首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
微生物嗜铁素介导的铁摄取   总被引:5,自引:0,他引:5  
王伟  肖明 《生物学杂志》2005,22(4):11-13,15
嗜铁素是好氧菌和兼性厌氧菌的一种产物,它是微生物在低铁条件下产生的小分子的、特异性的Fe^3+螯合因子。大多数的好氧和兼性厌氧微生物至少合成一种嗜铁素,由嗜铁素介导的铁摄取可能是细菌最普遍的一种获取铁元素的方式。  相似文献   

2.
Aim: To characterize the complementary production of two types of siderophores in Azotobacter vinelandii. Methods and Results: In an iron‐insufficient environment, nitrogen‐fixing A. vinelandii produces peptidic (azotobactin) and catechol siderophores for iron uptake to be used as a nitrogenase cofactor. Molybdenum, another nitrogenase cofactor, was also found to affect the production level of siderophores. Wild‐type cells excreted azotobactin into molybdenum‐supplemented and iron‐insufficient medium, although catechol siderophores predominate in molybdenum‐free environments. Two gene clusters were identified to be involved in the production of azotobactin and catechol siderophores through gene annotation and disruption. Azotobactin‐deficient mutant cells produced catechol siderophores under the molybdenum‐supplemented and iron‐insufficient conditions, whereas catechol siderophore–deficient mutant cells extracellularly secreted excess azotobactin under iron‐deficient condition independent of the concentration of molybdenum. This evidence suggests that a complementary siderophore production system exists in A. vinelandii. Conclusions: Molybdenum was found to regulate the production level of two types of siderophores. Azotobacter vinelandii cells are equipped with a complementary production system for nitrogen fixation in response to a limited quantity of metals. Significance and Impact of the Study: This is the first study identifying A. vinelandii gene clusters for the biosynthesis of two types of siderophores and clarifying the relationship between them.  相似文献   

3.
4.
Azotobacter vinelandii grown in iron-limited medium containing 1 m molybdate released the catecholate siderophores azotochelin and aminochelin [bis(2,3-dihydroxybenzoyl-lysine) and 2,3-dihydroxybenzoyl-putrescine, respectively] into the culture fluid. However these catecholates were not observed when the medium contained 1 mm molybdate, but were replaced by another catecholate compound. The appearance of this new compound was not an artifact of extraction of the catecholates from the culture fluid in the presence of high molybdate. Full and partial acid hydrolysis and fast atom bombardment mass spectroscopy showed that the new compound was the tricatecholate protochelin, a product of the condensation of azotochelin and aminochelin. The production of protochelin was iron-repressible and protochelin very rapidly decolorized the Chrome Azurol-S assay. Protochelin promoted the growth of the siderophore-deficient A. vinelandii strain P100 under iron-restricted conditions and promoted 55Fe uptake into iron-limited cells, confirming that protochelin can be used as a siderophore by A. vinelandii.  相似文献   

5.
The influence of iron, aluminium and of the combined application of both metals on microbial biomass and production of siderophores by three fungi (Aspergillus nidulans, Neurospora crassa and Hymenoscyphus ericae) were investigated. All three species showed a strong iron regulation and Al-sensitivity of siderophore biosynthesis although several differences remained species dependent. Inhibitory effects of Fe and Al on siderophore-production were additive and the higher binding capacity of siderophores towards iron could be compensated by a higher Al-availability. Although pH itself is also important for regulation of siderophore biosynthesis, an indirect effect of Al on siderophore production via an Al-induced pH decrease could be outlined. The toxic effects of Al resulting in a reduced biomass production were compensated by high Fe-availability, whereas the addition of DFAM, a bacterial siderophore, enhanced Al-toxicity.  相似文献   

6.
7.
Two Pseudomonas fluorescens and one Pseudomonas aeruginosa strains, although producing structurally different pyoverdines, demonstrated highly efficient cross-reactions when tested for pyoverdine-mediated iron uptake. A ferripyoverdine receptor-deficient mutant of the P. aeruginosa strain was unable to use any of the three pyoverdines. Moreover, the three strains presented each a specific outer membrane siderophore-receptor pattern. Thus, the capacity of using heterologous pyoverdines was related not to the presence of supplementary specific ferripyoverdine receptors but to the existence within the respective pyoverdine-peptide chains of a common dipeptide motif which should act as the receptor-binding site for the three pyoverdines. Other pyoverdines sharing the same motif but at another position within the peptide chain were not efficient in iron transport, demonstrating the importance of the spatial position of the binding site.  相似文献   

8.
The growth rates of 13 species of abundant red tide algae in media with different iron species complexed with microbial siderophores (Ferrichrome and Ferrioxamine) and Fe‐Catechol were investigated. Our study demonstrated that the Fe‐chelates (at molar ratios = 1:1) were bioavailable to some red tide species. In Fe‐Catechol medium, growth was observed for the raphidophyte Heterosigma akashiwo, the dinoflagellates Heterocapsa circularisquama and Heterocapsa triquetra, the diatom Ditylum brightwellii, the cryptophyte Rhodomonas ovalis, the chlorophyte Oltmannsiellopsis viridis, and the haptophyte Cricosphaera roscoffensis. In Ferrioxamine medium, we found the growth of the dinoflagellate Karenia mikimotoi, the diatom Ditylum brightwellii, and the cryptophyte Rhodomonas ovalis. But, the existence of higher ligand concentrations (molar ratios ≥ 1:10) decreased the growth rates of most red tide species that were examined. Furthermore, all red tide species examined were not able to grow in Ferrichrome medium. In particular, the Chattonella species examined did not grow in the presence of Fe‐chelates. These results suggest that bioavailability of iron depends not only on ligand species, but also on the concentration of the ligands; moreover, microbial siderophores may play an important role in controlling the uptake of iron complexed with organic materials that exist in coastal water and the formation of red tides in coastal areas.  相似文献   

9.
植物吸收利用铁的机理   总被引:6,自引:1,他引:5  
根据植物铁营养的一些研究进展,论述了植物对铁的吸收和运输机理以及HCO3^-,N、P等因素对铁利用效率的影响。  相似文献   

10.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

11.
Collaborative experiments were conducted to determine whether microbial populations associated with plant roots may artifactually affect the rates of Fe uptake and translocation from microbial siderophores and phytosiderophores. Results showed nonaxenic maize to have 2 to 34-fold higher Fe-uptake rates than axenically grown plants when supplied with 1 μM Fe as either the microbial siderophore, ferrioxamine B (FOB), or the barley phytosiderophore, epi-hydroxymugineic acid (HMA). In experiments with nonsterile plants, inoculation of maize or oat seedlings with soil microorganisms and amendment of the hydroponic nutrient solutions with sucrose resulted in an 8-fold increase in FOB-mediated Fe-uptake rates by Fe-stressed maize and a 150-fold increase in FOB iron uptake rates by Fe-stressed oat, but had no effect on iron uptake by Fe-sufficient plants. Conversely, Fe-stressed maize and oat plants supplied with HMA showed decreased uptake and translocation in response to microbial inoculation and sucrose amendment. The ability of root-associated microorganisms to affect Fe-uptake rates from siderophores and phytosiderophores, even in short-term uptake experiments, indicates that microorganisms can be an unpredictable confounding factor in experiments examining mechanisms for utilization of microbial siderophores or phytosiderophores under nonsterile conditions.  相似文献   

12.
水稻铁吸收、转运及调控的分子机制研究进展   总被引:1,自引:0,他引:1  
郭明欣  郑玲  赵旭升 《遗传》2017,39(5):388-395
铁是水稻生长和发育所必需的营养元素之一。研究表明,水稻既可以以螯合物的形式从土壤中吸收Fe3+、Fe2+,又可以直接转运根际土壤中游离的Fe2+。科研人员已经鉴定了很多参与铁离子吸收和转运的重要分子元件,包括转运蛋白、酶、螯合物等,同时也挖掘了部分调控这些分子元件表达的上游基因。碱性土壤的高pH值影响水稻对铁离子的吸收和利用,因此,科研人员通过改良碱性土壤中铁离子的利用效率来改良水稻的耐碱性,并取得了一定的成效。本文主要对上述内容进行了综述,并对该领域未来的研究方向进行了展望。  相似文献   

13.
Iron uptake and iron limited growth of Escherichia coli K-12   总被引:4,自引:0,他引:4  
Cells of Escherichia coli K-12 could grow aerobically at an iron concentration as low as 0.05 M without any of the known iron ionophores present. The growth rate increased between 0.05 and 2 M iron. Supplementation with the iron ligands ferrichrome and citrate resulted in optimal growth already at 0.05 M iron. Under certain conditions iron uptake preceded growth of cells by more than an hour. During logarithmic growth the rate of iron uptake matched the growth rate. The radioactive tracer method revealed a cellular iron content of 4 nmol/mg dry weight.After consumption of the iron in the medium cells continued to grow with high rate for 1–2 generations. The iron uptake activity was increased during iron starvation.  相似文献   

14.
Dynamic equilibria in iron uptake and release by ferritin   总被引:7,自引:0,他引:7  
The function of ferritins is to store and release ferrous iron. During oxidative iron uptake, ferritin tends to lower Fe2+ concentration, thus competing with Fenton reactions and limiting hydroxy radical generation. When ferritin functions as a releasing iron agent, the oxidative damage is stimulated. The antioxidant versus pro-oxidant functions of ferritin are studied here in the presence of Fe2+, oxygen and reducing agents. The Fe2+-dependent radical damage is measured using supercoiled DNA as a target molecule. The relaxation of supercoiled DNA is quantitatively correlated to the concentration of exogenous Fe2+, providing an indirect assay for free Fe2+. After addition of ferrous iron to ferritin, Fe2+ is actively taken up and asymptotically reaches a stable concentration of 1–5 m. Comparable equilibrium concentrations are found with plant or horse spleen ferritins, or their apoferritins. After addition of ascorbate, iron release is observed using ferrozine as an iron scavenger. Rates of iron release are dependent on ascorbate concentration. They are about 10 times larger with pea ferritin than with horse ferritin. In the absence of ferrozine, the reaction of ascorbate with ferritins produces a wave of radical damage; its amplitude increases with increased ascorbate concentrations with plant ferritin; the damage is weaker with horse ferritin and less dependent on ascorbate concentrations.  相似文献   

15.
Growth promotion was tested using M. smegmatis wild type strain, an exochelin-deficient mutant, and M. fortuitum employing a broad variety of xenosiderophores including hydroxamates, catecholates and a-hydroxy carboxylic acids. The experiments revealed that utilization of siderophore-bound iron is substrate specific suggesting high-affinity siderophore receptor and transport systems. Concentration-dependent uptake of a selected xenosiderophore (fericrocin) in M. smegmatis showed saturation kinetics and uptake was inhibited by respiratory poisons. In situ Mössbauer spectroscopy of ferricrocin uptake in M. smegmatis indicated rapid intracellular reductive removal of the metal excluding intracellular ferricrocin accumulation. The ultimate intracellular iron pool is represented by a compound ( = 0.43 mm s, DE = 1.03 mm s) which has also been found in many other microorganisms and does not represent a bacterioferritin, cytochrome or iron-sulfur cluster. By contrast, iron uptake via citrate - a compound exhibiting a very low complex stability constant - involves ligand exchange with mycobactin. Mycobactin has merely a transient role. The ultimate storage compound is an E.coli-type bacterioferritin, in which over 90% of cellular iron is located.  相似文献   

16.
The iron chelators desferrioxamine (DFO), pyridoxal isonicotinoyl hydrazone (PIH), 2,2-bipyridine, diethylenetriamine penta-acetic acid (DTPA) and 1,2 dimethyl-3-hydroxy pyrid-4-one (CP20) were analysed for their ability to change59Fe uptake and release from the brain of 15- and 63-day rats either during or after intravenous injection of59Fe-125I-transferrin. DTPA was the only chelator unable to significantly reduce iron uptake into the brain of 15-day rats. This indicates that iron is not released from transferrin at the luminal surface of brain capillary endothelial cells. CP20 was able to reduce iron uptake in the brain by 85% compared to 28% with DFO. Only CP20 was able to significantly reduce brain iron uptake in 63 day rats. Once59Fe had entered the brain no chelator used was able to mediate its release. All of the chelators except CP20 had similar effects on femur iron uptake as they did on brain uptake, suggesting similar iron uptake mechanisms. It is concluded that during the passage of transferrin-bound iron into the brain the iron is released from transferrin within endothelial cells after endocytosis of transferrin.  相似文献   

17.
Intracellular reactive iron is a source of free radicals and a possible cause of cell damage. In this study, we analyzed the changes in iron homeostasis generated by iron accumulation in neuroblastoma (N2A) cells and hippocampal neurons. Increasing concentrations of iron in the culture medium elicited increasing amounts of intracellular iron and of the reactive iron pool. The cells had both IRP1 and IRP2 activities, being IRP1 activity quantitatively predominant. When iron in the culture medium increased from 1 to 40 microm, IRP2 activity decreased to nil. In contrast, IRP1 activity decreased when iron increased up to 20 microm, and then, unexpectedly, increased. IRP1 activity at iron concentrations above 20 microm was functional as it correlated with increased (55) Fe uptake. The increase in IRP1 activity was mediated by oxidative-stress as it was largely abolished by N-acetyl-L-cysteine. Culturing cells with iron resulted in proteins and DNA modifications. In summary, iron uptake by N2A cells and hippocampus neurons did not shut off at high iron concentrations in the culture media. As a consequence, iron accumulated and generated oxidative damage. This behavior is probably a consequence of the paradoxical activation of IRP1 at high iron concentrations, a condition that may underlie some processes associated with neuronal degeneration and death.  相似文献   

18.
Two major azoverdins were isolated from the cultures of Azomonas macrocytogenes ATCC 12334 grown in irondeficient medium. Their structures have been established using fast atom bombardment-mass spectroscopy, homonuclear and heteronuclear two-dimensional 15N, 13C and 1H NMR, and circular dichroism techniques. These siderophores are chromopeptides possessing at the N-terminal end of their peptide chain the chromophore derived from 2,3-diamino-6,7-dihydroxyquinoline common to pyoverdins. The linear peptide chain (l)-Hse-(d)-AcOHOrn-(d)-Ser-(l)-AcOHOrn-(d)-Hse-(l)-CTHPMD has at its C-terminal end a new natural amino acid which is the result of the condensation of 1 mol of homoserine and 1 mol of 2,4-diaminobutyric acid forming a cyclic amidine belonging to the tetrahydropyrimidine family: 2-homoseryl-4-carboxyl-3,4,5,6-tetrahydropyrimidine. The azoverdins differ only by a substitutent bound to the nitrogen on C-3 of the chromophore: azoverdin, the most abundant one, possesses a succinamide moiety, whereas azoverdin A bears a succinic acid moiety. 15N-labelled azoverdin afforded readily, after the complete assignment of the 15N spectrum of the siderophore, a sequence determination of the peptidic part of the molecule and gave evidence for the presence of two tetrahydropyrimidine groups on the molecule: one on the chromophore and the second at the C-terminal end of the siderophore.  相似文献   

19.
Significant production of superoxide, a known reductant of both inorganic and organically complexed iron(III), occurs in natural systems by both biotic and abiotic pathways. We have investigated the generation of superoxide by Chattonella marina (Subrahman.) Y. Hara et Chihara, a phytoplankton taxon known to produce high levels of this reactive oxygen species, and examined the role of superoxide in the acquisition of iron by this organism. Additionally, a generalized model for iron acquisition by C. marina has been developed, which includes three pathways of iron acquisition from organically complexed iron(III): nondissociative reductive uptake, dissociative reductive uptake, and nonreductive dissociative uptake. The model is shown to be particularly useful in ascertaining the relative importance of these various iron‐uptake pathways as a function of solution parameters including concentration and iron‐binding strength of the organic ligand and superoxide concentration. Our results suggest that superoxide can participate in the C. marina iron‐uptake process when iron is complexed to weak ligands, such as citrate, but plays only a minor role when iron is bound to a strong ligand. It thus appears that facilitation of iron acquisition is not the sole purpose of superoxide production by these organisms.  相似文献   

20.
Background. – Under conditions of iron overload non-transferrin-bound iron (NTBI) occurs in the circulation and is mainly cleared by the liver. Beside iron, gallium and aluminum enhance accumulation of NTBI. We try to characterize the mechanism and metal-mediated regulation of NTBI uptake using cultivated primary rat hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号