmission rate of an infectious disease outbreak, establishes epidemiological relevance of a contact network in explaining the observed pattern of infectious disease spread and enables model comparison between different contact network hypotheses. We show that our tool is robust to incomplete data and can be easily applied to datasets where infection timings of individuals are unknown. We tested the reliability of INoDS using simulation experiments of disease spread on a synthetic contact network and find that it is robust to incomplete data and is reliable under different settings of network dynamics and disease contagiousness compared with previous approaches. We demonstrate the applicability of our method in two host-pathogen systems: Crithidia bombi in bumblebee colonies and Salmonella in wild Australian sleepy lizard populations. INoDS thus provides a novel and reliable statistical tool for identifying transmission pathways of infectious disease spread. In addition, application of INoDS extends to understanding the spread of novel or emerging infectious disease, an alternative approach to laboratory transmission experiments, and overcoming common data-collection constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号