首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Semisynthetic DNA-protein conjugates, generated by either covalent or non-covalent coupling chemistry, are versatile molecular tools applicable in bioanalytical and synthetic chemical procedures. This article reviews the synthesis and characterization of artificial nucleic acid-protein conjugates, in addition to applications arising in the life sciences and nanobiotechnology, such as the self-assembly of high-affinity reagents for immunological detection assays and biosensors, the fabrication of laterally microstructured biochips, and the biomimetic 'bottom-up' synthesis of nanostructured supramolecular devices.  相似文献   

2.
A new compound, dithiobis[9-(2-ethylenecarbamoylethylamino)-2,3-dimethoxy-6-azido-acridine], was synthesized and used in some preliminary experiments to form cleavable complexes between nucleic acids and proteins. In a first step the azidoacridine moiety of the reagent intercalates between the bases of nucleic acids and is then bound by reaction of the azido group. The disulfide group of the reagent is simultaneously converted under reducing conditions into a thiol which, in a second step, can be bound by oxidation to -SH groups of a vicinal protein (additional -SH groups can be inserted in the protein using 2-iminothiolane). The nucleic acid-protein complexes thus formed can be redissociated by reduction. The potential applications of this new cleavable crosslinking reagent could be extended to topographical investigations of any biological structure composed of nucleic acids and proteins.  相似文献   

3.
The power of in vitro selection methods for the isolation of nucleic acids that display a desired property derives from the enormous number of sequence variants that can be surveyed with relative ease using controlled in vitro biochemistry. This methodology has found a variety of applications, ranging from the study of nucleic acid-protein interactions and natural ribozymes to the isolation of nucleic acids with potential as diagnostic or therapeutic reagents or with new catalytic activities. The number of reported applications is growing exponentially, and each application presents new variables and challenges. The goal of this article is to guide prospective users through the myriad decisions that must be made in the design and execution of a successful in vitro selection experiment.  相似文献   

4.
Short synthetic oligonucleotides are finding wide variety of applications in area of genomics and medicinal chemistry. Since the isolation of nucleic acids to the mapping of human genome, chemical synthesis of nucleic acids has undergone tremendous advancements. Further improvements in this area such as, introduction of high throughput synthesizers, better coupling reagents, improved polymer supports, newer sets of protecting groups for exocyclic amino groups of nucleic bases and introduction of universal polymer supports have completely revolutionized the entire field of nucleic acids chemistry. Most of these developments have been targeted to assemble these molecules more efficiently in a cost-effective manner and rapidly. Preparation of oligonucleotide conjugates has further helped in identifying the newer areas of their applications. A number of conjugates with biological and abiological ligands have been discussed in this article along with their possible wide spectrum of applications. Recently developed microarray technology, which refers to attachment of short oligonucleotides on a solid/polymeric surface, has proved to be useful for screening of genetic mutations, study of polymorphism, as diagnostics, etc. The major developments in these areas are presented in the review.  相似文献   

5.
Polymer polydispersity, random conjugation of functional groups, and poorly understood structure-activity relationships have constantly hampered progress in the development of nucleic acid carriers. This review focuses on the synthetic concepts for the generation of precise polymers, site-specific conjugation strategies, and multifunctional conjugates for nucleic acid transport. Dendrimers, defined peptide carriers, sequence-defined polyamidoamines assembled by solid-phase supported synthesis, and precise lipopeptides or lipopolymers have been characterized for pDNA and siRNA delivery. Conjugation techniques such as click chemistries and peptide ligation are available for conjugating polymers with functional transport elements such as targeting or shielding domains and for direct covalent modification of therapeutic nucleic acids in a site-specific mode.  相似文献   

6.
The synthesis and testing of a new type of nucleic acid-protein photocrosslinking reagent is described. The reagents are composed of a psoralen ligand for nucleic acid photoattachment, which is linked to an azidobenzoyl group, for protein photoattachment. The linker contains a disulfide bridge which can be opened by reduction with mercaptans. The reagents were tested in a chromatin system, where it was found that they induced cleavable crosslinks between the histones and the DNA upon irradiation with long-wavelength ultraviolet light (lambda greater than 300 nm).  相似文献   

7.
8.
Three nucleic acid-protein complexes of 1:1 stoichiometry were analyzed by surface plasmon resonance on a Biacore biosensor to test whether or not proteins and nucleic acids yielded similar refractive index increments on binding. The expected maximum response in resonance units, (RU(exp))(max), and the observed one, (RU(obs))(max), on saturation of immobilized targets by interacting partners were compared to determine the ratio of (deltan/deltaC)(protein) to (deltan/deltaC)(nucleic acid), where n is the refractive index at the surface and C is the concentration of one partner. Our results suggest that proteins and nucleic acids behave similarly and that the discrepancy between the expected and observed maximum responses for such complexes reflects inaccurate evaluation of the binding responses. Therefore, no correction of the instrument response is required for protein and nucleic acid interaction studies on a Biacore biosensor.  相似文献   

9.
Nucleic acid aptamers and enzymes as sensors   总被引:1,自引:0,他引:1  
The function of nucleic acids has been an endless source of discovery and invention that has drastically enhanced our appreciation of DNA and RNA as multifaceted polymers. It is now widely known that nucleic acids can act as enzymes (deoxyribozymes and ribozymes) and as receptors (aptamers), and that these functional nucleic acids (FNAs) can either be found in nature or isolated from pools of random nucleic acids. The availability of many natural and artificial FNAs has opened a new horizon for the development of 'smart' molecules for a variety of chemical and biological applications. This review provides a snapshot of recent progress in the application of FNAs as novel sensors for biomolecular detection, drug discovery and nanotechnology.  相似文献   

10.
An electron microscopic method for demonstrating the presence of and mapping the positions of proteins specifically bound to nucleic acids is described. The nucleic acid-protein complex is treated with dinitrofluorobenzene under conditions such that dinitrophenyl (DNP) groups are attached to nucleophilic groups on the protein, with only a low level of random attachment to the nuclei acid. This product is treated with rabbit anti-DNP IgG. The position of the protein-(DNP)n(IgG)m complex on the nucleic acid strand can be observed by electron microscopy by protein free spreading methods and, in many cases, by cytochrome-c spreading. If necessary for visualization by the latter method, the size of the labeled region can be increased by treatment with goat anti-rabbit IgG. High efficiency of electron microscopic labeling is achieved. Examples studied are: the adenovirus-2 DNA terminal protein, a protein covalently bound to SV40 DNA, DNA polymerase I bound to DNA, E. coli RNA polymerase bound to T7 DNA, and proteins UV crosslinked to avian sarcoma virus RNA.  相似文献   

11.
The Differential Radial Capillary Action of Ligand Assay (DRaCALA) allows detection of protein interactions with low-molecular weight ligands based on separation of the protein-ligand complex by differential capillary action. Here, we present an application of DRaCALA to the study of nucleic acid-protein interactions using the Escherichia coli cyclic AMP receptor protein (CRP). CRP bound in DRaCALA specifically to (32)P-labeled oligonucleotides containing the consensus CRP binding site, but not to oligonucleotides with point mutations known to abrogate binding. Affinity and kinetic studies using DRaCALA yielded a dissociation constant and dissociation rate similar to previously reported values. Because DRaCALA is not subject to ligand size restrictions, whole plasmids with a single CRP-binding site were used as probes, yielding similar results. DNA can also function as an easily labeled carrier molecule for a conjugated ligand. Sequestration of biotinylated nucleic acids by streptavidin allowed nucleic acids to take the place of the protein as the immobile binding partner. Therefore, any molecular interactions involving nucleic acids can be tested. We demonstrate this principle utilizing a bacterial riboswitch that binds cyclic-di-guanosine monophosphate. DRaCALA is a flexible and complementary approach to other biochemical methods for rapid and accurate measurements of affinity and kinetics at near-equilibrium conditions.  相似文献   

12.
The specific 1,3 dipolar Hüisgen cycloaddition reaction known as ‘click-reaction’ between azide and alkyne groups is employed for the synthesis of peptide–oligonucleotide conjugates. The peptide nucleic acids (PNA)/DNA and peptides may be appended either by azide or alkyne groups. The cycloaddition reaction between the azide and alkyne appended substrates allows the synthesis of the desired conjugates in high purity and yields irrespective of the sequence and functional groups on either of the two substrates. The versatile approach could also be employed to generate the conjugates of peptides with thioacetamido nucleic acid (TANA) analog. The click reaction is catalyzed by Cu (I) in either water or in organic medium. In water, ~3-fold excess of the peptide-alkyne/azide drives the reaction to completion in 2 h with no side products.  相似文献   

13.
A series of ferrocenyl conjugates to fatty acids have been designed and synthesized to establish the key properties required for use in biomolecular binding studies. Amperometric detection of the ferrocene conjugates was sought in the region of 0.3 V (vs Ag/AgCl) for use in protein/blood solutions. Different linkers and solubilizing moieties were incorporated to produce a conjugate with optimal electrochemical properties. In electrochemical studies, the linker directly attached to the ferrocene was found to affect significantly the E(1/2) value and the stability of the ferrocenium cation. Ester-linked ferrocene conjugates had E(1/2) ranging from +400 to +410 mV, while amide-linked compounds ranged from +350 to +370 mV and the amines +260 to +270 mV. Folding of long-chain substituents around the ferrocene, also significantly affected by the choice of linker, was inferred as a secondary effect that increased E(1/2). The stability of the ferrocenium cation decreased systematically as E(1/2) increased. Disubstituted ferrocene ester and amide conjugates, with oxidation potentials of +640 and +570 mV, respectively, showed only a barely discernible reduction wave in cyclic voltammetry at 50 mV/s. Electrochemical measurements identified two lead compounds with the common structural characteristics of an amide and carbamate linker (compounds 17 and 21) with a C(11) fatty acid chain attached. It is envisaged that such molecules can be used to mimic and study the biomolecular binding interaction between fatty acids and molecules such as human serum albumin.  相似文献   

14.
For the first time Clip-Phen (1) was conjugated to oligonucleotides to provide very efficient tools for the cleavage of nucleic acids at specific positions. The synthesis of the conjugates as well as the cleavage experiments are reported.  相似文献   

15.
This review outlines the synthesis of covalent conjugates of oligonucleotides and their analogues that are obtained by reactions of carbonyl compounds with various nucleophiles such as primary amines, N-alkoxyamines, hydrazines, and hydrazides. The products linked by imino, oxime, hydrazone, or thiazolidine groups are shown to be useful intermediates for a wide range of chemical biology applications. Methods for their preparation, isolation, purification, and analysis are highlighted, and the comparative stabilities of the respective linkages are evaluated. The relative merits of incorporation of a carbonyl group, particularly an aldehyde group, into either the oligonucleotide or the ligand parts are considered. Examples of harnessing of aldehyde-nucleophile coupling for the labeling of nucleic acids are given, as well as their conjugation to various biomolecules (e.g. peptides and small molecule ligands), site-specific cross-linking of oligonucleotides to nucleic acid-binding proteins, assembly of multibranched supramolecular structures, and immobilization on functionalized surfaces. Future perspectives of bioconjugation and complex molecular engineering via carbonyl group addition-elimination reactions in nucleic acids chemistry are discussed.  相似文献   

16.
Summary One of the essential relationships between nucleic acids and amino acids in present biological systems, and perhaps in precursors to these systems is expressed in binding interactions. Such interactions depend on the size, composition and conformation of the interacting species. A simplified model of such complex systems was tested in an attempt to assess first the compositional effect, i.e., the binding behavior of monomeric nucleic acid and protein components. Nine representative amino acids were immobilized individually on a prepared chromatographic support by the formation of an amide linkage. Selective binding of ribonucleoside 5-phosphates was exhibited by these amino acids under standardized conditions and the binding was characterized by a site-binding model. It was found that binding behavior was dependent of the nature of the base and the nature of the amino acid. Basic information is thus provided which should be useful in the interpretation of more complex nucleic acid-protein systems and the study of their role in the evolution of the cell.  相似文献   

17.
A solid phase synthesis strategy for post-conjugation of amino acids and a phenanthroline derivative to peptide nucleic acids is described. The peptide nucleic acids, synthesized by 9-fluorenylmethyloxycarbonyl chemistry on TentaGel S Rink Amide resin, have an internally placed unit carrying an amino linker with 4-methyltrityl protection. Methyltrityl removal by mild acidic conditions and conjugation of amino acids or a phenanthroline derivative, via an amide or urea linker, was performed on-resin after completion of the chain assembly. This solid phase methodology resulted in excellent purities of the crude conjugates.  相似文献   

18.
Yeast cells as tools for target-oriented screening   总被引:1,自引:0,他引:1  
  相似文献   

19.
Binding of the fluorochrome acridine orange (AO) to nucleic acids in situ is studied by automated cytofluorometry in two differentiating cell systems: Friend virus-transformed murine erythroleukemia induced to differentiate by dimethyl sulfoxide, and phytohemagglutinin-stimulated human lymphocytes. The specificity of the stain for deoxyribonucleic acid is discussed on the basis of data obtained by cell treatment with nucleases. Evidence is presented that in the case of Friend leukemia cells, but not phytohemagglutinin-stimulated lymphocytes, a significant change in the number of AO-intercalating sites in DNA occurrs during differentiation. These results suggest that changes in nuclear chromatin occurring during cell differentiation may be correlated, in some but not all systems, with changes in accessibility of DNA in situ to intercalating dyes. The role of divalent cations, especially Mg2+, in the conformation of nuclear chromatin and in modulation of the accessibility of nucleic acids to AO is discussed. The method provides a tool for the study of nucleic acid-protein interaction in situ, and in some cell systems it may be applicable as a marker for recognition of cell transformation, differentiation or neoplasia.  相似文献   

20.
Molecular beacons are efficient and useful tools for quantitative detection of specific target nucleic acids. Thanks to their simple protocol, molecular beacons have great potential as substrates for biomolecular computing. Here we present a molecular beacon-based biomolecular computing method for quantitative detection and analysis of target nucleic acids. Whereas the conventional quantitative assays using fluorescent dyes have been designed for single target detection or multiplexed detection, the proposed method enables us not only to detect multiple targets but also to compute their quantitative information by weighted-sum of the targets. The detection and computation are performed on a molecular level simultaneously, and the outputs are detected as fluorescence signals. Experimental results show the feasibility and effectiveness of our weighted detection and linear combination method using molecular beacons. Our method can serve as a primitive operation of molecular pattern analysis, and we demonstrate successful binary classifications of molecular patterns made of synthetic oligonucleotide DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号