首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Inflammation induced by wound healing or infection activates local vascular endothelial cells to mediate leukocyte rolling, adhesion, and extravasation by up-regulation of leukocyte adhesion molecules such as E-selectin and P-selectin. Obesity-associated adipose tissue inflammation has been suggested to cause insulin resistance, but weight loss and lipolysis also promote adipose tissue immune responses. While leukocyte-endothelial interactions are required for obesity-induced inflammation of adipose tissue, it is not known whether lipolysis-induced inflammation requires activation of endothelial cells. Here, we show that β3-adrenergic receptor stimulation by CL 316,243 promotes adipose tissue neutrophil infiltration in wild type and P-selectin-null mice but not in E-selectin-null mice. Increased expression of adipose tissue cytokines IL-1β, CCL2, and TNF-α in response to CL 316,243 administration is also dependent upon E-selectin but not P-selectin. In contrast, fasting increases adipose-resident macrophages but not neutrophils, and does not activate adipose-resident endothelium. Thus, two models of lipolysis-induced inflammation induce distinct immune cell populations within adipose tissue and exhibit distinct dependences on endothelial activation. Importantly, our results indicate that β3-adrenergic stimulation acts through up-regulation of E-selectin in adipose tissue endothelial cells to induce neutrophil infiltration.  相似文献   

3.
Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes—all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome.  相似文献   

4.
5.
Immune cell infiltration of expanding adipose tissue during obesity and its role in insulin resistance has been described and involves chemokines. However, studies so far have focused on a single chemokine or its receptor (especially CCL2 and CCL5) whereas redundant functions of chemokines have been described. The objective of this work was to explore the expression of chemokines in inflamed adipose tissue in obesity. Human and mouse adipocytes were analyzed for expression of chemokines in response to inflammatory signal (TNF-α) using microarrays and gene set enrichment analysis. Gene expression was verified by qRT-PCR. Chemokine protein was determined in culture medium with ELISA. Chemokine expression was investigated in human subcutaneous adipose tissue biopsies and mechanism of chemokine expression was investigated using chemical inhibitors and cellular and animal transgenic models. Chemokine encoding genes were the most responsive genes in TNF-α treated human and mouse adipocytes. mRNA and protein of 34 chemokine genes were induced in a dose-dependent manner in the culture system. Furthermore, expression of those chemokines was elevated in human obese adipose tissue. Finally, chemokine expression was reduced by NF-κB inactivation and elevated by NF-κB activation. Our data indicate that besides CCL2 and CCL5, numerous other chemokines such as CCL19 are expressed by adipocytes under obesity-associated chronic inflammation. Their expression is regulated predominantly by NF-κB. Those chemokines could be involved in the initiation of infiltration of leukocytes into obese adipose tissue.  相似文献   

6.
L Qiang  L Wang  N Kon  W Zhao  S Lee  Y Zhang  M Rosenbaum  Y Zhao  W Gu  SR Farmer  D Accili 《Cell》2012,150(3):620-632
Brown adipose tissue (BAT) can disperse stored energy as heat. Promoting BAT-like features in white adipose (WAT) is an attractive, if elusive, therapeutic approach to staunch the current obesity epidemic. Here we report that gain of function of the NAD-dependent deacetylase SirT1 or loss of function of its endogenous inhibitor Deleted in breast cancer-1 (Dbc1) promote "browning" of WAT by deacetylating peroxisome proliferator-activated receptor (Ppar)-γ on Lys268 and Lys293. SirT1-dependent deacetylation of Lys268 and Lys293 is required to recruit the BAT program coactivator Prdm16 to Pparγ, leading to selective induction of BAT genes and repression of visceral WAT genes associated with insulin resistance. An acetylation-defective Pparγ mutant induces a brown phenotype in white adipocytes, whereas an acetylated mimetic fails to induce "brown" genes but retains the ability to activate "white" genes. We propose that SirT1-dependent Pparγ deacetylation is a form of selective Pparγ modulation of potential therapeutic import.  相似文献   

7.
Nguyen  Thuy Trang  Hulme  John  Vo  Tuong Kha  Van Vo  Giau 《Neurochemical research》2022,47(6):1503-1512
Neurochemical Research - The bidirectional communication between the brain and peripheral organs have been widely documented, but the impact of visceral adipose tissue (VAT) dysfunction and its...  相似文献   

8.
9.
Early intensive insulin therapy improves insulin sensitivity in type 2 diabetic patients; while the underlying mechanism remains largely unknown. Pigment epithelium-derived factor (PEDF), an anti-angiogenic factor, is believed to be involved in the pathogenesis of insulin resistance. Here, we hypothesize that PEDF might be down regulated by insulin and then lead to the improved insulin resistance in type 2 diabetic patients during insulin therapy. We addressed this issue by investigating insulin regulation of PEDF expression in diabetic conditions. The results showed that serum PEDF was reduced by 15% in newly diagnosed type 2 diabetic patients after insulin therapy. In adipose tissue of diabetic Sprague-Dawley rats, PEDF expression was associated with TNF-α elevation and it could be decreased both in serum and in adipose tissue by insulin treatment. In adipocytes, PEDF was induced by TNF-α through activation of NF-κB. The response was inhibited by knockdown and enhanced by over expression of NF-κB p65. However, PEDF expression was indirectly, not directly, induced by NF-κB which promoted 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) expression in adipocytes. 11β-HSD1 is likely to stimulate PEDF expression through production of active form of glucocorticoids as dexamethasone induced PEDF expression in adipose tissue. Insulin inhibited PEDF by down-regulating 11β-HSD1 expression. The results suggest that PEDF activity is induced by inflammation and decreased by insulin through targeting 11β-HSD1/glucocorticoid pathway in adipose tissue of diabetic patients.  相似文献   

10.
11.
12.
Cardiovascular complications caused by an accelerated atherosclerotic disease consist the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). These patients present multiple atherosclerotic risk factors, considered traditional, as well as nontraditional risk factors such as inflammation and oxidative stress. These complications are also seen in obesity, in which endothelial dysfunction is one of the early stages of atherosclerosis. The impact of trace metal deficiencies on this process is not well studied in patients with CKD and in obese people, although the influence of trace elements depletion, particularly zinc (Zn), may have significant clinical implications. This brief review describes the functions of Zn as well as the respective role of this trace element in atherosclerosis processes, with a particular emphasis on obese patients with chronic kidney disease.  相似文献   

13.
The inflammasome has been recently implicated in obesity-associated dys-metabolism. However, of its products, the specific role of IL-1β was clinically demonstrated to mediate only the pancreatic beta-cell demise, and in mice mainly the intra-hepatic manifestations of obesity. Yet, it remains largely unknown if IL-1β, a cytokine believed to mainly function locally, could regulate dysfunctional inter-organ crosstalk in obesity. Here we show that High-fat-fed (HFF) mice exhibited a preferential increase of IL-1β in portal compared to systemic blood. Moreover, portally-drained mesenteric fat transplantation from IL-1βKO donors resulted in lower pyruvate-glucose flux compared to mice receiving wild-type (WT) transplant. These results raised a putative endocrine function for visceral fat-derived IL-1β in regulating hepatic gluconeogenic flux. IL-1βKO mice on HFF exhibited only a minor or no increase in adipose expression of pro-inflammatory genes (including macrophage M1 markers), Mac2-positive crown-like structures and CD11b-F4/80-double-positive macrophages, all of which were markedly increased in WT-HFF mice. Further consistent with autocrine/paracrine functions of IL-1β within adipose tissue, adipose tissue macrophage lipid content was increased in WT-HFF mice, but significantly less in IL-1βKO mice. Ex-vivo, adipose explants co-cultured with primary hepatocytes from WT or IL-1-receptor (IL-1RI)-KO mice suggested only a minor direct effect of adipose-derived IL-1β on hepatocyte insulin resistance. Importantly, although IL-1βKOs gained weight similarly to WT-HFF, they had larger fat depots with similar degree of adipocyte hypertrophy. Furthermore, adipogenesis genes and markers (pparg, cepba, fabp4, glut4) that were decreased by HFF in WT, were paradoxically elevated in IL-1βKO-HFF mice. These local alterations in adipose tissue inflammation and expansion correlated with a lower liver size, less hepatic steatosis, and preserved insulin sensitivity. Collectively, we demonstrate that by promoting adipose inflammation and limiting fat tissue expandability, IL-1β supports ectopic fat accumulation in hepatocytes and adipose-tissue macrophages, contributing to impaired fat-liver crosstalk in nutritional obesity.  相似文献   

14.
It is known that obese adipose tissues are hypoxic and express hypoxia-inducible factor (HIF)-1α. Although some studies have shown that the expression of HIF-1α in adipocytes induces glucose intolerance, the mechanisms are still not clear. In this study, we examined its effects on the development of type 2 diabetes by using adipocyte-specific HIF-1α knockout (ahKO) mice. ahKO mice showed improved glucose tolerance compared with wild type (WT) mice. Macrophage infiltration and mRNA levels of monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor α (TNFα) were decreased in the epididymal adipose tissues of high fat diet induced obese ahKO mice. The results indicated that the obesity-induced adipose tissue inflammation was suppressed in ahKO mice. In addition, in the ahKO mice, serum insulin levels were increased under the free-feeding but not the fasting condition, indicating that postprandial insulin secretion was enhanced. Serum glucagon-like peptide-1 (GLP-1) levels were also increased in the ahKO mice. Interestingly, adiponectin, whose serum levels were increased in the obese ahKO mice compared with the obese WT mice, stimulated GLP-1 secretion from cultured intestinal L cells. Therefore, insulin secretion may have been enhanced through the adiponectin-GLP-1 pathway in the ahKO mice. Our results suggest that the deletion of HIF-1α in adipocytes improves glucose tolerance by enhancing insulin secretion through the GLP-1 pathway and by reducing macrophage infiltration and inflammation in adipose tissue.  相似文献   

15.
Oncostatin M (OSM), a member of the IL-6 family of cytokines, plays important roles in a variety of biological functions, including inflammatory responses. However, the roles of OSM in metabolic diseases are unknown. We herein analyzed the metabolic parameters of OSM receptor β subunit-deficient (OSMRβ−/−) mice under normal diet conditions. At 32 weeks of age, OSMRβ−/− mice exhibited mature-onset obesity, severer hepatic steatosis, and insulin resistance. Surprisingly, insulin resistance without obesity was observed in OSMRβ−/− mice at 16 weeks of age, suggesting that insulin resistance precedes obesity in OSMRβ−/− mice. Both OSM and OSMRβ were expressed strongly in the adipose tissue and little in some other metabolic organs, including the liver and skeletal muscle. In addition, OSMRβ is mainly expressed in the adipose tissue macrophages (ATMs) but not in adipocytes. In OSMRβ−/− mice, the ATMs were polarized to M1 phenotypes with the augmentation of adipose tissue inflammation. Treatment of OSMRβ−/− mice with an anti-inflammatory agent, sodium salicylate, improved insulin resistance. In addition, the stimulation of a macrophage cell line, RAW264.7, and peritoneal exudate macrophages with OSM resulted in the increased expression of M2 markers, IL-10, arginase-1, and CD206. Furthermore, treatment of C57BL/6J mice with OSM increased insulin sensitivity and polarized the phenotypes of ATMs to M2. Thus, OSM suppresses the development of insulin resistance at least in part through the polarization of the macrophage phenotypes to M2, and OSMRβ−/− mice provide a unique mouse model of metabolic diseases.  相似文献   

16.
17.
Obesity is associated with increased breast cancer (BrCA) incidence. Considering that inactivation of estrogen receptor (ER)α promotes obesity and metabolic dysfunction in women and female mice, understanding the mechanisms and tissue-specific sites of ERα action to combat metabolic-related disease, including BrCA, is of clinical importance. To study the role of ERα in adipose tissue we generated fat-specific ERα knock-out (FERKO) mice. Herein we show that ERα deletion increased adipocyte size, fat pad weight, and tissue expression and circulating levels of the secreted glycoprotein, lipocalin 2 (Lcn2), an adipokine previously associated with BrCA development. Chromatin immunoprecipitation and luciferase reporter studies showed that ERα binds the Lcn2 promoter to repress its expression. Because adipocytes constitute an important cell type of the breast microenvironment, we examined the impact of adipocyte ERα deletion on cancer cell behavior. Conditioned medium from ERα-null adipocytes and medium containing pure Lcn2 increased proliferation and migration of a subset of BrCA cells in culture. The proliferative and promigratory effects of ERα-deficient adipocyte-conditioned medium on BrCA cells was reversed by Lcn2 deletion. BrCA cell responsiveness to exogenous Lcn2 was heightened in cell types where endogenous Lcn2 expression was minimal, but components of the Lcn2 signaling pathway were enriched, i.e. SLC22A17 and 3-hydroxybutyrate dehydrogenase (BDH2). In breast tumor biopsies from women diagnosed with BrCA we found that BDH2 expression was positively associated with adiposity and circulating Lcn2 levels. Collectively these data suggest that reduction of ERα expression in adipose tissue promotes adiposity and is linked with the progression and severity of BrCA via increased adipocyte-specific Lcn2 production and enhanced tumor cell Lcn2 sensitivity.  相似文献   

18.
19.
Coronavirus disease 2019 (COVID‐19), the worst pandemic in more than a century, has claimed >125,000 lives worldwide to date. Emerging predictors for poor outcomes include advanced age, male sex, preexisting cardiovascular disease, and risk factors including hypertension, diabetes, and, more recently, obesity. This article posits new obesity‐driven predictors of poor COVID‐19 outcomes, over and above the more obvious extant risks associated with obesity, including cardiometabolic disease and hypoventilation syndrome in intensive care patients. This article also outlines a theoretical mechanistic framework whereby adipose tissue in individuals with obesity may act as a reservoir for more extensive viral spread, with increased shedding, immune activation, and cytokine amplification. This paper proposes studies to test this reservoir concept with a focus on specific cytokine pathways that might be amplified in individuals with obesity and COVID‐19. Finally, this paper underscores emerging therapeutic strategies that might benefit subsets of patients in which cytokine amplification is excessive and potentially fatal.  相似文献   

20.

Introduction

Persistent Organic Pollutants (POPs) accumulate in adipose tissue and some are described to possess endocrine disrupting capacities. Therefore, it is important to evaluate their effects on key endocrine pathways in adipose tissue (AT), to further evaluate their potential role in metabolic pathologies such as obesity.

Objectives

The aim is twofold: (i) evaluate gene expression levels of obesity marker genes, i.e. the adipokines leptin (LEP), adiponectin (ADIPOQ) and Tumor Necrosis Factor α (TNFα) and the nuclear receptor, Peroxisome Proliferator Activated Receptor γ (PPARγ) in paired subcutaneous (SAT) and visceral (VAT) AT of obese subjects (n = 50) and to relate these values to serum concentrations of LEP and ADIPOQ (ii) evaluate the association of expression levels of marker genes in AT and serum with POP concentrations in AT.

Results and Conclusions

Leptin and adiponectin levels in serum were positively correlated to respectively expression levels of leptin in SAT and adiponectin in VAT. Our study shows more significant correlations between gene expression of obesity marker genes and POP concentrations in VAT compared to SAT. Since VAT is more important than SAT in pathologies associated with obesity, this suggests that POPs are able to influence the association between obesity and the development of associated pathologies. Moreover, this finding reveals the importance of VAT when investigating the obesogen hypothesis. Concerning PPARγ expression in VAT, negative correlations with polychlorinated biphenyls (PCBs) concentrations were found in non T2D patients. LEP serum concentrations correlated with several PCBs in women whereas in men no correlations were found. This strengthens the potential importance of gender differences in obesity and within the obesogen hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号