首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of 12-0-tetradecanoylphorbol-13-acetate (TPA) to mouse skin leads to the induction of ornithine decarboxylase (EC 4.1.1.17) and the accumulation of putrescine. The relevance of these TPA-induced changes to the mechanism of tumor promotion was determined using α-difluoromethylornithine, an irreversible inhibitor of ornithine decarboxylase. α-Difluoromethylornithine applied to the skin of mice or administered in drinking water in conjunction with applications of TPA to 7,12-dimethylbenz[a]anthracene-initiated mouse skin inhibited the formation of mouse skin papillomas by 50 and 90% respectively; TPA-induced ornithine decarboxylase activity and the accumulation of putrescine were almost completely inhibited.  相似文献   

2.
C Danzin  M J Jung  J Grove  P Bey 《Life sciences》1979,24(6):519-524
α-Difluoromethylornithine (RMI 71.782), an enzyme-activated irreversible inhibitor of ornithine decarboxylase (E.C. 4.1.1.17) in vitro, causes a rapid, long-lasting, dose-dependent decrease of ornithine decarboxylase activity in prostate and, to a lesser extent, in thymus and testis of rats when injected intraperitoneally. Repeated doses (100 mg/kg or 1 g/kg) of α-difluoromethylornithine given to rats for two weeks markedly decreased polyamine concentrations in several rat tissues and selectively slowed down growth of ventral prostate and of thymus.  相似文献   

3.
M H O'Leary  R M Herreid 《Biochemistry》1978,17(6):1010-1014
Ornithine decarboxylase from Lactobacillus 30a is gradually inactivated by treatment with alpha-methylornithine, but activity is restored by treatment of the inactivated enzyme with pyridoxal phosphate. Inactivation of the enzyme is associated with formation of pyridoxamine phosphate and 5-amino-2-pentanone, alpha-Methylornithine is decarboxylated by the enzyme about 6000 times more slowly than is ornithine under the same conditions. These observations provide an explanation for the previously observed inhibition of ornithine decarboxylase by alpha-methylornithine [M. M. Adbel-Monem, N. E. Newton, and C. E. Weeks (1974), J. Med. Chem. 17, 4447]: alpha-Methylornithine undergoes a decarboxylation-dependent transamination as a result of incorrect protonation of the quinoid intermediate which is formed by decarboxylation of the enzyme-bound pyridoxal phosphate-substrate Schiff base. This protonation produces inactive enzyme. Decarboxylation of ornithine by this enzyme produces a small amount of 4-aminobutanal, presumably also by decarboxylation-dependent transamination.  相似文献   

4.
1. The relationship between synthesis of putrescine, human cytomegalovirus DNA synthesis, cell DNA synthesis, and human cytomegalovirus replication has been studied. 2. Stimulation of ornithine decarboxylase activity by shifting low serum-arrested whole human embryo cells to high serum medium is inhibited more than 99% by 2.5 mM DL-alpha-difluoromethylornithine. The addition of DL-alpha-difluoromethylornithine to human cells arrested in low serum and subsequently stimulated by the addition of fresh high serum-containing medium, causes a greater percent inhibition of ornithine decarboxylase activity than when the drug is added to growing human cells. 3. Increased ornithine decarboxylase activity produced by infection of low serum-arrested human cells was inhibited by 5.0 mM of DL-alpha-difluoromethylornithine. However, at a concentration of 5.0 mM, neither DL-alpha-methylornithine nor DL-alpha-difluoromethylornithine affected human cytomegalovirus growth or was toxic to these cells. These data suggest that the increased putrescine synthesis produced by infection is not required for virus replication. 4. The addition of 5.0 mM DL-alpha-difluoromethylornithine had no effect on human cytomegalovirus DNA synthesis or human cytomegalovirus-induced stimulation of cell DNA synthesis. However, 5.0 mM DL-alpha-difluoromethylornithine significantly reduced the stimulation of cell DNA synthesis caused by treatment with mock infecting fluid.  相似文献   

5.
DL-alpha-Monofluoromethylputrescine (compound R.M.I. 71864) is an enzyme-activated irreversible inhibitor of the biosynthetic enzyme ornithine decarboxylase from Escherichia coli. This compound, however, has much less effect in vitro on ornithine decarboxylase obtained from Pseudomonas aeruginosa. These findings are in contrast with those previously found with the substrate analogue DL-alpha-difluoromethylornithine (compound R.M.I. 71782). The K1 of the DL-alpha-monofluoromethylputrescine for the E. coli ornithine decarboxylase is 110 microM, and the half-life (t1/2) calculated for an infinite concentration of inhibitor is 2.1 min. When DL-alpha-monofluoromethylputrescine is used in combination with DL-alpha-difluoromethylarginine (R.M.I. 71897), an irreversible inhibitor of arginine decarboxylase, in vivo in E. coli, both decarboxylase activities are inhibited (greater than 95%) but putrescine levels are only decreased to about one-third of control values and spermidine levels are slightly increased.  相似文献   

6.
alpha-Difluoromethylornithine is an effective inhibitor of polyamine biosynthesis because of its specificity for ornithine decarboxylase and the fact that its attachment to this enzyme is considered to be irreversible. We have found, however, that ornithine decarboxylase inactivated with this inhibitor in intact cells, as well as purified enzyme inactivated in vitro, both are capable of releasing this inhibitor and recovering enzyme activity. This reactivation can be initiated by freezing of inactivated enzyme samples in the presence of reducing agents at -7 or -20 degrees C and can be partially induced at 37 degrees C. These results reveal an unexpected lability of this enzyme-inhibitor complex that needs to be considered in future experimental designs.  相似文献   

7.
Cysteine-dependent inactivation of hepatic ornithine decarboxylase.   总被引:2,自引:1,他引:1       下载免费PDF全文
When rat liver homogenate or its postmitochondrial supernatant was incubated with L-cysteine, but not D-cysteine, ornithine decarboxylase (ODC) lost more than half of its catalytic activity within 30 min and, at a slower rate, its immunoreactivity. The inactivation correlated with production of H2S during the incubation. These changes did not occur in liver homogenates from vitamin B6-deficient rats. A heat-stable inactivating factor was found in both dialysed cytosol and washed microsomes obtained from the postmitochondrial supernatant incubated with cysteine. The microsomal inactivating factor was solubilized into Tris/HCl buffer, pH 7.4, containing dithiothreitol. Its absorption spectrum in the visible region resembled that of Fe2+ X dithiothreitol in Tris/HCl buffer. On the other hand FeSO4 inactivated partially purified ODC in a similar manner to the present inactivating factor. During the incubation of postmitochondrial supernatant with cysteine, there was a marked increase in the contents of Fe2+ loosely bound to cytosolic and microsomal macromolecules. Furthermore, the content of such reactive iron in the inactivating factor preparations was enough to account for their inactivating activity. These data suggested that H2S produced from cysteine by some vitamin B6-dependent enzyme(s) converted cytosolic and microsomal iron into a reactive loosely bound form that inactivated ODC.  相似文献   

8.
The subcellular localisation of ornithine decarboxylase and of its synthetic irreversible inhibitor, α-difluoromethylornithine, was investigated in control rat livers and in livers of animals in which the enzyme was induced by partial hepatectomy or by treatment with dexamethasone. Ornithine decarboxylase activity was distributed in normal rat liver between the nuclear (40%, mainly nucleolar) and the cytosolic (43%) fractions. Cytosolic liver ornithine decarboxylase was markedly induced after partial hepatectomy or treatment with dexamethasone, whereas the enzyme associated with the nuclear fraction was not induced by these procedures. The irreversible inhibitor was found only in the cytosol fraction and was totally absent from the nuclear fraction.  相似文献   

9.
10.
When spermidine, putrescine or 1,3-diaminopropane was injected (12.5 mumol/100 g body weight) into rats 1 h before thyrotropin, ornithine decarboxylase activity was increased by 75--150% over control levels. However, when greater than or equal to 75 mumol polyamine/100 g body weight was injected, thyrotropin-activated activity was inhibited by 70--95%. Multiple polyamine injections inhibited goitrogen-induced activity and gland weight increase by approx 35%. The polyamines also inhibited thyrotropin-activated rat thyroid ornithine decarboxylase in vitro in a dose-related fashion, with 50% inhibition occurring at 2--5 . 10(-4)M. The inhibition was not due to a direct effect on the enzyme. No stimulation was seen with low concentrations of polyamine. The polyamines had no effect on in vitro thyroid protein/RNA synthesis or glucose oxidation but had a biphasic effect on plasma membrane adenylate cyclase activity. A protein inhibitor to thyroid ornithine decarboxylase was generated in vivo by multiple injections of the polyamines into rats and in vitro by incubating bovine thyroid slices with 2--10 mM polyamine. The inhibitor was non-dialyzable, destroyed by boiling, and its formation was blocked in a dose-related fashion by cycloheximide. We conclude that: (1) thyroid ornithine decarboxylase is subject not only to positive control, but is also negatively regulated by its end-products, the polyamines, which induce a protein inhibitor to ornithine decarboxylase; (2) since gland growth is also inhibited under these conditions, the polyamine effect on thyroid ornithine decarboxylase may be biologically significant.  相似文献   

11.
Nucleotide sequence of the mouse ornithine decarboxylase gene.   总被引:6,自引:3,他引:3  
  相似文献   

12.
A macromolecular factor that inhibits the activity of the antizyme to ornithine decarboxylase (ODC) was found in rat liver extracts. The factor, 'antizyme inhibitor', was heat-labile, non diffusable and of similar molecular size to ODC. The antizyme inhibitor re-activated ODC that had been inactivated by antizyme, apparently by replacing ODC in a complex with antizyme. Therefore the antizyme inhibitor can be used to assay the amount of inactive ODC-antizyme complex formed in vitro. When assayed by this method, the complex was shown to be eluted before ODC from a Sephadex G-100 column. Significant increase in ODC activity was observed when the antizyme inhibitor was added to crude liver extracts from rats that had been injected with 1,3-diaminopropane to cause decay of ODC activity, suggesting the presence of inactive ODC-antizyme complex in the extracts.  相似文献   

13.
In the present study, the effect of D,L-alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC), on Friend's murine erythroleukemia (MEL) cell differentiation is investigated. DFMO was able to induce differentiation of MEL cells in culture as determined by haemoglobin (Hb) content and percentage of cells synthesizing Hb detected by benzidine staining. DFMO at a concentration of 2 mM resulted in about 70% benzidine-positive cells on the fifth day. There was a time-dependent increase in the percentage of benzidine-positive cells starting from day three. However, only a 24 h presence of DFMO in the medium was required to induce differentiation suggesting that DFMO switches on a pathway during this period leading to terminal differentiation of MEL cells. DFMO induced differentiation of MEL cells was sensitive to dexamethasone and 5-bromo-2'-deoxyuridine.  相似文献   

14.
Ornithine decarboxylase (ODC) and the polyamines are thought to play a role in maturation of mammalian tissues. Daily postnatal administration of alpha-difluoromethylornithine (DFMO, a specific inhibitor of ODC) to newborn rats caused organ-specific deficits in tissue weight gain, with brain and kidney as the major targets. Subnormal organ weights were associated with deficits in the levels of nucleic acids and proteins in the affected tissues, and examination of the synthetic rates of DNA ([3H]thymidine incorporation), RNA ([3H]uridine incorporation) and protein ([14C]leucine incorporation) confirmed that macromolecule synthesis was inhibited in DFMO-treated pups. The time of onset of effect of DFMO on the synthesis of nucleic acids and proteins was the same as that reported for depletion of polyamines by this treatment. Potential adverse effects of DFMO on cell survival were also assessed by labeling DNA with [3H]thymidine on day 3 and examining retention of label 12 days later; DFMO did not cause an increase in cell death. In contrast to the sensitivity of brain and kidney to postnatally administered DFMO, development of cardiac tissue was relatively resistant to growth inhibition despite polyamine depletion. The organ specificity of effect of DFMO results, in part, from the different timetables for cellular events in tissue development displayed by each organ type; administration of DFMO earlier in development (during days 15 to 17 of gestation) did produce deficiencies in cardiac growth and nucleic acid levels similar to those which had been seen for brain and kidney. These data support the view that polyamines play a key role in cell replication, differentiation and growth during critical periods of mammalian organ development through their regulation of DNA, RNA, and protein synthesis.  相似文献   

15.
16.
17.
Studies on the mechanisms of ornithine decarboxylase in vitro inactivation   总被引:5,自引:0,他引:5  
Hydrocortisone-induced rat liver ornithine decarboxylase appears quite stable in the soluble fraction of the homogenate incubated at 37 degrees C. In contrast, the incubation of the whole homogenate causes a rapid loss of activity. The ornithine decarboxylase-inactivating capacity appears mainly bound to microsomes. Lysosomes seem to play a role only after the microsome-induced inactivation. Different reducing agents (dithiothreitol, NADPH, NADH, GSH) are effective both in preventing and in reversing ornithine decarboxylase inactivation. NADPH is peculiar in that it can reactivate the enzyme at very low concentrations. Oxidized glutathione potentiates the inactivating effect of microsomes. On the basis of present results it is suggested that ornithine decarboxylase may be reversibly inactivated through microsome-catalyzed formation of mixed or enzyme-enzyme disulfides and that NADPH plays a crucial role in ornithine decarboxylase reactivation, probably by cytosolic reductase(s).  相似文献   

18.
Hsieh JY  Yang JY  Lin CL  Liu GY  Hung HC 《PloS one》2011,6(9):e24366
Antizyme (AZ) is a protein with 228 amino acid residues that regulates ornithine decarboxylase (ODC) by binding to ODC and dissociating its homodimer, thus inhibiting its enzyme activity. Antizyme inhibitor (AZI) is homologous to ODC, but has a higher affinity than ODC for AZ. In this study, we quantified the biomolecular interactions between AZ and ODC as well as AZ and AZI to identify functional AZ peptides that could bind to ODC and AZI and inhibit their function as efficiently as the full-length AZ protein. For these AZ peptides, the inhibitory ability of AZ_95-228 was similar to that of AZ_WT. Furthermore, AZ_95-176 displayed an inhibition (IC(50): 0.20 μM) similar to that of AZ-95-228 (IC(50): 0.16 μM), even though a large segment spanning residues 177-228 was deleted. However, further deletion of AZ_95-176 from either the N-terminus or the C-terminus decreased its ability to inhibit ODC. The AZ_100-176 and AZ_95-169 peptides displayed a noteworthy decrease in ability to inhibit ODC, with IC(50) values of 0.43 and 0.37 μM, respectively. The AZ_95-228, AZ_100-228 and AZ_95-176 peptides had IC(50) values comparable to that of AZ_WT and formed AZ-ODC complexes with K(d,AZ-ODC) values of 1.5, 5.3 and 5.6 μM, respectively. Importantly, our data also indicate that AZI can rescue AZ peptide-inhibited ODC enzyme activity and that it can bind to AZ peptides with a higher affinity than ODC. Together, these data suggest that these truncated AZ proteins retain their AZI-binding ability. Thus, we suggest that AZ_95-176 is the minimal AZ peptide that is fully functioning in the binding of ODC and AZI and inhibition of their function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号