首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
KDN (Deaminoneuraminic acid, or deaminated neuraminic acid) is a minor but biosynthetically independent member of the sialic acid. Human occurrence of KDN has already been established, although its level is so little that it is often undetectable by conventional sialic acid analysis. Elevated expression of KDN in fetal cord blood cells and some malignant tumor cells have been reported. However, in mammalian cells and tissues KDN mostly occurs as the free sugar and little occurred conjugated to glycolipids and/or glycoproteins. A positive correlation between the ratio of free KDN/free Neu5Ac in ovarian adenocarcinomas and the stage of malignancy has been noted for diagnostic use. We hypothesized that elevated expression of KDN in mammalian systems may be closely related to elevated activities of enzymes involved in the formation of sialoglycoconjugates and/or aberrant supply of the precursor sugar, mannose, used in the biosynthesis of KDN. In this study we used human ovarian teratocarcinoma cells PA-1 to further analyze KDN expression in human cells. Major findings reported in this paper are, (i) a 30 kDa KDN-glycoprotein immunostainable with monoclonal antibody, mAb.kdn3G, (specific for the KDNα2 → 3Galβ1→ epitope) and sensitive to KDNase was identified in the membrane fraction of the cell: (ii) a 49 kDa KDN-glycoprotein that is not reactive with mAb.kdn3G but is sensitive to KDNase was identified in the soluble fraction: and (iii) PA-1 cells showed unique response to mannose added to the growth medium in that the levels of both free and bound forms of KDN are elevated. This is the first report on the identification of mammalian KDN-glycoproteins by chemical and biochemical methods.  相似文献   

2.
KDN is an abbreviation for 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid, and its natural occurrence was revealed in 1986 by a research group including the present authors. Since sialic acid was used as a synonym for N-acylneuraminic acid at that time, there was an argument if this deaminated neuraminic acid belongs to the family of sialic acids. In this review, we describe the 20 years history of studies on KDN (KDNology), through which KDN has established its position as a distinct member of the sialic acid family. These studies have clarified that: (1) KDN occurs widely among vertebrates and bacteria similar to the occurrence of the more common sialic acid, N-acetylneuraminic acid (Neu5Ac), but its abundant occurrence in animals is limited to lower vertebrates. (2) KDN is found in almost all types of glycoconjugates, including glycolipids, glycoproteins and capsular polysaccharides. (3) KDN residues are linked to almost all glycan structures in place of Neu5Ac. All linkage types known for Neu5Ac; α2,3-, α2,4-, α2,6-, and α2,8- are also found for KDN. (4) KDN is biosynthesized de novo using mannose as a precursor sugar, which is activated to CMP-KDN and transferred to acceptor sugar residues. These reactions are catalyzed by enzymes, some of which preferably recognize KDN, but many others prefer Neu5Ac to KDN. In addition to these basic findings, elevated expression of KDN was found in fetal human red blood cells compared with adult red blood cells, and ovarian tumor tissues compared with normal controls. KDNase, an enzyme which specifically cleaves KDN-linkages, was discovered in a bacterium and monoclonal antibodies that specifically recognize KDN residues in KDNα2,3-Gal- and KDNα2,8-KDN-linkages have been developed. These have been used for identification of KDN-containing molecules. Based on past basic studies and variety of findings, future perspective of KDNology is presented.  相似文献   

3.
A mannose selection system was adapted for use in the Agrobacterium-mediated transformation of Chinese cabbage. This system makes use of the pmi gene that encodes phosphomannose isomerase, which converts mannose-6-phosphate to fructose-6-phosphate. Hypocotyl explants from 4–5-day-old seedlings of Chinese cabbage inbred lines were pre-cultured for 2–3 days and then infected with Agrobacterium. Two genes (l-guluno-γ-lactone oxidase, GLOase, and jasmonic methyl transferase, JMT) were transformed into Chinese cabbage using the transformation procedure developed in this study. We found that supplementing the media with 7 g l−1 mannose and 2% sucrose provides the necessary conditions for the selection of transformed plants from nontransformed plants. The transformation rates were 1.4% for GLOase and 3.0% for JMT, respectively. The Southern blot analysis revealed that several independent transformants (T 0) were obtained from each transgene. Three different inbred lines were transformed, and most of the T 1 plants had normal phenotypes. The transformation method presented here for Chinese cabbage using mannose selection is efficient and reproducible, and it can be useful to introduce a desirable gene(s) into commercially useful inbred lines of Chinese cabbage.  相似文献   

4.
A cDNA of the mouse homologue of Escherichia coli N-acetylneuraminic acid (Neu5Ac) synthase (neuB gene product) was cloned by the PCR-based method. The mouse homologue consists of 359 amino acids, and the cDNA sequence displays 33% identity to that of the E. coli Neu5Ac synthase. The recombinant mouse homologue which is transiently expressed in HeLa cells does not exhibit the Neu5Ac synthase activity, which catalyzes condensation of phosphoenolpyruvate (PEP) and N-acetylmannosamine (ManNAc) to synthesize Neu5Ac, but the Neu5Ac 9-phosphate (Neu5Ac-9-P) synthase activity, which catalyzes condensation of PEP and ManNAc 6-phosphate (ManNAc-6-P) to synthesize Neu5Ac-9-P. Thus, the mouse homologue of E. coli Neu5Ac synthase is the Neu5Ac-9-P synthase. The Neu5Ac-9-P synthase is a cytosolic enzyme and ubiquitously distributed in mouse various tissues. Notably, the Neu5Ac-9-P synthase can not catalyze the synthesis of deaminoneuraminic acid (KDN) or KDN-9-P from PEP and Man or ManNAc-6-P, thus suggesting that the enzyme is not involved in the synthesis of KDN. This is consistent with the previous observation that only a very low activity to synthesize KDN is found in mouse B16 cells [Angata, T., et al. (1999) Biochem. Biophys. Res. Commun. 261, 326-331].  相似文献   

5.
A selection system based on the phosphomannose-isomerase gene (pmi) as a selectable marker and mannose as the selective agent was evaluated for the transformation of apple (Malus domestica Borkh.). Mannose is an unusable carbon source for many plant species. After uptake, mannose is phosphorylated by endogenous hexokinases to mannose-6-phosphate. The accumulation of mannose-6-phosphate leads to a block in glycolysis by inhibition of phosphoglucose-isomerase, resulting in severe growth inhibition. The phosphomannose-isomerase is encoded by the manA gene from Escherichia coli and catalyzes the conversion of mannose-6-phosphate to fructose-6-phosphate, an intermediate of glycolysis. Transformed cells expressing the manA gene can therefore utilize mannose as a carbon and survive on media containing mannose. The manA gene along with a β-glucuronidase (GUS) gene was transferred into apple cv. ‘Holsteiner Cox’ via Agrobacterium tumefaciens-mediated transformation. Leaf explants were selected on medium supplemented with different concentrations and combinations of mannose and sorbitol to establish an optimized mannose selection protocol. Transgenic lines were regenerated after an initial selection pressure of 1–2 g l−1 mannose in combination with 30 g l−1 sorbitol followed by a stepwise increase in the mannose concentration up to 10 g l−1 and simultaneous decrease in the sorbitol concentration. Integration of transgenes in the apple genome of selected plants was confirmed by PCR and southern blot analysis. GUS histochemical and chlorophenol red (CPR) assays confirmed activity of both transgenes in regenerated plants. The pmi/mannose selection system is shown to be highly efficient for producing transgenic apple plants without using antibiotics or herbicides.  相似文献   

6.
A new selection system using mannose has been evaluated for germ-line transformation ofArabidopsis thaliana. Although mannose itself has no adverse effects on plant cells, it leads to an accumulation of mannose-6-phosphate, which depletes intracellular stores of inorganic phosphate. This results in an inhibition of plant cell growth. The selection system uses theEscherichia coli pmi gene that encodes phosphomannose isomerase (PMI). Transgenic plants carrying thepmi gene can detoxify mannose-6-phosphate by conversion to fructose-6-phosphate, an intermediate of glycolysis, via the PMI activity. Germ-line transformation ofA. thaliana followed by sterile selection on 2–5 mM of mannose resulted in the isolation of mannose-6-phosphate-resistant progeny in about 2.5% of the treated seed, consistent with transformation rates using other selection schemes. Integrative transformation was confirmed by Southern hybridization. Analysis of PMI enzyme activity demonstrated a 5-fold range of activity levels, although these differences had little effect on the ability to select transformed plants or on the growth of transformed plants on mannose. Finally, mannose selection using thepmi gene could be accomplished in sterile plates and in soil, making this an extremely versatile tool forA. thaliana transformation.  相似文献   

7.
The Mannose 6-phosphate receptor (MPR’s) proteins are important for transporting lysosomal enzymes from trans-golgi to the pre-lysosomal compartment. These are conserved in the vertebrates from fish to mammals. We have cloned the full length cDNA for the goat MPR 46 protein and compared its sequences to the other known vertebrate MPR 46 proteins. In the present study the full-length cDNA for the goat MPR 46 protein was expressed in MPR deficient cells. The expressed protein was purified on the multivalent phosphomannan gel in the presence of divalent metal ions. The apparent molecular mass of the expressed protein was found to be ∼46 kDa and also exhibits oligomeric nature as observed in the other species, by using an MSC1 antibody (that recognizes the MPR 46 from molluscs to mammals) as well as with a peptide specific antibody corresponding to amino acid residues (218–237) of the cytoplasmic tail of human MPR 46 protein. Furthermore the distribution of the expressed protein was visualized by immunofluorescence using MSC1 and LAMP1 antibody. Additionally in the goat MPR 46 expressing cells, the sorting function of the expressed protein to sort cathepsin D to lysosomes was studied by confocal microscopy using cathepsin D antiserum and LAMP1 antibody. The binding of goat MPR 46 to cathepsin D was shown in far Western blotting and the mannose 6-phosphate dependent binding was shown by co-immunoprecipitation.  相似文献   

8.
Mannose is an unusable carbon source for many plants. In our study we compared the effects of mannose and sucrose on growth and sucrose levels in azuki bean (Vigna angularis) cells grown in liquid media and in solid media. The suspension cells grew actively in a liquid medium containing 90 mM sucrose but not in that containing 90 mM mannose, where the intracellular sucrose levels were reduced to 20% or less of those in sucrose-grown cells. These results suggested that the limited conversion of mannose to sucrose resulted in cell growth inhibition. When sucrose-grown suspension cells (1 × 105) were transferred onto agar medium containing mannose, they grew little initially, but, after a month lag period, they started to form many callus colonies at a high apparent variation rate (1.3 × 10−3). Time-course studies for sugar and enzyme analysis revealed that the mannose-accommodated cells were capable of converting mannose to sucrose, with enhanced phosphomannose isomerase activity. The mannose-accommodated cells actively grew in liquid medium with sucrose but lost their ability to grow with mannose again, suggesting a specific trait of callus culture for mannose utilization. The possible differences in the metabolic activities and other physiological characteristics are discussed between callus and suspension cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Transgenic torenia plants were obtained using the selectable marker gene phosphomannose isomerase (manA), which encodes the enzyme phosphomannose isomerase (PMI) to enable selection of transformed cells on media containing mannose. We found that shoot organogenesis in torenia leaf explants was effectively suppressed on medium supplemented with mannose, which indicated that torenia cells had little or no PMI activity and could not utilize mannose as a carbon source. Leaf pieces from in vitro-germinated plants were inoculated with Agrobacterium tumefaciens EHA105 containing the binary vector pKPJ with both hpt and ManA genes, and subsequently selected on shoot induction (SI) medium (half strength MS basal + 4.4 μM BA + 0.5 μM NAA) supplemented with 20 g l−1 mannose and 5 g l−1 sucrose as carbon sources. Transformed plants were confirmed by PCR and Southern blot. The transgene expression was evaluated using Northern blot and the chlorophenol red assay. The transformation efficiency ranged from 7% to 10%, which is 1–3% higher than that obtained by selection with hygromycin. This system provides an efficient manner for selecting transgenic flower plants without using antibiotics or herbicides.  相似文献   

10.
Mammalian mannose 6-phosphate receptors (MPR 300 and 46) mediate transport of lysosomal enzymes to lysosomes. Recent studies established that the receptors are conserved throughout vertebrates. Although we purified the mollusc receptors and identified only a lysosomal enzyme receptor protein (LERP) in the Drosophila melanogaster, little is known about their structure and functional roles in the invertebrates. In the present study, we purified the putative receptors from the highly evolved invertebrate, starfish, cloned the cDNA for the MPR 46, and expressed it in mpr(−/−) mouse embryonic fibroblast cells. Structural comparison of starfish receptor sequences with other vertebrate receptors gave valuable information on its extensive structural homology with the vertebrate MPR 46 proteins. The expressed protein efficiently sorts lysosomal enzymes within the cells establishing a functional role for this protein. This first report on the invertebrate MPR 46 further confirms the structural and functional conservation of the receptor not only in the vertebrates but also in the invertebrates.  相似文献   

11.
Analysis and distribution of Pb and Cd in different mice organs, including the liver, kidney, spleen, heart, and blood, were evaluated before and after treatment with different aqueous concentrations of Nigella sativa (1.25–10.0 mg/L). Atomic absorption spectrometry was used for analysis of Pb and Cd in these organs. Results indicated that the Pb in the unexposed group of mice without treatment with N. sativa (black cumin) was in the following order: liver>heart>spleen>kidney, and the distribution of Pb in various organs of the unexposed group was not affected significantly by N. sativa. Moreover, results of mice exposed for Pb show that the Pb concentrations in different organs were reduced significantly (p<0.05) by 72.9%, 63.4%, 72.3%, 66.7%, and 39.5% at a dose of 10 mg/L of N. sativa for the liver, kidney, heart, spleen, and blood, respectively. Furthermore, the distribution of Cd in the unexposed Cd group of mice without treatment with N. sativa was in the following order: kidney>heart>spleen>liver. Nigella sativa at 10 mg/L reduced Cd levels in mice exposed to Cd by 75.5%, 83.3%, 47.0%, 95.3%, and 100% in the liver, kidney, heart, spleen, and blood, respectively, whereas blood Cd concentrations were lowered to below the detection limit of 0.05 μg/L. A 28-d exposure of mice to a Cd−Pb mixture at a concentration of 1 ppm in drinking water induced a highly significant inhibition (p<0.0001) of antibody response to human serum (80.5%). The suppressed immune responses in mice pretreated with the Cd−Pb mixture were reversed by 43.1% and 38.9% in the presence of 1.25 and 2.5 mg/mL of N. sativa, respectively, whereas higher concentrations (5–10 mg/mL) of N. sativa increased the immunosuppression significantly. Nigella sativa at 1.25–10 mg/mL did not induce any significant modulation of the antibody response in unexposed mice.  相似文献   

12.
Although the deaminoneuraminic acid or KDN glycotope (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) is expressed in glycoconjugates that range in evolutionary diversity from bacteria to man, there is little information as to how this novel sugar is synthesized. Accordingly, biosynthetic studies were initiated in trout testis, an organ rich in KDN, to determine how this sialic acid is formed. These studies have shown that the pathway consists of the following three sequential reactions: 1) Man + ATP --> Man-6-P + ADP; 2) Man-6-P + PEP --> KDN-9-P + P(i); 3) KDN-9-P --> KDN + P(i). Reaction 1, catalyzed by a hexokinase, is the 6-O-phosphorylation of mannose to form D-mannose 6-phosphate (Man-6-P). Reaction 2, catalyzed by KDN-9-phosphate (KDN-9-P) synthetase, condenses Man-6-P and phosphoenolpyruvate (PEP) to form KDN-9-P. Reaction 3, catalyzed by a phosphatase, is the dephosphorylation of KDN-9-P to yield free KDN. It is not known if a kinase specific for Man (Reaction 1) and a phosphatase specific for KDN-9-P (Reaction 3) may exist in tissues actively synthesizing KDN. In this study, the KDN-9-P synthetase, an enzyme that has not been previously described, was identified as at least one key enzyme that is specific for the KDN biosynthetic pathway. This enzyme was purified 50-fold from rainbow trout testis and characterized. The molecular weight of the enzyme was estimated to be about 80,000, and activity was maximum at neutral pH in the presence of Mn(2+). N-Acetylneuraminic acid 9-phosphate (Neu5Ac-9-P) synthetase, which catalyzes the condensation of N-acetyl-D-mannosamine 6-phosphate and phosphoenol-pyruvate to produce Neu5Ac-9-P, was co-purified with the KDN-9-P synthetase. Substrate competition experiments revealed, however, that syntheses of KDN-9-P and Neu5Ac-9-P were catalyzed by two separate synthetase activities. The significance of these studies takes on added importance with the recent discovery that the level of free KDN is elevated in human fetal cord but not matched adult red blood cells and in ovarian cancer cells (Inoue, S., Lin, S-L., Chang, T., Wu, S-H., Yao, C-W., Chu, T-Y., Troy, F. A., II, and Inoue, Y. (1998) J. Biol. Chem. 273, 27199-27204). This unexpected finding emphasizes the need to understand more fully the role that free KDN and KDN-glycoconjugates may play in normal hematopoiesis and malignancy.  相似文献   

13.
Mannose 6-phosphate receptor proteins (MPR 300 and 46) in mammals have been shown to mediate transport of lysosomal enzymes to lysosomes intracellularly. Both receptors are also expressed on the plasma membrane. Only MPR 300 protein on the plasma membrane has been shown to be a multifunctional protein which in addition to binding mannose 6-phosphate containing proteins also binds human insulin-like growth factor-II (IGF-II) causing its internalization [Hille-Rehfeld, A. (1995) Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. Biochim. Biophys. Acta. 1241: 177–194]. This property has been shown to be exhibited by other mammalian receptors but not by the chicken and frog receptors. In a recent study however it was shown that the fish embryo MPR 300 binds human IGF-II. [Mendez, E., Planas, J.V., Castillo, J., Navarro, I. and Gutierrez, J. (2001) Identification of a type II insulin-like growth factor receptor in fish embryos. Endocrinology, 142: 1090–1097]. In the present study, we demonstrate that the purified goat and chicken liver receptors bind human IGF-II by employing cross-linking experiments (purified receptors and radiolabeled IGF-II) and by ligand blotting (using purified receptors and biotinylated IGF-II). Further CEF cells (chicken embryonic fibroblasts) that are known to contain the putative MPR 300 protein were employed to demonstrate that the CEF cell receptor binds human IGF-II.  相似文献   

14.
Analysis and distribution of Pb and Cd in different mice organs including liver, kidney, spleen, heart and blood were evaluated after treatment with different aqueous concentrations of garlic (12.5–100 mg/l). Atomic absorption spectrometry (AAS) was used for analysis of Pb and Cd in these organs. Treatment of Cd–Pb exposed mice with garlic (12.5–100 mg/l) reduced Pb concentrations by 44.65, 42.61, 38.4, 47.56, and 66.62% in liver, kidney, heart, spleen and blood respectively. Moreover, garlic reduced Cd levels by 72.5, 87.7, 92.6, 95.6, and 71.7% in liver, kidney, heart, spleen and blood respectively. The suppressed immune responses in mice pretreated with Cd–Pb mixture were reversed by 48.85, 55.82, 81.4 and 90.7 in the presence of 100, 50, 25, and 12.5 mg/ml of garlic extract.  相似文献   

15.
Inositol monophosphates from the mycelia ofPholiota nameko were analyzed by gas chromatography. Mycelia were found to contain inositol-1-phosphate and inositol-2-phosphate isomers in a proportion of 7∶1, the amounts being 50 and 7.2 pmol/mg dry weight, respectively. We assume that inositol-2-phosphate is a hydrolysis product of the phytase reaction with phosphatase. It was also found that the amount of inositol monophosphates in the mycelia was affected by the concentration of inorganic phosphate in the medium.  相似文献   

16.
A novel murine glycerol-3-phosphate acyltransferase-like protein 1 (named xGPAT1) has been cloned. The mouse xGPAT1 gene is located on mouse Chromosome 2, spans >19 kb, and consists of at least 23 exons. The protein is 32% identical and 72% similar to mouse mitochondrial GPAT (mtGPAT) on the amino acid level. Sequencing analysis confirmed that xGPAT1 has a 2403-bp open reading frame (ORF) that encodes an 801-amino acid protein with an estimated molecular mass of 89.1 kDa. A hydropathy plot of the deduced xGPAT1 protein showed a high degree of similarity with that of the mtGPAT protein. Using 5′-rapid amplification of cDNA ends, two alternate, untranslated exon 1 (1a and b) isoforms were obtained, generating variants xGPAT1-v1 and xGPAT1–v2. xGPAT1-v1 is expressed in mouse heart, liver, spleen, kidney and murine inner medullary collecting duct 3 (mIMCD3) cells, while xGPAT1-v2 is expressed in mouse liver, spleen, kidney, white and brown adipose tissues and 3T3-L1 pre- and post-adipocytes. xGPAT1 was distributed in the membrane fraction and showed GPAT activity when epitope-tagged xGPAT1 was expressed in Chinese hamster ovary (CHO)-K1 cells.  相似文献   

17.
A large-scale production system of GDP-fucose (GDP-Fuc) and fucosylated oligosaccharides was established by the combination of recombinant Escherichia coli cells overexpressing GDP-Fuc biosynthetic genes and Corynebacterium ammoniagenes cells. E. coli cells overexpressed the genes for glucokinase, phosphomannomutase, mannose-1-phosphate guanylyltransferase, GDP-mannose (GDP-Man) dehydratase, and GDP-4-keto-6-deoxy-mannose (GKDM) epimerase/reductase as well as phosphoglucomutase and phosphofructokinase. C. ammoniagenes contributed to the formation of GTP from GMP. GDP-Fuc accumulated to 29 mM (18.4 g l−1) after a 22-h reaction starting with GMP and mannose through introducing the two-step reaction to overcome the inhibition of GDP-Fuc on GDP-Man dehydratase activity. When E. coli cells overexpressing the α1,3-fucosyltransferase gene of Helicobacter pylori were put into the GDP-Fuc production system, Lewis X [Galβ1–4(Fucα1–3)GlcNAc] was produced at an amount of 40 mM (21 g l−1) for 30 h from GMP, mannose, and N-acetyl lactosamine. The production system through bacterial coupling can be applied to the industrial manufacture of fucosylated oligosaccharides. Journal of Industrial Microbiology & Biotechnology (2000) 25, 213–217. Received 01 May 2000/ Accepted in revised form 20 July 2000  相似文献   

18.
Structural similarities between ferritins and bacterioferritins have been extensively demonstrated. However, there is an essential difference between these two types of ferritins: whereas bacterioferritins bind haem, in-vivo, as Fe(II)-protoporphyrin IX (this haem is located in a hydrophobic pocket along the 2-fold symmetry axes and is liganded by two axial Met 52 residues), eukaryotic ferritins are non-haem iron proteins. However, in in-vivo studies, a cofactor has been isolated from horse spleen apoferritin similar to protoporphyrin IX; in in-vitro experiments, it has been shown that horse spleen apoferritin is able to interact with haemin (Fe(III)-protoporphyrin IX). Studies of haemin incorporation into horse spleen apoferritin have been carried out, which show that the metal free porphyrin is found in a pocket similar to that which binds haem in bacterioferritins (Précigoux et al. 1994 Acta Cryst D50, 739–743). A mechanism of demetallation of haemin by L-chain apoferritins was subsequently proposed (Crichton et al. 1997 Biochem 36, 15049–15054) which involved four Glu residues (E 53,56,57,60) situated at the entrance of the hydrophobic pocket and appeared to be favoured by acidic conditions. To verify this mechanism, these four Glu have been mutated to Gln in recombinant horse L-chain apoferritin. We report here the EPR spectra of recombinant horse L-chain apoferritin and its mutant with haemin in basic and acidic conditions. These studies confirm the ability of recombinant L-chain apoferritin and its mutant to incorporate and demetallate the haemin in acidic and basic conditions.  相似文献   

19.
An efficient method for enzymatic-selective synthesis of dilauryl mannoses was developed using lipase-catalyzed condensation of d-mannose and lauric acid in a simultaneous reaction–extraction system. The highest equilibrium conversion of diesters of 51% (1,6-diester: 14%; 3,6-diester: 18%; 4,6-diester: 19%) and the total conversion of mono and dilauryl mannoses of 76% were achieved at the n-hexane/acetonitrile ratio of 1:1, the molar ratio of lauric acid to mannose of 4:1, 60 g/l molecular sieves and 5 g/l lipase at 50°C for 72 h in 15 ml SRE system. The new system will be important for the synthesis of dilauryl mannoses.  相似文献   

20.
A receptor for angiostatin was identified on the surface of endothelial cells as F1–F0 ATP synthase (Moser et al., 1999). Proc. Natl. Acad. Sci. U.S.A. 96, 2811–2816. This ectopic ATP synthase catalyzes ATP synthesis and is inhibited by angiostatin over a wide pH range. Endothelial cells grown at normal pH suffer no ill effects from this angiostatin-mediated inhibition of ATP synthase, whereas endothelial cells grown at low, tumor-like extracellular pH cannot maintain a normal intracellular pH and die. Angiostatin inhibits both ATP synthesis and ATP hydrolysis (Moser et al., 2001) and interferes with intracellular pH regulation (Wahl and Grant, 2002; Wahl et al., 2002). Although angiostatin administered intravenously is cleared from the circulation in a matter of minutes, angiostatin-mimetics that are more stable have potential for clinical application. An angiostatin-mimetic activity has recently been observed using a polyclonal antibody against the β catalytic subunit of ATP synthase. In order to explore the mechanism of action of angiostatin and its mimetics, further work needs to be done to evaluate clinical applicability, specificity, and contraindications for this class of therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号