首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Phosphorus (P) is an essential constituent in all types of living organisms. Bacteria, which use inorganic phosphate (Pi), as the preferred P source, have evolved complex systems to survive during Pi starvation conditions. Recently, we found thatPseudomonas aeruginosa, a monoflagellated, obligately aerobic bacterium, is attracted to Pi. The evidence that the chemotactic response to Pi (Pi taxis) was observed only with cells grown in Pi-limiting medium suggests that Pi taxis plays an important role in scavenging Pi residues under conditions of Pi starvation. Many bacteria also exhibit rapid and extensive accumulation of polyphosphate (polyP), when Pi is added to cells previously subjected to Pi starvation stress. Since polyP can serve as a P source during Pi starvation conditions, it is likely that polyP accumulation is a protective mechanism for survival during Pi starvation. In the present review, we summarize our current knowledge on regulation of bacterial Pi taxis and polyP accumulation in response to Pi starvation stress.  相似文献   

5.
Lipid phosphate phosphatases (LPPs), integral membrane proteins with six transmembrane domains, dephosphorylate a variety of extracellular lipid phosphates. Although LPP3 is already known to bind to Triton X-100-insoluble rafts, we here report that LPP1 is also associated with lipid rafts distinct from those harboring LPP3. We found that LPP1 was Triton X-100-soluble, but CHAPS-insoluble in LNCaP cells endogenously expressing LPP1 and several LPP1 cDNA-transfected cells including NIH3T3 fibroblasts. In addition to the non-ionic detergent insolubility, LPP1 further possessed several properties formulated for raft-localizing proteins as follows: first, the CHAPS-insolubility was resistant to the actin-disrupting drug cytochalasin D; second, the CHAPS-insoluble LPP1 floated in an Optiprep density gradient; third, the CHAPS insolubility of LPP1 was lost by cholesterol depletion; and finally, the subcellular distribution pattern of LPP1 exclusively overlapped with that of a raft marker, cholera toxin B subunit. Interestingly, confocal microscopic analysis showed that LPP1 was distributed to membrane compartments distinct from those of LPP3. Analysis using various LPP1/LPP3 chimeras revealed that their first extracellular regions determine the different Triton X-100 solubilities. These results indicate that LPP1 and LPP3 are distributed in distinct lipid rafts that may provide unique microenvironments defining their non-redundant physiological functions.  相似文献   

6.
Membrane lipid glycosyltransferases (GTs) in plants are enzymes that regulate the levels of the non-bilayer prone monogalactosyldiacylglycerol (GalDAG) and the bilayer-forming digalactosyldiacylglycerol (GalGalDAG). The relative amounts of these lipids affect membrane properties such as curvature and lateral stress. During phosphate shortage, phosphate is rescued by replacing phospholipids with GalGalDAG. The glycolsyltransferase enzyme in Arabidopsis thaliana responsible for this, atDGD2, senses the bilayer properties and interacts with the membrane in a monotopic manner. To understand the parameters that govern this interaction, we have identified several possible lipid-interacting sites in the protein and studied these by biophysical techniques. We have developed a multivariate discrimination algorithm that correctly predicts the regions in the protein that interact with lipids, and the interactions were confirmed by a variety of biophysical techniques. We show by bioinformatic methods and circular dichroism (CD), fluorescence, and NMR spectroscopic techniques that two regions are prone to interact with lipids in a surface-charge dependent way. Both of these regions contain Trp residues, but here charge appears to be the dominating feature governing the interaction. The sequence corresponding to residues 227-245 in the protein is seen to be able to adapt its structure according to the surface-charge density of a bilayer. All results indicate that this region interacts specifically with lipid molecules and that a second region in the protein, corresponding to residues 130-148, also interacts with the bilayer. On the basis of this, and sequence charge features in the immediate environment of S227-245, a response model for the interaction of atDGD2 with the membrane bilayer interface is proposed.  相似文献   

7.
8.
S Kuge  N Jones    A Nomoto 《The EMBO journal》1997,16(7):1710-1720
  相似文献   

9.
10.
11.
Lipid phosphate phosphatases (LPPs) are a group of enzymes that belong to a phosphatase/phosphotransferase family. Mammalian LPPs consist of three isoforms: LPP1, LPP2, and LPP3. They share highly conserved catalytic domains and catalyze the dephosphorylation of a variety of lipid phosphates, including phosphatidate, lysophosphatidate (LPA), sphingosine 1-phosphate (S1P), ceramide 1-phosphate, and diacylglycerol pyrophosphate. LPPs are integral membrane proteins, which are localized on plasma membranes with the active site on the outer leaflet. This enables the LPPs to degrade extracellular LPA and S1P, thereby attenuating their effects on the activation of surface receptors. LPP3 also exhibits noncatalytic effects at the cell surface. LPP expression on internal membranes, such as endoplasmic reticulum and Golgi, facilitates the metabolism of internal lipid phosphates, presumably on the luminal surface of these organelles. This action probably explains the signaling effects of the LPPs, which occur downstream of receptor activation. The three isoforms of LPPs show distinct and nonredundant effects in several physiological and pathological processes including embryo development, vascular function, and tumor progression. This review is intended to present an up-to-date understanding of the physiological and pathological consequences of changing the activities of the different LPPs, especially in relation to cell signaling by LPA and S1P.  相似文献   

12.
13.
Plants exposed to stress pass the memory of exposure to stress to the progeny. Previously, we showed that the phenomenon of transgenerational memory of stress is of epigenetic nature and depends on the function of Dicer-like (DCL) 2 and DCL3 proteins. Here, we discuss a possible role of DNA methylation and function of small RNAs in establishing and maintaining transgenerational responses to stress. Our new data report that memory of stress is passed to the progeny predominantly through the female rather than male gamete. Possible evolutionary advantages of this mechanism are also discussed.Key words: transgenerational response to stress, Arabidopsis thaliana, maternal inheritance, methylation changes, homologous recombination frequency, genome instability, adaptive response, dcl2, dcl3Plants are sedentary organisms and thus can not respond to rapidly changing growth conditions by escaping to new environments as animals usually do. Moreover, since seed dispersal is rather limited in the vast majority of plants, the progeny is very likely to grow under the same environmental growth conditions as its parents did. The memory of pre-existing growth conditions can be advantageous for plant survival. The environmental experience of parents can be recorded in the form of induced epigenetic modifications that occur in somatic cell lineages. The very late, almost at the end of plant development, separation of germline cells from somatic tissues enables incorporation of acquired epigenetic changes in the gametes. Indeed, previous reports suggested that the progeny of exposed plants might have an advantage while growing in the same environment as its parents.13 Despite a growing number of experimental evidences that support the existence of the phenomenon of memory of stress, the data on adaptive changes in the progeny of stressed plants are scarce.Parental exposure to stress may not only lead to adaptive effects in progeny but also introduce a certain degree of changes in genome stability.49 Our early report showed that the progeny of tobacco plants infected with tobacco mosaic virus had an increased meiotic recombination frequency.8 A more recent report demonstrated that these progeny plants had a higher frequency of rearrangements at the loci carrying the homology to N-gene-like R-gene loci, allowing speculations about a possible role of these rearrangements in pathogen resistance evolution.9 Similarly, a study of Molinier et al. (2006) showed that the progeny of plants exposed to UVC or flagellin had an increased frequency of somatic homologous recombination events (HRF).4 The authors demonstrated that an increase in HRF triggered by a single exposure to UVC was maintained for five consecutive generations in the absence of stress. In contrast, our most recent reports demonstrated that maintaining an increase in HRF caused by ancestral exposure to heat, cold, flood, UVC or salt required exposure to stress in subsequent generations: if F1 plants were propagated for one more generation without stress, the effect diminished and HRF returned back to the level observed in the progeny of untreated plants.6,7 This scenario seems to be more probable from an evolutionary point of view. Within a given environmental niche, plants establish certain genetic and epigenetic traits needed to cope with the expected growth conditions. Drastic environmental changes or new unusual stresses may trigger a cascade of gene expression changes in attempt to survive and adapt to new conditions. Some of these potentially advantageous changes are most probably recorded in the form of DNA methylation and chromatin modifications and are passed to progeny as memory of stress exposure.It can be further hypothesized that if these new environmental conditions are no longer present during the lifespan of future generations, the newly established methylation patterns and chromatin organization will return to the original epigenetic landscape that was the most adequate fit for this environmental niche. If the same new stresses occur in consecutive generations, the newly established epigenetic changes will be maintained and possibly stabilized after many generations of exposure.  相似文献   

14.
15.
16.
17.
Regulation of phosphate homeostasis by MicroRNA in Arabidopsis   总被引:31,自引:0,他引:31       下载免费PDF全文
Chiou TJ  Aung K  Lin SI  Wu CC  Chiang SF  Su CL 《The Plant cell》2006,18(2):412-421
  相似文献   

18.
The Saccharomyces cerevisiae Snf1 protein kinase, a member of the Snf1/AMPK (AMP-activated protein kinase) family, has important roles in metabolic control, particularly in response to nutrient stress. Here we have addressed the role of Snf1 in responses to other environmental stresses. Exposure of cells to sodium ion stress, alkaline pH, or oxidative stress caused an increase in Snf1 catalytic activity and phosphorylation of Thr-210 in the activation loop, whereas treatment with sorbitol or heat shock did not. Inhibition of respiratory metabolism by addition of antimycin A to cells also increased Snf1 activity. Analysis of mutants indicated that the kinases Sak1, Tos3, and Elm1, which activate Snf1 in response to glucose limitation, are also required under other stress conditions. Each kinase sufficed for activation in response to stress, but Sak1 had the major role. In sak1Delta tos3Delta elm1Delta cells expressing mammalian Ca(2+)/calmodulin-dependent protein kinase kinase alpha, Snf1 was activated by both sodium ion and alkaline stress, suggesting that stress signals regulate Snf1 activity by a mechanism that is independent of the upstream kinase. Finally, we showed that Snf1 protein kinase is regulated differently during adaptation of cells to NaCl and alkaline pH with respect to both temporal regulation of activation and subcellular localization. Snf1 protein kinase becomes enriched in the nucleus in response to alkaline pH but not salt stress. Such differences could contribute to specificity of the stress responses.  相似文献   

19.
Wang L  Dong J  Gao Z  Liu D 《Plant & cell physiology》2012,53(6):1093-1105
When plants are subjected to a deficiency in inorganic phosphate (Pi), they exhibit an array of responses to cope with this nutritional stress. In this work, we have characterized two Arabidopsis mutants, hps3-1 and hps3-2 (hypersensitive to Pi starvation 3), that have altered expression of Pi starvation-induced (PSI) genes and enhanced production of acid phosphatase (APase) when grown under either Pi sufficiency or deficiency conditions. hps3-1 and hps3-2, however, accumulate less anthocyanin than the wild type when grown on a Pi-deficient medium. Molecular cloning indicated that the phenotypes of hps3 mutants were caused by mutations within the ETO1 (ETHYLENE OVERPRODUCTION 1) gene. In Arabidopsis, ETO1 encodes a negative regulator of ethylene biosynthesis, and mutation of ETO1 causes Arabidopsis seedlings to overproduce ethylene. The ethylene biosynthesis inhibitor aminoethoxyvinyl glycine or the ethylene perception inhibitor Ag(+) suppressed all the mutant phenotypes of hps3. Taken together, these results provide further genetic evidence that ethylene is an important regulator of multiple plant responses to Pi starvation. Furthermore, we found that a change in ethylene level has differential effects on the expression of PSI genes, maintenance of Pi homeostasis, production of APase and accumulation of anthocyanin. We also demonstrated that ethylene signaling mainly regulates the activity of root surface-associated APases rather than total APase activity.  相似文献   

20.
The Arabidopsis mutant pho1 is deficient in the transfer of Pi from root epidermal and cortical cells to the xylem. The PHO1 gene was identified by a map-based cloning strategy. The N-terminal half of PHO1 is mainly hydrophilic, whereas the C-terminal half has six potential membrane-spanning domains. PHO1 shows no homology with any characterized solute transporter, including the family of H(+)-Pi cotransporters identified in plants and fungi. PHO1 shows highest homology with the Rcm1 mammalian receptor for xenotropic murine leukemia retroviruses and with the Saccharomyces cerevisiae Syg1 protein involved in the mating pheromone signal transduction pathway. PHO1 is expressed predominantly in the roots and is upregulated weakly under Pi stress. Studies with PHO1 promoter-beta-glucuronidase constructs reveal predominant expression of the PHO1 promoter in the stelar cells of the root and the lower part of the hypocotyl. There also is beta-glucuronidase staining of endodermal cells that are adjacent to the protoxylem vessels. The Arabidopsis genome contains 10 additional genes showing homology with PHO1. Thus, PHO1 defines a novel class of proteins involved in ion transport in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号