首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.  相似文献   

2.
The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.  相似文献   

3.
Understanding the mechanisms of protein folding requires knowledge of both the energy landscape and the structural dynamics of a protein. We report a neutron-scattering study of the nanosecond and picosecond dynamics of native and the denatured alpha-lactalbumin. The quasielastic scattering intensity shows that there are alpha-helical structure and tertiary-like side-chain interactions fluctuating on sub-nanosecond time-scales under extremely denaturing conditions and even in the absence of disulfide bonds. Based on the length-scale dependence of the decay rate of the measured correlation functions, the nanosecond dynamics of the native and the variously denatured proteins have three dynamic regimes. When 0.051.0 A(-1) is a regime that displays the local dynamic behavior of individual residues, Gamma proportional to Q(1.8+/-0.3). The picosecond time-scale dynamics shows that the potential barrier to side-chain proton jump motion is reduced in the molten globule and in the denatured proteins when compared to that of the native protein. Our results provide a dynamic view of the native-like topology established in the early stages of protein folding.  相似文献   

4.
The dynamic aspect of proteins is fundamental to understanding protein stability and function. One of the goals of NMR studies of side-chain dynamics in proteins is to relate spin relaxation rates to discrete conformational states and the timescales of interconversion between those states. Reported here is a physical analysis of side-chain dynamics that occur on a timescale commensurate with monitoring by 2H spin relaxation within methyl groups. Motivated by observations made from tens-of-nanoseconds long MD simulations on the small protein eglin c in explicit solvent, we propose a simple molecular mechanics-based model for the motions of side-chain methyl groups. By using a Boltzmann distribution within rotamers, and by considering the transitions between different rotamer states, the model semi-quantitatively correlates the population of rotamer states with ‘model-free’ order parameters typically fitted from NMR relaxation experiments. Two easy-to-use, analytical expressions are given for converting S2axis’ values (order parameter for C–CH3 bond) into side-chain rotamer populations. These predict that S2axis’ values below 0.8 result from population of more than one rotameric state. The relations are shown to predict rotameric sampling with reasonable accuracy on the ps–ns timescale for eglin c and are validated for longer timescales on ubiquitin, for which side-chain residual dipolar coupling (RDC) data have been collected.  相似文献   

5.
Blue-light photoreceptors containing light–oxygen–voltage (LOV) domains regulate a myriad of different physiological responses in both eukaryotes and prokaryotes. Their light sensitivity is intricately linked to the photochemistry of the non-covalently bound flavin mononucleotide (FMN) chromophore that forms a covalent adduct with a conserved cysteine residue in the LOV domain upon illumination with blue light. All LOV domains undergo the same primary photochemistry leading to adduct formation; however, considerable variation is found in the lifetime of the adduct state that varies from seconds to several hours. The molecular mechanism underlying this variation among the structurally conserved LOV protein family is not well understood. Here, we describe the structural characterization of PpSB1-LOV, a very slow cycling full-length LOV protein from the Gram-negative bacterium Pseudomonas putida KT2440. Its crystal structure reveals a novel dimer interface that is mediated by N- and C-terminal auxiliary structural elements and a unique cluster of four arginine residues coordinating with the FMN-phosphate moiety. Site-directed mutagenesis of two arginines (R61 and R66) in PpSB1-LOV resulted in acceleration of the dark recovery reaction approximately by a factor of 280. The presented structural and biochemical data suggest a direct link between structural features and the slow dark recovery observed for PpSB1-LOV. The overall structural arrangement of PpSB1-LOV, together with a complementary phylogenetic analysis, highlights a common ancestry of bacterial LOV photoreceptors and Per-ARNT-Sim chemosensors.  相似文献   

6.
We elucidate the physics of protein dynamical transition via 10-100-ns molecular dynamics simulations at temperatures spanning 160-300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential character of backbone structural relaxations. One timescale is attributed to the collective segmental motions and the other to local relaxations. The former is well defined by a single-exponential, nanosecond decay, operative at all temperatures. The latter is described by a set of processes that display a distribution of timescales. Although their average remains on the picosecond timescale, the distribution is markedly contracted at the onset of the transition. It is shown that the collective motions impose bounds on timescales spanned by local dynamical processes. The nonstationary character below the transition implicates the presence of a collection of substates whose interactions are restricted. At these temperatures, a wide distribution of local-motion timescales, extending beyond that of nanoseconds, is observed. At physiological temperatures, local motions are confined to timescales faster than nanoseconds. This relatively narrow window makes possible the appearance of multiple channels for the backbone dynamics to operate.  相似文献   

7.
Stem–loop II of U1 snRNA and Stem–loop IV of U2 snRNA typically have 10 or 11 nucleotides in their loops. The fluorescent nucleobase 2-aminopurine was used as a substitute for the adenines in each loop to probe the local and global structures and dynamics of these unusually long loops. Using steady-state and time-resolved fluorescence, we find that, while the bases in the loops are stacked, they are able to undergo significant local motion on the picosecond/nanosecond timescale. In addition, the loops have a global conformational change at low temperatures that occurs on the microsecond timescale, as determined using laser T-jump experiments. Nucleobase and loop motions are present at temperatures far below the melting temperature of the hairpin stem, which may facilitate the conformational change required for specific protein binding to these RNA loops.  相似文献   

8.
  1. Competition from invasive species is an increasing threat to biodiversity. In Southern California, the western gray squirrel (Sciurus griseus, WGS) is facing competition from the fox squirrel (Sciurus niger, FS), an invasive congener.
  2. We used spectral methods to analyze 140 consecutive monthly censuses of WGS and FS within a 11.3 ha section of the California Botanic Garden. Variation in the numbers for both species and their synchrony was distributed across long timescales (>15 months).
  3. After filtering out annual changes, concurrent mean monthly temperatures from nearby Ontario Airport yielded a spectrum with a large semi‐annual peak and significant spectral power at long timescales (>28 months). The cospectrum between WGS numbers and temperature revealed a significant negative correlation at long timescales (>35 months). Cospectra also revealed significant negative correlations with temperature at a six‐month timescale for both WGS and FS.
  4. Simulations from a model of two competing species indicate that the risk of extinction for the weaker competitor increases quickly as environmental noise shifts from short to long timescales.
  5. We analyzed the timescales of fluctuations in detrended mean annual temperatures for the time period 1915–2014 from 1218 locations across the continental USA. In the last two decades, significant shifts from short to long timescales have occurred, from <3 years to 4–6 years.
  6. Our results indicate that (i) population fluctuations in co‐occurring native and invasive tree squirrels are synchronous, occur over long timescales, and may be driven by fluctuations in environmental conditions; (ii) long timescale population fluctuations increase the risk of extinction in competing species, especially for the inferior competitor; and (iii) the timescales of interannual environmental fluctuations may be increasing from recent historical values. These results have broad implications for the impact of climate change on the maintenance of biodiversity.
  相似文献   

9.
The photochemical reaction dynamics of a light-oxygen-voltage (LOV) domain from the blue light sensor protein, FKF1 (flavin-binding Kelch repeat F-box) was studied by means of the pulsed laser-induced transient grating method. The observed absorption spectral changes upon photoexcitation were similar to the spectral changes observed for typical LOV domain proteins (e.g., phototropins). The adduct formation took place with a time constant of 6 μs. After this reaction, a significant conformational change with a time constant of 6 ms was observed as a change in the diffusion coefficient. An FKF1-LOV mutant without the conserved loop connecting helices E and F, which is present only in the FKF1/LOV Kelch protein 2/ZEITLUPE family, did not show these slow phase dynamics. This result indicates that the conformational change in the loop region represents a major change in the FKF1-LOV photoreaction.  相似文献   

10.
11.
The U1A/U2B″/SNF family of small nuclear ribonucleoproteins uses a phylogenetically conserved RNA recognition motif (RRM1) to bind RNA stemloops in U1 and/or U2 small nuclear RNA (snRNA). RRMs are characterized by their α/β sandwich topology, and these RRMs use their β-sheet as the RNA binding surface. Unique to this RRM family is the tyrosine-glutamine-phenylalanine (YQF) triad of solvent-exposed residues that are displayed on the β-sheet surface; the aromatic residues form a platform for RNA nucleobases to stack. U1A, U2B″, and SNF have very different patterns of RNA binding affinity and specificity, however, so here we ask how YQF in Drosophila SNF RRM1 contributes to RNA binding, as well as to domain stability and dynamics. Thermodynamic double-mutant cycles using tyrosine and phenylalanine substitutions probe the communication between those two residues in the free and bound states of the RRM. NMR experiments follow corresponding changes in the glutamine side-chain amide in both U1A and SNF, providing a physical picture of the RRM1 β-sheet surface. NMR relaxation and dispersion experiments compare fast (picosecond to nanosecond) and intermediate (microsecond-to-millisecond) dynamics of U1A and SNF RRM1. We conclude that there is a network of amino acid interactions involving Tyr-Gln-Phe in both SNF and U1A RRM1, but whereas mutations of the Tyr-Gln-Phe triad result in small local responses in U1A, they produce extensive microsecond-to-millisecond global motions throughout SNF that alter the conformational states of the RRM.  相似文献   

12.
A neutron-scattering investigation of the internal picosecond dynamics of lysozyme solvated in glycerol as a function of temperature in the range 200–410 K has been undertaken. The inelastic contribution to the measured intensity is characterized by the presence of a bump generally known as “boson peak”, clearly distinguishable at low temperature. When the temperature is increased the quasielastic component of the spectrum becomes more and more intrusive and progressively overwhelms the vibrational bump. This happens especially for T > 345 K when the protein goes through an unfolding process, which leads to the complete denaturation. The quasielastic term is the superposition of two components whose intensities and linewidths have been studied as a function of temperature. The slower component describes motions with characteristic times of ~4 ps corresponding to reorientations of polypeptide side chains. Both the intensity and linewidth of this kind of relaxations show two distinct regimes with a crossover in the temperature range where the melting process occurs, thus suggesting the presence of a dynamical transition correlated to the protein unfolding. Conversely the faster component might be ascribed to the local dynamics of hydrogen atoms caged by the nearest neighbors with characteristic time of ~0.3 ps.  相似文献   

13.
We present a detailed analysis of the picosecond-to-nanosecond motions of green fluorescent protein (GFP) and its hydration water using neutron scattering spectroscopy and hydrogen/deuterium contrast. The analysis reveals that hydration water suppresses protein motions at lower temperatures (<∼200 K), and facilitates protein dynamics at high temperatures. Experimental data demonstrate that the hydration water is harmonic at temperatures <∼180–190 K and is not affected by the proteins’ methyl group rotations. The dynamics of the hydration water exhibits changes at ∼180–190 K that we ascribe to the glass transition in the hydrated protein. Our results confirm significant differences in the dynamics of protein and its hydration water at high temperatures: on the picosecond-to-nanosecond timescale, the hydration water exhibits diffusive dynamics, while the protein motions are localized to <∼3 Å. The diffusion of the GFP hydration water is similar to the behavior of hydration water previously observed for other proteins. Comparison with other globular proteins (e.g., lysozyme) reveals that on the timescale of 1 ns and at equivalent hydration level, GFP dynamics (mean-square displacements and quasielastic intensity) are of much smaller amplitude. Moreover, the suppression of the protein dynamics by the hydration water at low temperatures appears to be stronger in GFP than in other globular proteins. We ascribe this observation to the barrellike structure of GFP.  相似文献   

14.
Although protein folding is a simple outcome of the underlying thermodynamics, arriving at a quantitative and predictive understanding of how proteins fold nevertheless poses huge challenges. Therefore, both advanced experimental and computational methods are continuously being developed and refined to probe and reveal the atomistic details of protein folding dynamics and mechanisms. Herein, we provide a concise review of recent developments in spectroscopic studies of protein folding, with a focus on new triggering and probing methods. In particular, we describe several laser-based techniques for triggering protein folding/unfolding on the picosecond and/or nanosecond timescales and various linear and nonlinear spectroscopic techniques for interrogating protein conformations, conformational transitions, and dynamics.  相似文献   

15.
16.
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3′-OH/5′-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone 15N spin relaxation and 15N,1H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5′-phosphate.  相似文献   

17.
Mean macromolecular dynamics was quantified in vivo by neutron scattering in psychrophile, mesophile, thermophile and hyperthermophile bacteria. Root mean square atomic fluctuation amplitudes determining macromolecular flexibility were found to be similar for each organism at its physiological temperature (~1 Å in the 0.1 ns timescale). Effective force constants determining the mean macromolecular resilience were found to increase with physiological temperature from 0.2 N/m for the psychrophiles, which grow at 4°C, to 0.6 N/m for the hyperthermophiles (85°C), indicating that the increase in stabilization free energy is dominated by enthalpic rather than entropic terms. Larger resilience allows macromolecular stability at high temperatures, while maintaining flexibility within acceptable limits for biological activity.  相似文献   

18.
Collective dynamics are considered to be one of the major properties of soft materials, including biological macromolecules. We present coherent neutron scattering studies of the low-frequency vibrations, the so-called boson peak, in fully deuterated green fluorescent protein (GFP). Our analysis revealed unexpectedly low coherence of the atomic motions in GFP. This result implies a low amount of in-phase collective motion of the secondary structural units contributing to the boson peak vibrations and fast conformational fluctuations on the picosecond timescale. These observations are in contrast to earlier studies of polymers and glass-forming systems, and suggest that random or out-of-phase motions of the β-strands contribute greater than two-thirds of the intensity to the low-frequency vibrational spectra of GFP.  相似文献   

19.
Abstract

The forms and frequencies of atomic dynamics on the pico- and nanosecond timescales are accessible experimentally using incoherent neutron scattering. Molecular dynamics simulations cover the same space and time domains and neutron scattering intensities can be calculated from the simulations for direct comparison with experiment. To illustrate the complementarity of neutron scattering and molecular dynamics we examine measured and simulation-derived elastic incoherent scattering profiles from myoglobin and from the crystalline alanine dipeptide. Elastic incoherent scattering gives information on the geometry of the volume accessible to the atoms in the samples. The simulation-derived dipeptide elastic scattering profiles are in reasonable accord with experiment, deviations being due to the sampling limitations in the simulations and experimental detector normalisation procedures. The simulated dynamics is decomposed, revealing characteristic profiles due to rotational diffusional and translational vibrational motions of the methyl groups. In myoglobin, for which the timescale of the simulation matches more closely that accessible to the experiment, good agreement is seen for the elastic incoherent structure factor. This indicates that the space sampled by the hydrogen atoms in the protein on the timescale <100 ps is well represented by the simulation. Part of the helix atom fluctuations can be described in terms of rigid helix motions.  相似文献   

20.
NMR spin relaxation measurements of picosecond to nanosecond timescale backbone and sidechain fluctuations of protein molecules, and subsequent entropic interpretation yield interesting, but sometimes counterintuitive, insights into proteins. The stabilities of proteins and protein interactions are achieved through enthalpy-entropy compensation, which is partitioned between the backbone and sidechains depending on the nature of the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号