首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human cytomegalovirus. III. Virus-induced DNA polymerase.   总被引:47,自引:25,他引:22       下载免费PDF全文
Infection of WI-38 human fibroblasts with human cytomegalovirus (CMV) led to the stimulation of host cell DNA polymerase synthesis and induction of a novel virus-specific DNA polymerase. This cytomegalovirus-induced DNA polymerase was purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. It can be distinguished from host cell enzymes by chromatographic behavior, template primer specificity, sedimentation property, and the requirement of salt for maximal activity. This virus-induced enzyme has a sedimentation coefficient of 9.2S and is found in both the nuclei and cytoplasm of virus-infected cells, but not in uninfected cells. This enzyme could efficiently use activated calf-thymus DNA, oly(dA)-oligo(dT)12-18, and poly(dC)-oligo(dG)12-18 as template primers, especially poly(dA)-oligo(dT)12-18, but it could not use poly(rA)-oligo(dT)12-18, poly(rC)-oligo(dG)12-18, or oligo(dT)12-18. The enzyme requires Mg2+ for maximal activity, is sensitive to p-hydroxymercuribenzoate, and is not a zinc metalloenzyme. In addition, the cytomegalovirus-induced DNA polymerase activity can be enhanced by adding 0.06 to 0.12 M NaCl or 0.03 to 0.06 M (NH4)2SO4 to the reaction mixture.  相似文献   

3.
Characterization of an Epstein-Barr virus-induced DNA polymerase.   总被引:11,自引:6,他引:5       下载免费PDF全文
  相似文献   

4.
Intracisternal A particles from the FLOPC-1 line of BALB/c myeloma have been shown to contain high-molecular-weight RNA (60 to 70S) that is sensitive to RNase, alkali degradation, and heat but resistant to Pronase treatment. The intracisternal A-particle RNA contains tract of poly (A) approximately 180 nucleotides long. As shown in a reconstitution experiment, by antigenic analysis of A-particle preparation and the SC cytopathogenicity assay, the 70S RNA was not due to contamination by type C virus particles. The FLOPC-1 intracisternal A particles also possess an endogenous RNA-dependent DNA polymerase. The enzyme required Mn2+ or Mg2+, dithiothreitol, detergent, and four deoxyribonucleoside triphosphates for maximum activity. Enzymatic activity was maximally stimuated by poly (rC)-oligo (dG)12-18 and less with poly (rG)-oligo (dC)10 or poly (rA)-oligo (dT)12-18 as compare with synthetic DNA/DNA duplex templates such as poly (dA)-oligo (dT)12-18. The enzyme can utilize the A-particle endogenous RNA as template as shown by analysis of the early and late DNA products of the endogenous reaction by CsSO4 isopycnic gradient centrifuation and hybridization of purified 70S or 35S A-particle RNA with the purified complementary DNA product. Approximately 50% of the A-particle complementary DNA also hybridized with oncornavirus RNA.  相似文献   

5.
DNA polymerase was purified from Drosophila melanogaster embryos by a combination of phosphocellulose adsorption, Sepharose 6B gel filtration, and DEAE-cellulose chromatography. Three enzyme forms, designated enzymes I, II, and III, were separated by differential elution from DEAE-cellulose and were further purified by glycerol gradient centrifugation. Purification was monitored with two synthetic primer-templates, poly(dA) . (dT)-16 and poly(rA) . (dT)-16. At the final step of purification, enzymes I, II, and III were purified approximately 1700-fold, 2000-fold and 1000-fold, respectively, on the basis of their activities with poly(dA) . (dT)-16. The DNA polymerase eluted heterogeneously as anomalously high-molecular-weight molecules from Sepharose 6B gel filtration columns. On DEAE-cellulose chromatography enzymes I and II eluted as distinct peaks and enzyme III eluted heterogeneously. On glycerol velocity gradients enzyme I sedimented at 5.5-7.3 S, enzyme II sedimented at 7.3-8.3 S, and enzyme III sedimented at 7.3-9.0 S. All enzymes were active with both synthetic primer-templates, except the 9.0 S component of enzyme III, which was inactive with poly(rA) . (dT)-16. Non-denaturing polyacrylamide gel electrophoresis did not separate poly(dA) . (dT)-16 activity from poly(rA) . (dT)-16 activity. The DNA polymerase preferred poly(dA) . (dT)-16 (with Mg2+) as a primer-template, although it was also active with poly(rA) . (dT)-16 (with Mn2+), and it preferred activated calf thymus DNA to native or heat-denatured calf thymus DNA. All three primer-template activities were inhibited by N-ethylmaleimide. Enzyme activity with activated DNA and poly(dA) . (dT)-16 was inhibited by K+ and activity with poly(rA) . (dT)-16 was stimulated by K+ and by spermidine. The optimum pH for enzyme activity with the synthetic primer-templates was 8.5. The DNA polymerases did not exhibit deoxyribonuclease or ATPase activities. The results of this study suggest that the forms of DNA polymerase from Drosophila embryos have physical properties similar to those of DNA polymerase-alpha and enzymatic properties similar to those of all three vertebrate DNA polymerases.  相似文献   

6.
Two RNase H (RNA-DNA hybrid ribonucleotidohydrolase, EC 3.1.4.34) activities separable by Sephadex G-100 gel filtration were identified in lysates of Moloney murine sarcoma-leukemia virus (MSV). The larger enzyme, which we have called RNase H-I, represented about 10% of the RNase H activity in the virion. RNase H-I (i) copurified with RNA-directed DNA polymerase from the virus, (ii) had a sedimentation coefficient of 4.4S (corresponds to an apparent mol wt of 70,000), (iii) required Mn-2+ (2 mM optimum) for activity with a [3-h]poly(A)-poly(dT) substrate, (iv) eluted from phosphocellulose at 0.2 M KC1, and (v) degraded [3-H]poly(A)-poly(dT) and [3-H]poly(C)-poly(dG) at approximately equal rates. The smaller enzyme, designated RNase H-II, which represented the majority of the RNase H activity in the virus preparation, was shown to be different since it (i) had no detectable, associated DNA polymerase activity, (ii) had a sedmimentation coefficient of 2.6S (corresponds to an apparent mol wt of 30,000), (iii) preferred Mg-2+ (10 to 15 mM optimum) over Mn-2+ (5 to 10 mM optimum) 2.5-fold for the degradation of [3-H]poly(A)-poly(dT), and (iv) degraded [3-H]poly(A)-poly(dT) 6 and 60 times faster than [3-H]poly(C)-poly(dG) in the presence of Mn-2+ and Mg-2+, respectively. Moloney MSV DNA polymerase (RNase H-I), purified by Sephadex G-100 gel filtration followed by phosphocellulose, poly(A)-oligo(dT)-cellulose, and DEAE-cellulose chromatography, transcribed heteropolymeric regions of avian myeloblastosis virus 70S RNA at a rate comparable to avian myeloblastosis virus DNA polymerase purified by the same procedure.  相似文献   

7.
8.
9.
10.
DNA polymerase epsilon was purified to near homogeneity from human placenta. The enzyme has one subunit (170 kDa, sedimentation coefficient 8.2S), intrinsic 3'-5'-exonuclease activity, it is independent on PCNA and high processivity on poly(dA)-oligo(dT) template-primer without PCNA. It was shown, that the enzyme incorporates 3'-amino-2',3'-dideoxythymidine 5'-triphosphate in DNA, after that synthesis is stopped. Simultaneously DNA polymerase alpha was purified.  相似文献   

11.
DNA polymerase gamma and mitochondrial DNA polymerase were isolated from brain nuclei and synaptosomes respectively. The presence of a single DNA polymerase in synaptosomal mitochondria was established by chromatography on DEAE-cellulose, phosphocellulose and DNA-cellulose, as well as by sedimentation analysis and isoelectric focusing. A great similarity between the purified nuclear DNA polymerase gamma and the mitochondrial enzyme was found by the following criteria: chromatographic behaviour in three column systems; essentially complete inhibition by N-ethyl-maleimide (2 mM); optimal requirements of Mn2+ (0.1 mM), Mg2+ (5 mM) and pH (8.0); template preferences, poly(A) - (dT)20-25 larger than activated DNA larger than poly(dA) - (dT)12-18; lack of activity on single-stranded polynucleotides and (dT)12-primed mRNA; molecular weight (180000), sedimentation (9.2 S) and isoelectric point (pI 5.4). We therefore conclude that brain nuclear DNA polymerase gamma and synaptosomal mitochondrial DNA polymerase are closely related and may even be identical.  相似文献   

12.
13.
Approximately 2,500-fold purifications of DNA polymerase-beta from the nuclear fraction of blastulae of the sea urchin, Hemicentrotus pulcherrimus, was performed. The enzyme preparation, which was devoid of DNase and terminal deoxynucleotidyl transferase as contaminants, showed a sedimentation constant of 3.0 S in a sucrose density gradient, a molecular weight of 50,000 by gel filtration, and an isoelectric point of pH 8.1. The enzyme activity was resistant to sulfhydryl group inhibitors. Its optimal pH was 9.0-9.5 in Tris-maleate buffer and 10.0 in glycine buffer. The optimal NaCl concentration for the activity was 30-60 mM and about half of the activity remained at 0.4 M NaCl. As a template-primer, the enzyme preferred synthetic homopolymers to activated DNA. The order of this preference was as follows; poly (dA)-oligo (dT)12-18 greater than poly (rA)-oligo (dT)12-18 greater than activated DNA. The above results indicate that the enzyme corresponds to DNA polymerase-beta from vertebrate cells.  相似文献   

14.
The kinetics of the inhibition of DNA polymerases-alpha and -beta from sea urchin embryos by pyridoxal 5-phosphate were studied. The inhibition of DNA polymerase-alpha activity by pyridoxal 5-phosphate was competitive with activated DNA but noncompetitive with each deoxynucleoside triphosphate. With poly(dC)-oligo(dG)12-18 as a template-primer, however, the inhibition of DNA polymerase-alpha was competitive with dGTP but noncompetitive with the template-primer. These results suggest that DNA polymerase-alpha interacts with activated DNA and poly(dC)-oligo(dG)12-18 in different ways. The inhibition of DNA polymerase-beta by pyridoxal 5-phosphate was competitive with deoxynucleoside triphosphate using activated DNA as a template-primer and noncompetitive with activated DNA. Using poly(rA)-oligo(dT)12-18 as a template-primer, DNA polymerase-beta activity yielded sigmoid curves against both dTTP and the template-primer concentrations and was inhibited by pyridoxal 5-phosphate noncompetitively with respect to both dTTP and the template-primer. These results indicate that the inhibitory mode of DNA polymerase-alpha by pyridoxal 5-phosphate is different from that of DNA polymerase-beta.  相似文献   

15.
Purified DNA polymerase beta of calf thymus can utilize poly(rA).oligo(dT) as efficiently as poly(dA).oligo(dT) or activated DNA as a template primer. The poly(rA).oligo(dT)-dependent activity of DNA polymerase beta was found to differ markedly from the DNA-dependent activity of the same enzyme (with either activated calf thymus DNA or poly(dA).(dT)10) in the following respects. 1) Poly(rA)-dependent activity was strongly inhibited by natural DNA from various sources or synthetic deoxypolymer duplexes at very low concentrations (less than 0.5 microgram/ml) at which the DNA-dependent activity was affected to a much smaller extent, if at all. 2) Poly(rA)-dependent activity was inhibited by N-ethylmaleimide more strongly than DNA-dependent activity measured at 37 degrees C, while it was resistant to this reagent at 26 degrees C. 3) The curves of the activity versus substrate concentration were sigmoidal in the poly(rA)-dependent reaction but hyperbolic in the activated DNA-dependent reaction. A kinetic study suggested that the association of beta-enzyme protomers may be required to copy the poly(rA) strand.  相似文献   

16.
A new method for the analysis and purification of the RNA-directed DNA polymerase of RNA tumor viruses has been developed. This nucleic acid affinity chromatography system utilizes an immobilized oligo (dT) moiety annealed with poly (A). The alpha and alphabeta DNA polymerases of avain myeloblastosis virus bound effectively to poly (A) oligo (dT)-cellulose. Alpha DNA polymerase did not bind effectively to poly (A) oligo (dT)-cellulose, poly (A)-cellulose, or to cellulose. Alphabeta bound to oligo (dT)-cellulose and cellulose at the same extent (approximately 30%), indicating that this enzyme did not bind specifically to the oligo (DT) moiety only. However, alphabeta bound to poly (A)-cellulose two to three times better than to cellulose itself, showing that alphabeta could bind to poly (A) without a primer. Alphabeta DNA polymerase also bound to poly (C)-cellulose, whereas alpha did not. These data show that the alpha DNA polymerase is defective in binding to nucleic acids if the beta subunit is not present. Data is presented which demonstrates that the alphabeta DNA polymerase bound tighter to poly (A). oligo (DT)-cellulose and to calf thymus DNA-cellulose than the alpha DNA polymerase, suggesting that the beta subunit or, at least part of it is responsible for this tighter binding. In addition, alphabeta DNA polymerase is able to reversibly transcribe avian myeloblastosis virus 70S RNA approximately fivefold faster than alpha DNA polymerase in the presence of Mg2+ and equally efficient in the presence of Mn2+. alpha DNA polymerase transcribed 9S globin m RNA slightly better than alphabeta with either metal ion.  相似文献   

17.
Mammary tumors induced in Sprague-Dawley Rats by the carcinogen 7,12-dimethylbenz(a)anthracene contain a DNA polymerase similar to that found in RNA tumor viruses. It has a molecular weight of 105,000 daltons and is active on the synthetic templates poly(rA):oligo(dT) and poly(rC):-oligo(dG) but is inactive on poly(dA):oligo(dT). This polymerase may be purified more than 300 fold with a 25% yield by ammonium sulfate precipitation, phosphocellulose chromatography and hydroxyapatite chromatography. A similar polymerase is also found in lactating normal rat mammary tissues.  相似文献   

18.
The separation and partial characterization of two deoxyribonucleic acid polymerases from Spiroplasma citri have been achieved. The two enzymes had different elution properties on diethylaminoethyl (DEAE) cellulose and differed in their sensitivity to N-ethylmaleimide (NEM), preference for different template-primers, and sedimentation velocity in linear glycerol gradients. The first enzyme activity, ScA, was retained on DEAE-cellulose and was not inhibited by NEM. Activated deoxyribonucleic acid and poly(dA)-oligo(dT12) were the preferred template-primers. Arabinosyl-cytidine triphosphate had no effect. The sedimentation coefficient of ScA was 6.3s. The second activity, ScB, was not retained on DEAE-cellulose and was inhibited by NEM. Poly(dA)-oligo(dT12) was the preferred template-primer, whereas activated DNA was only poorly utilized. ScB was not affected by arabinosyl-cytidine triphosphate, and its sedimentation coefficient was 4.4s. The polymerization activities of the two enzymes were maximum at 37 to 40 degrees C.  相似文献   

19.
P Laquel  S Litvak    M Castroviejo 《Plant physiology》1993,102(1):107-114
Multiple DNA polymerases have been described in all organisms studied to date. Their specific functions are not easy to determine, except when powerful genetic and/or biochemical tools are available. However, the processivity of a DNA polymerase could reflect the physiological role of the enzyme. In this study, analogies between plant and animal DNA polymerases have been investigated by analyzing the size of the products synthesized by wheat DNA polymerases A, B, CI, and CII as a measure of their processivity. Thus, incubations have been carried out with poly(dA)-oligo(dT) as a template-primer under varying assay conditions. In the presence of MgCl2, DNA polymerase A was highly processive, whereas DNA polymerases B, CI, and CII synthesized much shorter products. With MnCl2 instead of MgCl2, DNA polymerase A was highly processive, DNA polymerases B and CII were moderately processive, and DNA polymerase CI remained strictly distributive. The effect of calf thymus proliferating cell nuclear antigen (PCNA) on wheat polymerases was studied as described for animal DNA polymerases. The high processivity of DNA polymerase A was PCNA independent, whereas both enzyme activity and processivity of wheat DNA polymerases B and CII were significantly stimulated by PCNA. On the other hand, DNA polymerase CI was not stimulated by PCNA and, like animal DNA polymerase beta, was distributive in all cases. From these results, we propose that wheat DNA polymerase A could correspond to a DNA polymerase alpha, DNA polymerases B and CII could correspond to the delta-like enzyme, and DNA polymerase CI could correspond to DNA polymerase beta.  相似文献   

20.
Mechanisms of error discrimination by Escherichia coli DNA polymerase I   总被引:2,自引:0,他引:2  
The mechanism of base selection by DNA polymerase I of Escherichia coli has been investigated by kinetic analysis. The apparent KM for the insertion of the complementary nucleotide dATP into the hook polymer poly(dT)-oligo(dA) was found to be 6-fold lower than that for the noncomplementary nucleotide dGTP, whereas the Vmax for insertion of dATP was 1600-fold higher than that for dGTP. The ratio of Kcat/KM values for complementary and mismatched nucleotides of 10(4) demonstrates the extremely high specificity of base selection by DNA polymerase I and is in agreement with results obtained with a different template-primer, poly(dC)-oligo(dG) [El-Deiry, W. S., Downey, K. M., & So, A. G. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 7378]. Studies on the effects of phosphate ion on the polymerase and 3'- to 5'-exonuclease activities of DNA polymerase I showed that, whereas the polymerase activity was somewhat stimulated by phosphate, the exonuclease activity was markedly inhibited, being 50% inhibited at 25 mM phosphate and greater than 90% inhibited at 80 mM phosphate. Selective inhibition of the exonuclease activity by phosphate also resulted in inhibition of template-dependent conversion of a noncomplementary dNTP to dNMP and, consequently, markedly affected the kinetic constants for insertion of noncomplementary nucleotides. The mutagenic metal ion Mn2+ was found to affect error discrimination by both the polymerase and 3'- and 5'-exonuclease activities of DNA polymerase I.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号