首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substrate specificity of dipeptidyl peptidase IV (dipeptidyl peptide hydrolase, EC 3.4.14.5) from pig kidney was investigated, using a series of substrates, in which the amino-acid residue in position P1, a structural derivative of proline, was altered with respect to ring size and substituents. It was demonstrated that dipeptidyl peptidase IV hydrolyses substrates of the type Ala-X-pNA, where X is proline (Pro), (R)-thiazolidine-4-carboxylic acid (Thz), (S)-pipecolic acid (Pip), (S)-oxazolidine-4-carboxylic acid (Oxa), or (S)-azetidine-2-carboxylic acid (Aze). The ring size and ring structure of the residue in the P1 position influence the rate of enzyme-catalysed hydrolysis of the substrate. The highest kcat value (814 s-1) was found for Ala-Aze-pNA. In contrast, the kcat value for Ala-Pro-pNA is nearly 55 s-1. With all substrates of this series, the rate-limiting step of the hydrolysis by dipeptidyl peptidase IV is the deacylation reaction. Compounds of substrate-like structure, in which the P2 residue has an R-configuration, are not hydrolysed by dipeptidyl peptidase IV.  相似文献   

2.
Dipeptidyl peptidase IV preferably hydrolyzes peptides and proteins with a penultimate proline residue. Umezawa and co-workers (Umezawa et al. (1984) J. Antibiotics 37, 422-425) reported that diprotin A (Ile-Pro-Ile) and diprotin B (Val-Pro-Leu) are inhibitors for dipeptidyl peptidase IV. We could show that both compounds as well as other tripeptides with a penultimate proline residue are substrates for dipeptidyl peptidase IV. An apparent competitive inhibition by those compounds is a kinetic artifact due to the substrate-like structure of such tripeptides.  相似文献   

3.
To elucidate the mechanisms of inactivation of the ecdysiostatic peptide trypsin-modulating oostatic factor (Neb-TMOF) in the blue blowfly Calliphora vicina, we investigated its proteolytic degradation. In homogenates and membrane and soluble fractions, this hexapeptide (sequence: NPTNLH) was hydrolyzed into two fragments, NP and TNLH, suggesting the involvement of a proline-specific dipeptidyl peptidase. The dipeptidyl peptidase activity was highest in the late larval stage. It was purified 240-fold from soluble fractions of pupae of mixed age and classified on the basis of several catalytic properties as an invertebrate homologue of mammalian dipeptidyl peptidase IV (EC 3.4.14.5). Fly dipeptidyl peptidase IV has a molecular mass of 200 kDa, showed a pH optimum of 7.5–8.0 with the chromogenic substrate Gly-Pro-4-nitroanilide, and cleaved other chromogenic substrates with penultimate Pro or, with lower activity, Ala. It liberated Xaa-Pro dipeptides from the N-terminus of several bioactive peptides including substance P, neuropeptide Y, and peptide YY but not from bradykinin, indicating that the peptide bond between the two proline residues was resistant to cleavage. Fly dipeptidyl peptidase belongs to the serine class of proteases as the mammalian enzyme does; the fly enzyme, however, is not inhibited by several selective or nonselective inhibitors of its mammalian counterpart. It is suggested that dipeptidyl peptidases exert a regulatory role for the clearance not only of TMOF in flies but for other bioactive peptides in various invertebrates. Arch. Insect Biochem. Physiol. 37:146–157, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
R Mentlein 《FEBS letters》1988,234(2):251-256
The proteases involved in the maturation of regulatory peptides like those of broader specificity normally fail to cleave peptide bonds linked to the cyclic amino acid proline. This generates several mature peptides with N-terminal X-Pro-sequences. However, in certain non-mammalian tissues repetitive pre-sequences of this type are removed by specialized dipeptidyl (amino)peptidases during maturation. In mammals, proline-specific proteases are not involved in the biosynthesis of regulatory peptides, but due to their unique specificity they could play an important role in the degradation of them. Evidence exists that dipeptidyl (amino)peptidase IV at the cell surface of endothelial cells sequesters circulating peptide hormones which are then susceptible to broader aminopeptidase attack. The cleavage of several neuropeptides by prolyl endopeptidase has been demonstrated in vitro, but its role in the brain is questionable since the precise localization of the protease is not clarified.  相似文献   

5.
Membrane-bound proteases are widely distributed among various cell systems. Their expression in a particular cell type is finely regulated, reflecting the specific functional cell implications and engagement in defined physiological pathways. Protein turnover, ontogeny, inflammation, tissue remodeling, cell migration and tumor invasion are among the many physiological and pathological events in which membrane proteases play a crucial role, both as effector as well as regulatory molecules. The presence of proline residues gives unique structural features to peptide chains, substantially influencing the susceptibility of proximal peptide bond to protease cleavage. Among the rare group of proline-specific proteases, dipeptidyl peptidase IV (DPP-IV, EC 3.4.14.5) was originally believed to be the only membrane-bound enzyme specific for proline as the penultimate residue at the amino-terminus of the polypeptide chain. However, other molecules, even structurally non-homologous with the DPP-IV but bearing corresponding enzyme activity, have been identified recently. This review summarizes the present knowledge of "DPP-IV activity- and/or structure-homologues" (DASH) and provides some insight into their multifunctional roles.  相似文献   

6.
From the soluble and membrane fractions of rat brain homogenate, two enzymes that liberate dipeptides of the type Xaa-Pro from chromogenic substrates were purified to homogeneity. The two isolated dipeptidyl peptidases had similar molecular and catalytic properties: For the native proteins, molecular weights of 110,000 were estimated; for the denatured proteins, the estimate was 52,500. Whereas the soluble peptidase yielded one band of pI 4.2 after analytical isoelectric focusing, two additional enzymatic active bands were detected between pI 4.2 and 4.3 for the membrane-associated form. As judged from identical patterns after neuraminidase treatment, both peptidases contained no sialic acid. A pH optimum of 5.5 was estimated for the hydrolysis of Gly-Pro- and Arg-Pro-nitroanilide. Substrates with alanine instead of proline in the penultimate position were hydrolyzed at comparable rates. Acidic amino acids in the ultimate N-terminal position of the substrates reduced the activities of the peptidases 100-fold as compared with corresponding substrates with unblocked neutral or, especially, basic termini. The action of the dipeptidyl peptidase on several peptides with N-terminal Xaa-Pro sequences was investigated. Tripeptides were rapidly hydrolyzed, but the activities considerably decreased with increasing chain length of the peptides. Although the tetrapeptide substance P 1-4 was still a good substrate, the activities detected for the sequential liberation of Xaa-Pro dipeptides from substance P itself or casomorphin were considerably lower. Longer peptides were not cleaved. The peptidases hydrolyzed Pro-Pro bonds, e.g., in bradykinin 1-3 or 1-5 fragments, but bradykinin itself was resistant. The enzymes were inhibited by serine protease inhibitors, like diisopropyl fluorophosphate or phenylmethylsulfonyl fluoride, and by high salt concentrations but not by the aminopeptidase inhibitors bacitracin and bestatin. Based on the molecular and catalytic properties, both enzymes can be classified as species of dipeptidyl peptidase II (EC 3.4.14.2) rather than IV (EC 3.4.14.5). However, some catalytic properties differentiate the brain enzyme from forms of dipeptidyl peptidase II of other sources.  相似文献   

7.
Nägler DK  Tam W  Storer AC  Krupa JC  Mort JS  Ménard R 《Biochemistry》1999,38(15):4868-4874
The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.  相似文献   

8.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

9.
Posttranslational modifications influence the structure, stability and biological activity of proteins. Most of the reactions are enzyme-catalyzed, but some, such as asparagine (Asn) and glutamine (Gln) deamidation and the isoaspartate (isoAsp) formation within peptide chains, occur spontaneously. It has been previously shown that certain peptide sequences form isoAsp quite fast if the Asp stretches are exposed to the protein surface, thereby potentially changing susceptibility to proteolysis at these sites. This tempted us to investigate the activity of exo- and endopeptidases against Asp- or isoAsp-containing substrates. Members of the prolyl oligopeptidase family were unable to cleave substrates after proline if isoAsp was placed in the P2-position. Caspases, usually accepting Asp at P1-position of their substrates, did not cleave isoAsp-containing sequences. Similarly, the metal-dependent aminopeptidase amino peptidase N did not turnover N-terminal isoAsp-containing substrates, nor could the endopeptidase matrix metalloproteinase 3 (MMP 3) hydrolyze a serum amyloid A protein-like substrate if the sequence contained isoAsp instead of Asp. Also, the highly specific enterokinase, usually clipping after a stretch of four Asp residues and a lysine in the P1 position, could not turnover substrates if the P2 amino acid was replaced by isoAsp. In contrast, acylamino acid-releasing enzyme and dipeptidyl peptidases 1, 2 and 4 hydrolyzed substrates containing the isoAsp-Ala motif.  相似文献   

10.
Porcine spleen cathepsin B is an exopeptidase   总被引:3,自引:0,他引:3  
The major cathepsin B isozyme CB-I purified from porcine spleens was studied for its specificity against various peptide and denatured protein substrates. The enzyme degraded all the peptide substrates by an exopeptidase activity. The substrates were degraded mainly by a dipeptidyl carboxypeptidase activity of the enzyme except for angiotensin I, from which a COOH-terminal leucine residue was released. The enzyme failed to hydrolyze peptides having a proline or cysteic acid in the COOH-terminal, penultimate, and antepenultimate positions. Reduced and carboxymethylated soybean trypsin inhibitor was degraded by the same dipeptidyl carboxypeptidase action of cathepsin B. No significant endopeptidase activity was observed. These results do not support the general assumption that cathepsin B has both endo- and exopeptidase activities, neither do these observations support the postulation that cathepsin B might be involved in the in vivo proteolytic processing of protein precursors. We propose that the biological role of this enzyme is mainly the degradation of tissue proteins in lysosomes.  相似文献   

11.
An extracellular protease derived from the culture broth of a microorganism, a Streptomyces species, produced Boc-Pro-Pro and diproline from Boc-Pro-Pro-Pro-Pro. The enzyme was purified 726-fold, with a yield of 2.6%, by ammonium sulfate fractionation, ion-exchange chromatography, and gel filtration chromatography. The molecular weight of the enzyme was determined to be 65,000 by gel filtration and 70,000 by SDS-PAGE. The enzyme released a C-terminal dipeptide from peptide substrates having a C-terminal proline and a penultimate proline or alanine residue, but did not hydrolyze angiotensin I or bradykinin. When the enzyme hydrolyzed Leu-Pro-Pro-Pro-Pro-Pro, it produced Leu-Pro-Pro-Pro and Pro-Pro before producing Leu-Pro. The enzyme thus seems to be a kind of dipeptidyl carboxypeptidase, its substrate specificity being very different from that of the well known dipeptidyl carboxypeptidases [EC 3.4.15.1] such as the angiotensin-converting enzyme.  相似文献   

12.
A mutant strain of Salmonella typhimurium that lacks two proline-specific peptidases (peptidases P and Q) could not complete the degradation of proline peptides formed as intermediates in starvation-induced protein breakdown. The wild-type strain produced free proline as the product of degradation of proline-labeled proteins. The pepP pepQ mutant, however, produced a mixture of small proline peptides. In the absence of peptidase Q only, peptidase P could complete the degradation of most of the proline peptide intermediates formed. In the absence of peptidase P only, about 50% of the proline-labeled, acid-soluble products were proline peptides. These results are consistent with in vitro specificity data indicating that peptidase Q hydrolyzes X-Pro dipeptides only, whereas peptidase P attacks both X-Pro dipeptides and longer peptides with X-Pro at their N-termini. A mutant strain lacking four broad-specificity peptidases (peptidases N, A, B, and D), but containing peptidases P and Q, also produced proline peptides as products of protein breakdown. This observation suggests that broad-specificity peptidases are required to generate the X-Pro substrates of peptidases P and Q. A strain lacking six peptidases (N, A, B, D, P, and Q) was constructed and produced less free proline from protein breakdown than either the pepP pepQ strain or the pepN pepA pepB pepD strain. These observations suggest that the degradation of peptide intermediates involves the sequential removal of N-terminal amino acids and requires both broad-specificity aminopeptidases (peptidases N, A, and B) and the X-Pro-specific aminopeptidase, peptidase P.  相似文献   

13.
Mammalian acylaminoacyl peptidase, a member of the prolyl oligopeptidase family of serine peptidases, is an exopeptidase, which removes acylated amino acid residues from the N terminus of oligopeptides. We have investigated the kinetics and inhibitor binding of the orthologous acylaminoacyl peptidase from the thermophile Aeropyrum pernix K1 (ApAAP). Complex pH-rate profiles were found with charged substrates, indicating a strong electrostatic effect in the surroundings of the active site. Unexpectedly, we have found that oligopeptides can be hydrolysed beyond the N-terminal peptide bond, demonstrating that ApAAP exhibits endopeptidase activity. It was thought that the enzyme is specific for hydrophobic amino acids, in particular phenylalanine, in accord with the non-polar S1 subsite of ApAAP. However, cleavage after an Ala residue contradicted this notion and demonstrated that P1 residues of different nature may bind to the S1 subsite depending on the remaining peptide residues. The crystal structures of the complexes formed between the enzyme and product-like inhibitors identified the oxyanion-binding site unambiguously and demonstrated that the phenylalanine ring of the P1 peptide residue assumes a position different from that established in a previous study, using 4-nitrophenylphosphate. We have found that the substrate-binding site extends beyond the S2 subsite, being capable of binding peptides with a longer N terminus. The S2 subsite displays a non-polar character, which is unique among the enzymes of this family. The S3 site was identified as a hydrophobic region that does not form hydrogen bonds with the inhibitor P3 residue. The enzyme-inhibitor complexes revealed that, upon ligand-binding, the S1 subsite undergoes significant conformational changes, demonstrating the plasticity of the specificity site.  相似文献   

14.
The degradation of several bioactive peptides and proteins by purified human dipeptidyl peptidase IV is reported. It was hitherto unknown that human gastrin-releasing peptide, human chorionic gonadotropin, human pancreatic polypeptide, sheep prolactin, aprotinin, corticotropin-like intermediate lobe peptide and (Tyr-)melanostatin are substrates of this peptidase. Kinetic constants were determined for the degradation of a number of other natural peptides, including substance P, the degradation of which has been described earlier in a qualitative manner. Generally, small peptides are degraded much more rapidly than proteins. However, the Km-values seem to be independent of the peptide chain length. The influence of the action of dipeptidyl peptidase IV on the biological function of peptides and proteins is discussed.  相似文献   

15.
The prolyl peptidase that removes the tetra-peptide of pro-transglutaminase was purified from Streptomyces mobaraensis mycelia. The substrate specificity of the enzyme using synthetic peptide substrates showed proline-specific activity with not only tripeptidyl peptidase activity, but also tetrapeptidyl peptidase activity. However, the enzyme had no other exo- and endo-activities. This substrate specificity is different from proline specific peptidases so far reported. The enzyme gene was cloned, based on the direct N-terminal amino acid sequence of the purified enzyme, and the entire nucleotide sequence of the coding region was determined. The deduced amino acid sequence revealed an N-terminal signal peptide sequence (33 amino acids) followed by the mature protein comprising 444 amino acid residues. This enzyme shows no remarkable homology with enzymes belonging to the prolyl oligopeptidase family, but has about 65% identity with three tripeptidyl peptidases from Streptomyces lividans, Streptomyces coelicolor, and Streptomyces avermitilis. Based on its substrate specificity, a new name, "prolyl tri/tetra-peptidyl aminopeptidase," is proposed for the enzyme.  相似文献   

16.
In this study, we report on the synthesis, kinetic characterisation, and application of a novel biotinylated and active site-directed inactivator of dipeptidyl peptidase IV (DPP-IV). Thus, the dipeptide-derived proline diphenyl phosphonate NH(2)-Glu(biotinyl-PEG)-Pro(P)(OPh)(2) has been prepared by a combination of classical solution- and solid-phase methodologies and has been shown to be an irreversible inhibitor of porcine DPP-IV, exhibiting an over all second-order rate constant (k(i)/K(i)) for inhibition of 1.57 x 10(3) M(-1) min(-1). This value compares favourably with previously reported rates of inactivation of DPP-IV by dipeptides containing a P(1) proline diphenyl phosphonate grouping [B. Boduszek, J. Oleksyszyn, C.M. Kam, J. Selzler, R.E. Smith, J.C. Powers, Dipeptide phophonates as inhibitors of dipeptidyl peptidase IV, J. Med. Chem. 37 (1994) 3969-3976; B.F. Gilmore, J.F. Lynas, C.J. Scott, C. McGoohan, L. Martin, B. Walker, Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha), Biochem, Biophys. Res. Commun. 346 (2006) 436-446.], thus demonstrating that the incorporation of the side-chain modified (N-biotinyl-3-(2-(2-(3-aminopropyloxy)-ethoxy)-ethoxy)-propyl) glutamic acid residue at the P(2) position is compatible with inhibitor efficacy. The utilisation of this probe for the detection of both purified dipeptidyl peptidase IV and the disclosure of a dipeptidyl peptidase IV-like activity from a clinical isolate of Porphyromonas gingivalis, using established electrophoretic and Western blotting techniques previously developed by our group, is also demonstrated.  相似文献   

17.
Proline specific endo- and exopeptidases   总被引:12,自引:0,他引:12  
Summary Peptidases which are specific for proline residues have been described and include endopeptidases (post-proline cleaving enzyme and proline specific endopeptidase), N-terminal exopeptidases (post-proline dipeptidyl aminopeptidase, proline iminopeptidase, aminopeptidase P), C-terminal exopeptidases (prolylcarboxypeptidase, and carboxypeptidase P) and dipeptidases (prolyl dipeptidase and proline dipeptidase). The properties, distinguishing characteristics, and possible significance of these proline specific endo- and exopeptidases are discussed. In addition, reference is made to a series of enzymes which can hydrolyze proline containing peptide bonds, but which are not specific for proline.  相似文献   

18.
Aminopeptidase P (EC 3.4.11.9) was purified from rat brain cytosol. A subunit Mr of 71,000 was determined for the reduced, denaturated protein whereas an Mr of 143,000 was determined for the native enzyme. The purified aminopeptidase P selectively liberated all unblocked, preferentially basic or hydrophobic ultimate amino acids from di-, tri- and oligopeptides with N-terminal Xaa-Pro- sequences. Corresponding peptides with penultimate Ala instead of Pro were cleaved with much lower rates; oligopeptides with residues other than Pro or Ala in the penultimate position appeared not to be substrates for the enzyme. Several bioactive peptides with Xaa-Pro sequences, especially bradykinin, substance P, corticortropin-like intermediate lobe peptide, casomorphin and [Tyr]melanostatin were shortened by the N-terminal amino acid by aminopeptidase P action. Rat brain aminopeptidase P was optimally active at pH 7.6-8.0 in the presence of Mn2+. Chelating agents and SH-reacting reagents inhibited the enzyme, but common inhibitors of aminopeptidases, like amastatin or bestatin, of prolidase or of dipeptidyl peptidases II and IV, like N-benzoyloxycarbonyl-proline or epsilon-benzyl-oxycarbonyl-lysyl-proline, as well as antibiotics like beta-lactam ones, bacitracin or puromycin, had little or no effect.  相似文献   

19.
Keane FM  Nadvi NA  Yao TW  Gorrell MD 《The FEBS journal》2011,278(8):1316-1332
Fibroblast activation protein-α (FAP) is a cell surface-expressed and soluble enzyme of the prolyl oligopeptidase family, which includes dipeptidyl peptidase 4 (DPP4). FAP is not generally expressed in normal adult tissues, but is found at high levels in activated myofibroblasts and hepatic stellate cells in fibrosis and in stromal fibroblasts of epithelial tumours. FAP possesses a rare catalytic activity, hydrolysis of the post-proline bond two or more residues from the N-terminus of target substrates. α(2)-antiplasmin is an important physiological substrate of FAP endopeptidase activity. This study reports the first natural substrates of FAP dipeptidyl peptidase activity. Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY were the most efficiently hydrolysed substrates and the first hormone substrates of FAP to be identified. In addition, FAP slowly hydrolysed other hormone peptides, such as the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic peptide, which are efficient DPP4 substrates. FAP showed negligible or no hydrolysis of eight chemokines that are readily hydrolysed by DPP4. This novel identification of FAP substrates furthers our understanding of this unique protease by indicating potential roles in cardiac function and neurobiology.  相似文献   

20.
The crystal structure of dipeptidyl aminopeptidase IV from Stenotrophomonas maltophilia was determined at 2.8-A resolution by the multiple isomorphous replacement method, using platinum and selenomethionine derivatives. The crystals belong to space group P4(3)2(1)2, with unit cell parameters a = b = 105.9 A and c = 161.9 A. Dipeptidyl aminopeptidase IV is a homodimer, and the subunit structure is composed of two domains, namely, N-terminal beta-propeller and C-terminal catalytic domains. At the active site, a hydrophobic pocket to accommodate a proline residue of the substrate is conserved as well as those of mammalian enzymes. Stenotrophomonas dipeptidyl aminopeptidase IV exhibited activity toward a substrate containing a 4-hydroxyproline residue at the second position from the N terminus. In the Stenotrophomonas enzyme, one of the residues composing the hydrophobic pocket at the active site is changed to Asn611 from the corresponding residue of Tyr631 in the porcine enzyme, which showed very low activity against the substrate containing 4-hydroxyproline. The N611Y mutant enzyme was generated by site-directed mutagenesis. The activity of this mutant enzyme toward a substrate containing 4-hydroxyproline decreased to 30.6% of that of the wild-type enzyme. Accordingly, it was considered that Asn611 would be one of the major factors involved in the recognition of substrates containing 4-hydroxyproline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号