首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exocytosis is a vesicle fusion process driven by soluble N‐ethylmaleimide‐sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin‐stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR‐Cas9 genome editing to delete the two tomosyn‐encoding genes in adipocytes. We observed that both basal and insulin‐stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α‐SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin‐stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn‐arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.  相似文献   

2.
3.
Impairment of glucose‐stimulated insulin secretion (GSIS) caused by glucolipotoxicity is an essential feature in type 2 diabetes mellitus (T2DM). Palmitate and eicosapentaenoate (EPA), because of their lipotoxicity and protection effect, were found to impair or restore the GSIS in beta cells. Furthermore, palmitate was found to up‐regulate the expression level of sterol regulatory element‐binding protein (SREBP)‐1c and down‐regulate the levels of pancreatic and duodenal homeobox (Pdx)‐1 and glucagon‐like peptide (GLP)‐1 receptor (GLP‐1R) in INS‐1 cells. To investigate the underlying mechanism, the lentiviral system was used to knock‐down or over‐express SREBP‐1c and Pdx‐1, respectively. It was found that palmitate failed to suppress the expression of Pdx‐1 and GLP‐1R in SREBP‐1c‐deficient INS‐1 cells. Moreover, down‐regulation of Pdx‐1 could cause the low expression of GLP‐1R with/without palmitate treatment. Additionally, either SREBP‐1c down‐regulation or Pdx‐1 over‐expression could partially alleviate palmitate‐induced GSIS impairment. These results suggested that sequent SREBP‐1c‐Pdx‐1‐GLP‐1R signal pathway was involved in the palmitate‐caused GSIS impairment in beta cells. J. Cell. Biochem. 111: 634–642, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
5.
Clathrin mediated endocytosis (CME) has been extensively studied in living cells by quantitative total internal reflection fluorescence microscopy (TIRFM). Fluorescent protein fusions to subunits of the major coat proteins, clathrin light chains or the heterotetrameric adaptor protein (AP2) complexes, have been used as fiduciary markers of clathrin coated pits (CCPs). However, the functionality of these fusion proteins has not been rigorously compared. Here, we generated stable cells lines overexpressing mRuby‐CLCa and/or μ2‐eGFP, σ2‐eGFP, two markers currently in use, or a novel marker generated by inserting eGFP into the unstructured hinge region of the α subunit (α‐eGFP). Using biochemical and TIRFM‐based assays, we compared the functionality of the AP2 markers. All of the eGFP‐tagged subunits were efficiently incorporated into AP2 and displayed greater accuracy in image‐based CCP analyses than mRuby‐CLCa. However, overexpression of either μ2‐eGFP or σ2‐eGFP impaired transferrin receptor uptake. In addition, μ2‐eGFP reduced the rates of CCP initiation and σ2‐eGFP perturbed AP2 incorporation into CCPs and CCP maturation. In contrast, CME and CCP dynamics were unperturbed in cells overexpressing α‐eGFP. Moreover, α‐eGFP was a more sensitive and accurate marker of CCP dynamics than mRuby‐CLCa. Thus, our work establishes α‐eGFP as a robust, fully functional marker for CME.  相似文献   

6.
7.
  • Research rationale: Evolution of fused petals (sympetaly) is considered to be an important innovation that has repeatedly led to increased pollination efficiency, resulting in accelerated rates of plant diversification. Although little is known about the underlying regulation of sympetaly, genetic pathways ancestrally involved in organ boundary establishment (e.g. CUP SHAPED COTYLEDON [CUC] 1–3 genes) are strong candidates. In sympetalous petunia, mutations in the CUC1/2‐like orthologue NO APICAL MERISTEM (NAM) inhibit shoot apical meristem formation. Despite this, occasional ‘escape shoots’ develop flowers with extra petals and fused inter‐floral whorl organs.
  • Central methods: To To determine if petunia CUC‐like genes regulate additional floral patterning, we used virus‐induced silencing (VIGS) following establishment of healthy shoot apices to re‐examine the role of NAM in petunia petal development, and uniquely characterise the CUC3 orthologue NH16.
  • Key results: Confirming previous results, we found that reduced floral NAM/NH16 expression caused increased petal–stamen and stamen–carpel fusion, and often produced extra petals. However, further to previous results, all VIGS plants infected with NAM or NH16 constructs exhibited reduced fusion in the petal whorl compared to control plants.
  • Main conclusions: Together with previous data, our results demonstrate conservation of petunia CUC‐like genes in establishing inter‐floral whorl organ boundaries, as well as functional evolution to affect the fusion of petunia petals.
  相似文献   

8.
Osteoarthritis (OA) is a most common form of arthritis worldwide leading to significant disability. MicroRNAs (miRNAs) are non‐coding RNAs involved in various aspects of cartilage development, homoeostasis and pathology. Several miRNAs have been identified which have shown to regulate expression of target genes relevant to OA pathogenesis such as matrix metalloproteinase (MMP)‐13, cyclooxygenase (COX)‐2, etc. Epigallocatechin‐3‐O‐gallate (EGCG), the most abundant and active polyphenol in green tea, has been reported to have anti‐arthritic effects, however, the role of EGCG in the regulation of miRNAs has not been investigated in OA. Here, we showed that EGCG inhibits COX‐2 mRNA/protein expression or prostaglandin E2 (PGE2) production via up‐regulating microRNA hsa‐miR‐199a‐3p expression in interleukin (IL)‐1β‐stimulated human OA chondrocytes. This negative co‐regulation of hsa‐miR‐199a‐3p and COX‐2 by EGCG was confirmed by transfection of OA chondrocytes with anti‐miR‐199a‐3p. Transfection of OA chondrocytes with anti‐miR‐199a‐3p significantly enhanced COX‐2 expression and PGE2 production (P < 0.001), while EGCG treatment significantly inhibited anti‐miR‐199a‐3p transfection‐induced COX‐2 expression or PGE2 production in a dose‐dependent manner. These results were further re‐validated by co‐treatment of these transfection OA chondrocytes with IL‐1β and EGCG. EGCG treatment consistently up‐regulated the IL‐1β‐decreased hsa‐miR‐199a‐3p expression (P < 0.05) and significantly inhibited the IL‐1β‐induced COX‐2 expression/PGE2 production (P < 0.05) in OA chondrocytes transfected with anti‐hsa‐miR‐199a‐3p. Taken together, these results clearly indicate that EGCG inhibits COX‐2 expression/PGE2 production via up‐regulation of hsa‐miR‐199a‐3p expression. These novel pharmacological actions of EGCG on IL‐1β‐stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG‐derived compounds inhibit cartilage breakdown or pain by up‐regulating the expression of microRNAs in human chondrocytes.  相似文献   

9.
Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)‐1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll‐like receptor (TLR)‐2 and ‐4 by regulating Egr‐1 in THP‐1 cells and aorta in streptozotocin‐induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr‐1, TF, TLR‐2 and ‐4 which were significantly reduced by valsartan. HG increased Egr‐1 expression by activation of PKC and ERK1/2 in THP‐1 cells. Valsartan increased AMPK phosphorylation in a concentration and time‐dependent manner via activation of LKB1. Valsartan inhibited Egr‐1 without activation of PKC or ERK1/2. The reduced expression of Egr‐1 by valsartan was reversed by either silencing Egr‐1, or compound C, or DN‐AMPK‐transfected cells. Valsartan inhibited binding of NF‐κB and Egr‐1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF‐α, IL‐6 and IL‐1β) production and NF‐κB activity in HG‐activated THP‐1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP‐1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr‐1, TLR‐2, ‐4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin‐induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr‐1 regulation.  相似文献   

10.
11.
12.
Insulin is a peptide hormone produced by beta cells of the pancreas. The roles of insulin in energy metabolism have been well studied, with most of the attention focused on glucose utilization, but the roles of insulin in cell proliferation and differentiation remain unclear. In this study, we observed for the first time that 10 nmol/L insulin treatment induces cell proliferation and cardiac differentiation of P19CL6 cells, whereas 50 and 100 nmol/L insulin treatment induces P19CL6 cell apoptosis and blocks cardiac differentiation of P19CL6 cells. By using real‐time polymerase chain reaction (PCR) and Western blotting analysis, we found that the mRNA levels of cyclin D1 and α myosin heavy chain (α‐MHC) are induced upon 10 nmol/L insulin stimulation and inhibited upon 50/100 nmol/L insulin treatment, whereas the mRNA levels of BCL‐2‐antagonist of cell death (BAD) exists a reverse trend. The similar results were observed in P19CL6 cells expressing GATA‐6 or peroxisome proliferator‐activated receptor α (PPARα). Our results identified the downstream targets of insulin, cyclin D1, BAD, α‐MHC, and GATA‐4, elucidate a novel molecular mechanism of insulin in promoting cell proliferation and differentiation.  相似文献   

13.
14.
The aim of this study was to develop an in vitro cell culture system allowing studying the effect of separation distance between monolayers of rat insulinoma cells (INS‐1) and human umbilical vein endothelial cells (HUVEC) co‐cultured in fibrin over INS‐1 cell insulin secretion. For this purpose, a three‐dimensional (3D) cell culture chamber was designed, built using micro‐fabrication techniques and validated. The co‐culture was successfully carried out and the effect on INS‐1 cell insulin secretion was investigated. After 48 and 72 h, INS‐1 cells co‐cultured with HUVEC separated by a distance of 100 µm revealed enhanced insulin secretion compared to INS‐1 cells cultured alone or co‐cultured with HUVEC monolayers separated by a distance of 200 µm. These results illustrate the importance of the separation distance between two cell niches for cell culture design and the possibility to further enhance the endocrine function of beta cells when this factor is considered. Biotechnol. Bioeng. 2013; 110: 619–627. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.
The SNARE protein vti1a is proposed to drive fusion of intracellular organelles, but recent data also implicated vti1a in exocytosis. Here we show that vti1a is absent from mature secretory vesicles in adrenal chromaffin cells, but localizes to a compartment near the trans‐Golgi network, partially overlapping with syntaxin‐6. Exocytosis is impaired in vti1a null cells, partly due to fewer Ca2+‐channels at the plasma membrane, partly due to fewer vesicles of reduced size and synaptobrevin‐2 content. In contrast, release kinetics and Ca2+‐sensitivity remain unchanged, indicating that the final fusion reaction leading to transmitter release is unperturbed. Additional deletion of the closest related SNARE, vti1b, does not exacerbate the vti1a phenotype, and vti1b null cells show no secretion defects, indicating that vti1b does not participate in exocytosis. Long‐term re‐expression of vti1a (days) was necessary for restoration of secretory capacity, whereas strong short‐term expression (hours) was ineffective, consistent with vti1a involvement in an upstream step related to vesicle generation, rather than in fusion. We conclude that vti1a functions in vesicle generation and Ca2+‐channel trafficking, but is dispensable for transmitter release.  相似文献   

17.
18.
Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell‐derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon‐like peptide (GLP)‐1 analogue, is known to promote insulin secretion and β‐cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin‐m5f β‐cell function, TF activity mediated by MPs and their modulation by 1 μM liraglutide were examined in a cell cross‐talk model. Methyl‐β‐cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N‐éthylmaleimide‐sensitive‐factor Attachment protein Receptor (SNARE)‐dependent exocytosis. Cytokines induced a two‐fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two‐fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD‐treated cells showed similar patterns. Cells pre‐treated by saturating concentration of the GLP‐1r antagonist exendin (9‐39), showed a partial abolishment of the liraglutide‐driven insulin secretion and liraglutide‐decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP‐1r‐dependent and ‐independent pathways. Our results confirm an integrative β‐cell response to GLP‐1 that targets receptor‐mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation‐driven procoagulant events.  相似文献   

19.
Screening of commercially available fluoro monosaccharides as putative growth inhibitors in Arabidopsis thaliana revealed that 2‐fluoro 2‐l ‐fucose (2F‐Fuc) reduces root growth at micromolar concentrations. The inability of 2F‐Fuc to affect an Atfkgp mutant that is defective in the fucose salvage pathway indicates that 2F‐Fuc must be converted to its cognate GDP nucleotide sugar in order to inhibit root growth. Chemical analysis of cell wall polysaccharides and glycoproteins demonstrated that fucosylation of xyloglucans and of N‐linked glycans is fully inhibited by 10 μm 2F‐Fuc in Arabidopsis seedling roots, but genetic evidence indicates that these alterations are not responsible for the inhibition of root development by 2F‐Fuc. Inhibition of fucosylation of cell wall polysaccharides also affected pectic rhamnogalacturonan‐II (RG‐II). At low concentrations, 2F‐Fuc induced a decrease in RG‐II dimerization. Both RG‐II dimerization and root growth were partially restored in 2F‐Fuc‐treated seedlings by addition of boric acid, suggesting that the growth phenotype caused by 2F‐Fuc was due to a deficiency of RG‐II dimerization. Closer investigation of the 2F‐Fuc‐induced growth phenotype demonstrated that cell division is not affected by 2F‐Fuc treatments. In contrast, the inhibitor suppressed elongation of root cells and promoted the emergence of adventitious roots. This study further emphasizes the importance of RG‐II in cell elongation and the utility of glycosyltransferase inhibitors as new tools for studying the functions of cell wall polysaccharides in plant development. Moreover, supplementation experiments with borate suggest that the function of boron in plants might not be restricted to RG‐II cross‐linking, but that it might also be a signal molecule in the cell wall integrity‐sensing mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号