首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that immunization of C57BL/6 mice, prone to spontaneous development of experimental autoimmune encephalomyelitis (EAE), with three antigens (MOG35-55, DNA-histone complex or DNA-methylated BSA complex), alters the differentiation profiles of bone marrow haematopoietic stem cells (HSCs). These are associated with the production of autoantibodies (auto-Abs) against these antigens and the formation of abzymes hydrolysing DNA, MOG, myelin basic protein (MBP) and histones. Immunization of mice with antigens accelerates the development of EAE. This work is the first to analyse the ratio of auto-Abs without and with catalytic activities at different stages of EAE development (onset, acute and remission phases) after immunization of mice with the three specific antigens. Prior to immunization and during spontaneous in-time development of EAE, the concentration of auto-Abs against MBP, MOG, histones and DNA and activities of IgG antibodies in the hydrolysis of substrates increased in parallel; correlation coefficients = +0.69-0.94. After immunization with MOG, DNA-histone complex or DNA-met-BSA complex, both positive (from +0.13 to +0.98) and negative correlations (from −0.09 to −0.69) were found between these values. Our study is the first showing that depending on the antigen, the relative amount of harmful auto-Abs without and abzymes with low or high catalytic activities may be produced only at onset and in acute or remission phases of EAE. The antigen governs the EAE development rate, whereby the ratio of auto-Abs without catalytic activity and with enzymatic activities of harmful abzymes hydrolysing MBP, MOG, histones and DNA varies strongly between different disease phases.  相似文献   

2.
Myelin oligodendrocyte glycoprotein (MOG) is an antigen of the myelin sheath, which may trigger immune cell responses and the production of auto‐antibodies in multiple sclerosis (MS). In this study, we used MOG35‐55‐induced experimental autoimmune encephalomyelitis (EAE), a model of human MS, to assess the production of catalytically active immunoglobulin G (IgG) antibodies or abzymes which have been shown to be present in sera of patients with several autoimmune diseases. Here, we show that IgGs from the sera of control C57BL/6 mice are catalytically inactive. During development of EAE, a specific reorganization of the immune system of mice occurred leading to a condition which was associated with the generation of catalytically active IgGs hydrolysing DNA, myelin basic protein (MBP) and MOG which was associated with increased proteinuria, changes in differentiation of mice bone marrow hematopoietic stem cells (HSCs) and an increase in proliferation of lymphocytes in bone marrow, spleen and thymus as well as a significant suppression of cell apoptosis in these organs. The strongest alterations were found in the early disease phase (18–24 days after immunization) and were less pronounced in later EAE stages (40 days after EAE induction). We conclude that a significant increase in DNase and proteolytic activities of antibodies may be considered the earliest statistically significant marker of MOG‐induced EAE in mice. The possible differences in immune system reorganizations during preclinical phases of the disease, acute and late EAE, leading to production of different auto‐antibodies and abzymes as well other changes are discussed.  相似文献   

3.
4.
C57BL/6 mice immunized with the extracellular Ig-like domain of rat myelin oligodendrocyte glycoprotein (MOG) developed experimental autoimmune encephalomyelitis (EAE) resembling that induced by rodent MOG 35-55 in its B cell independence and predominantly mononuclear CNS infiltrate. In contrast, human MOG protein-induced EAE was B cell dependent with polymorphonuclear leukocytes. Human MOG differs from rat MOG at several residues, including a proline for serine substitution at position 42. Human MOG 35-55 was only weakly encephalitogenic, and a proline substitution in rat MOG at position 42 severely attenuated its encephalitogenicity. However, human MOG 35-55 was immunogenic, inducing proliferation and IFN-gamma and IL-13 to human, but not rodent MOG 35-55 [corrected]. The B cell dependence of EAE induced by human MOG protein was not due to a requirement for Ag presentation by B cells, because spleen cells from B cell-deficient mice processed and presented human and rat MOG proteins to T cells. The different pathogenic mechanisms of human and rat MOG proteins might result from different Abs induced by these proteins. However, rat and human MOG proteins induced Abs to mouse MOG that were equivalent in titer and IgG subclass. These data demonstrate that EAE can be induced in C57BL/6 mice by two mechanisms, depending on the nature of the immunogen: an encephalitogenic T cell response to rat MOG or rodent MOG 35-55, or an encephalitogenic B cell response to epitopes on human MOG protein that most likely cross-react with mouse determinants.  相似文献   

5.
It was shown that IgGs from the sera of 2-7-month-old control non-autoimmune (CBA x C57BL)F1 and BALB/c mice and 2-3-month-old autoimmune prone MRL-lpr/lpr mice (conditionally healthy mice) are catalytically inactive. During spontaneous development of deep systemic lupus erythematosus (SLE)-like pathology a specific reorganization of immune system of these mice leads to conditions associated with a production of IgGs hydrolyzing DNA, ATP and polysaccharides with low catalytic activities (conditionally pre-diseased mice).A significant increase in DNase, ATPase and amylase IgG relative activities associated with a transition from pre-diseased to deep diseased mice is correlated with additional changes in differentiation and proliferation of mice bone marrow haematopoietic stem cells (HSCs) and lymphocyte proliferation in different organs.The highest increase in all abzyme activities was found in mice immunized with DNA, which in comparison with pre-diseased and diseased mice are characterized by a different profile of HSC differentiation and by a suppression of cell apoptosis. Abzyme activities in the serum of pregnant females were comparable with those for pre-diseased mice, but the profile of HSC differentiation and cell apoptosis levels in pregnant and pre-diseased mice were quite different. Right after the beginning of lactation (4 days after delivery) and in a late time of lactation (14 days after delivery) there was an observed increase in cell apoptosis and two different stages of significant change in the HSC differentiation profiles; the first stage was accompanied with a significant increase and the second with a remarkable decrease in abzyme activities. Overall, all mouse groups investigated are characterized by a specific relationship between abzyme activities, HSC differentiation profiles, levels of lymphocyte proliferation, and cell apoptosis in different organs. From our point of view, the appearance of ATPase, DNase activities may be considered the earliest statistically significant marker of mouse spontaneous SLE and a further significant increase in their activities correlates with the appearance of SLE visible markers and with an increase in concentrations of anti-DNA Abs and urine protein. However, development of autoimmune (AI)-reactions and the increase in the sera anti-DNA antibodies (Abs) and in the abzyme activities in pregnant and lactating mice do not associate with SLE visible markers and proteinuria. The possible differences in immune system reorganizations during pre-disease, disease, pregnancy and lactation leading to production of different auto-antibodies and abzymes are discussed.  相似文献   

6.
Literature data suggest possible link between influenza vaccination and development of autoimmune processes. Therefore, the aim of the study was to investigate the effect of influenza vaccination on spatial learning in mice with experimental autoimmune encephalomyelitis (EAE). EAE was induced in eight-week-old C57BL/6J female mice by subcutaneous immunization (MOG35–55 in complete Freund’s adjuvant) and Pertussis vaccine injected intraperitoneally. Mice were vaccinated with influenza vaccine three days before MOG immunization. The hippocampal-dependent spatial learning test, Morris Water Maze test (MWM), was performed before and after EAE induction. Significant difference (P < 0.05) in the time for completing the Morris Water Maze task was found between mice with mild clinical signs of EAE when compared to other mice. However no significant difference was observed between mice with EAE and mice with EAE that were vaccinated with influenza vaccine. Hippocampal tissue lesions in EAE mice are in correlation with memory impairment. Study shows no influence of influenza vaccine on progression of clinical signs of EAE, spatial learning and memory impairment.  相似文献   

7.
目的:研究组织型纤溶酶原激活剂(t-PA)对实验性自身免疫性脑脊髓炎(EAE)小鼠病理性淋巴细胞与血脑屏障粘附的影 响。方法:用MOG35-55 肽段免疫C57BL/6小鼠建立EAE 动物模型,于发病高峰期取淋巴细胞用MOG35-55 肽段进行刺激得到 抗原特异性T淋巴细胞。通过尾静脉给予t-PA 的方法对EAE 小鼠进行干预,临床评分评价小鼠的发病情况。体外培养小鼠血脑 屏障内皮细胞系bEnd.3,应用不同浓度的t-PA 进行处理。用荧光标记MOG35-55 特异性T 细胞进行细胞粘附实验,用Transwell 小室建立体外血脑屏障模型进行细胞迁移实验。用免疫荧光化学方法检测ICAM-1 的表达情况。结果:t-PA处理可以使血脑屏障 内皮细胞与T 淋巴细胞粘附和迁移作用增强。在体外细胞培养模型中检测到t-PA诱导ICAM-1 表达升高。经过t-PA 处理的小 鼠,其血管内皮表面ICAM-1 的表达也有所上升。经t-PA 处理的EAE 小鼠发病高峰提前,症状加重。结论:t-PA 处理可以使EAE 病理性淋巴细胞与血脑屏障内皮的粘附性增加,浸润能力增强;t-PA 所引起的粘附性增加可能与bEnd.3 表面ICAM-1表达升高 有关。  相似文献   

8.
The complement system is known to contribute to demyelination in multiple sclerosis and experimental autoimmune encephalomyelitis. However, there are few data concerning the natural adjuvant effect of C3d on the humoral response when it binds to myelin Ags. This study addresses the effect of C3d binding to the myelin oligodendrocyte glycoprotein (MOG) in the induction of experimental autoimmune encephalomyelitis in C57BL/6J mice. Immunization with human MOG coupled to C3d was found to accelerate the appearance of clinical signs of the disease and to enhance its severity compared with MOG-immunized mice. This finding was correlated with an increased infiltration of leukocytes into the central nervous system accompanied by increased complement activation and associated with areas of demyelination and axonal loss. Furthermore, B cell participation in the pathogenesis of the disease was determined by their increased capacity to act as APCs and to form germinal centers. Consistent with this, the production of MOG-specific Abs was found to be enhanced following MOG/C3d immunization. These results suggest that binding of C3d to self-Ags could increase the severity of an autoimmune disease by enhancing the adaptive autoimmune response.  相似文献   

9.
The immunomodulatory and anti-inflammatory properties of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been considered as an appropriate candidate for treatment of autoimmune diseases. Previous studies have revealed that treatment with BM-MSCs may modulate immune responses and alleviate the symptoms in experimental autoimmune encephalomyelitis (EAE) mice, an animal model of multiple sclerosis. Therefore, the present study was designed to examine immunomodulatory effects of BM-MSCs in the treatment of myelin oligodendrocyte glycoprotein (MOG) 35-55-induced EAE in C57BL/6 mice. MSCs were obtained from the bone marrow of C57BL mice, cultured with DMEM/F12, and characterized with flow cytometry for the presence of cell surface markers for BM-MSCs. Following three passages, BM-MSCs were injected intraperitoneally into EAE mice alone or in combination with rapamycin. Immunological and histopathological effects of BM-MSCs and addition of rapamycin to BM-MSCs were evaluated. The results demonstrated that adding rapamycin to BM-MSCs transplantation in EAE mice significantly reduced inflammation infiltration and demyelination, enhanced the immunomodulatory functions, and inhibited progress of neurological impairments compared to BM-MSC transplantation and control groups. The immunological effects of rapamycin and BM-MSC treatments were associated with the inhibition of the Ag-specific lymphocyte proliferation, CD8+ cytolytic activity, and the Th1-type cytokine (gamma-interferon (IFN-γ)) and the increase of Th-2 cytokine (interleukin-4 (IL-4) and IL-10) production. Addition of rapamycin to BM-MSCs was able to ameliorate neurological deficits and provide neuroprotective effects in EAE. This suggests the potential of rapamycin and BM-MSC combined therapy to play neuroprotective roles in the treatment of neuroinflammatory disorders.  相似文献   

10.
Experimental autoimmune encephalomyelitis (EAE) is an animal model to study multiple sclerosis (MS). Considering the tolerogenic effects of active vitamin D, we evaluated the therapeutic effect of myelin oligodendrocyte glycoprotein (MOG) associated with active vitamin D in EAE development. EAE was induced in female C57BL/6 mice by immunization with MOG emulsified with Complete Freund’s Adjuvant plus Mycobacterium tuberculosis. Animals also received two intraperitoneal doses of Bordetella pertussis toxin. One day after immunization, mice were treated with 0,1μg of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) every other day during 15 days (on days 1, 3, 5, 7, 9, 11, 13 and 15). MOG (150μg) was co-administered on days 3 and 11. The administration of 1,25(OH) 2D3 or MOG determined significant reduction in EAE incidence and in clinical scores. When MOG was associated with 1,25(OH) 2D3 the animals did not develop EAE. Spleen and central nervous system (CNS) cell cultures from this group produced less IL-6 and IL-17 upon stimulation with MOG in comparison to the EAE control group. In addition, this treatment inhibited dendritic cells maturation in the spleen and reduced inflammatory infiltration in the CNS. The association of MOG with 1,25(OH) 2D3 was able to control EAE development.  相似文献   

11.
The exclusive detrimental role of proinflammatory cytokines in demyelinating diseases of the CNS, such as multiple sclerosis, is controversial. Here we show that the intrathecal delivery of an HSV-1-derived vector engineered with the mouse IFN-gamma gene leads to persistent (up to 4 wk) CNS production of IFN-gamma and inhibits the course of a chronic-progressive form of experimental autoimmune encephalomyelitis (EAE) induced in C57BL/6 mice by myelin oligodendrocyte glycoprotein (MOG)(35-55). Mice treated with the IFN-gamma-containing vector before EAE onset showed an earlier onset but a milder course of the disease compared with control mice treated with the empty vector. In addition, 83% of IFN-gamma-treated mice completely recovered within 25 days post immunization, whereas control mice did not recover up to 60 days post immunization. Mice treated with the IFN-gamma-containing vector within 1 wk after EAE onset partially recovered from the disease within 25 days after vector injection, whereas control mice worsened. Recovery from EAE in mice treated with IFN-gamma was associated with a significant increase of CNS-infiltrating lymphocytes undergoing apoptosis. During the recovery phase, the mRNA level of TNFR1 was also significantly increased in CNS-infiltrating cells from IFN-gamma-treated mice compared with controls. Our results further challenge the exclusive detrimental role of IFN-gamma in the CNS during EAE/multiple sclerosis, and indicate that CNS-confined inflammation may induce protective immunological countermechanisms leading to a faster clearance of encephalitogenic T cells by apoptosis, thus restoring the immune privilege of the CNS.  相似文献   

12.
The role of pathologic auto‐antibodies against myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis is a highly controversial matter. As the use of animal models may enable to unravel the molecular mechanisms of the human disorder, numerous studies on multiple sclerosis are carried out using experimental autoimmune encephalomyelitis (EAE). In particular, the most extensively used EAE model is obtained by immunizing C57BL/6 mice with the immunodominant peptide MOG(35–55). In this scenario, we analyzed the anti‐MOG antibody response in this model using the recombinant refolded extracellular domain of the protein, MOG(1–117). To assess the presence of a B‐cell intramolecular epitope spreading mechanism, we tested also five synthetic peptides mapping the 1–117 sequence of MOG, including MOG(35–55). For this purpose, we cloned, expressed in Escherichia coli and on‐column refolded MOG(1–117), and we applied an optimized microwave‐assisted solid‐phase synthetic strategy to obtain the designed peptide sequences. Subsequently, we set up a solid‐phase immunoenzymatic assay testing both naïve and EAE mice sera and using MOG protein and peptides as antigenic probes. The results obtained disclose an intense IgG antibody response against both the recombinant protein and the immunizing peptide, while no response was observed against the other synthetic fragments, thus excluding the presence of an intramolecular epitope spreading mechanism. Furthermore, as the properly refolded recombinant probe is able to bind antibodies with greater efficiency compared with MOG(35–55), we hypothesize the presence of both linear and conformational epitopes on MOG(35–55) sequence. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
目的探讨C57BL/6J小鼠建立实验性自身免疫性脑脊髓炎(EAE)模型的可能性及其发病特点。方法使用PLP139-151抗原及其C57BL/6J小鼠自制脑脊髓匀浆(spinal cord homogenate,SCH)免疫C57BL/6J小鼠,使用完全福(氏)免疫佐剂为免疫佐剂,并在尾静脉注射百日咳杆菌,建立EAE模型,与经典的PLP139-151免疫的SJL/J小鼠EAE模型进行对比。结果PLP139-151免疫C57BL/6J小鼠仅有一只小鼠表现为尾部张力明显降低;自制SCH免疫C57BL/6J小鼠可见明显脱髓鞘改变。与PLP139-151免疫SJL/J小鼠组相比发病率较低(P〈0.05),神经功能评分比较没有明显差异(P〉0.05),但发病时间长于PLP139-151免疫SJL/J小鼠组(P〈0.05)。结论SCH免疫C57BL/6J小鼠的EAE动物模型,主要表现为急性单相病程,从临床表现和病理学特点来看符合人类MS的病理特点,值得在以后的研究中进一步研究探讨。  相似文献   

14.
Relative DNase, RNase (efficiency of hydrolysis of ribo- and deoxyribooligonucleotides (ON)), and phosphatase (removal of the ON 5′ terminal phosphate) catalytic activities of antibodies (AB) obtained after rabbit immunization by DNA, DNase I, and DNase II were compared. It is shown that electrophoretically homogeneous preparations of polyclonal AB from non-immunized rabbits did not exhibit such activities. Immunization of rabbits by DNA, DNase I, and DNase II results in generation of IgG abzymes that exhibit high activity in the ON hydrolysis reaction and even higher activity in cleavage of 5′ terminal phosphate of ON. In this case K m values for supercoiled plasmid DNA and ON found in reactions of their AB-dependent nuclease hydrolysis and phosphatase cleavage of 5′ terminal phosphate differ by 2–4 orders of magnitude. This shows that nuclease and phosphatase activities belong to different abzyme fractions within polyclonal AB. Thus, in this work data indicative of the possibility of a formation of antibodies exhibiting phosphatase activity after immunization of animals with DNA, DNase I, and DNase II, were obtained for the first time. Possible reasons for production of AB with phosphatase activity after immunization of rabbits with these immunogens are discussed.  相似文献   

15.
目的比较不同剂量髓鞘少突胶质细胞糖蛋白(myelin oligodendrocyte glycoprotein,MOG35-55)免疫诱导C57BL/6小鼠实验性自身免疫性脑脊髓炎(experimental autoimmune encephalomyelitis,EAE)的作用。方法将C57BL/6小鼠分为正常组和三组不同剂量MOG35-55诱导的EAE模型组,共4组。模型组分别以每只200、100、50μg的MOG35-55与完全弗氏佐剂(complete Freund s adjuvant,CFA)混合的乳化抗原皮下注射免疫诱导EAE模型,正常组以生理盐水替代。观察不同剂量MOG35-55对C57BL/6小鼠体重、发病率以及神经功能评分等影响,同时取小鼠脑和脊髓,利用光镜和透射电镜观察小鼠病理组织学改变。结果三组不同剂量MOG35-55均能诱导EAE模型,发病率为100%,呈慢性单相病程,病理学观察发现小鼠脑和脊髓有炎性细胞浸润、脱髓鞘及轴突损伤等改变。但小剂量组在体重减轻、临床症状评分及病理学改变等方面均较中、大剂量组明显。结论用MOG35-5550μg剂量免疫诱导的C57BL/6小鼠EAE模型稳定,可在今后的研究中应用。  相似文献   

16.
Experimental autoimmune encephalomyelitis (EAE) is a widely used model of multiple sclerosis. In NOD mice, EAE develops as a relapsing-remitting disease that transitions to a chronic progressive disease, making the NOD model the only mouse model that recapitulates the full clinical disease course observed in most multiple sclerosis patients. We have generated a TCR transgenic mouse that expresses the α- and β-chains of a myelin oligodendrocyte glycoprotein (MOG) 35-55-reactive TCR (1C6) on the NOD background. 1C6 TCR transgenic mice spontaneously generate both CD4(+) and CD8(+) T cells that recognize MOG and produce proinflammatory cytokines, allowing for the first time to our knowledge the simultaneous examination of myelin-reactive CD4(+) and CD8(+) T cells in the same host. 1C6 CD8(+) T cells alone can induce optic neuritis and mild EAE with delayed onset; however, 1C6 CD4(+) T cells alone induce severe EAE and predominate in driving disease when both cell types are present. When 1C6 mice are crossed with mice bearing an IgH specific for MOG, the mice develop spontaneous EAE with high incidence, but surprisingly the disease pattern does not resemble the neuromyelitis optica-like disease observed in mice bearing CD4(+) T cells and B cells reactive to MOG on the C57BL/6 background. Collectively, our data show that although myelin-reactive CD8(+) T cells contribute to disease, disease is primarily driven by myelin-reactive CD4(+) T cells and that the coexistence of myelin-reactive T and B cells does not necessarily result in a distinct pathological phenotype.  相似文献   

17.
Experimental autoimmune encephalomyelitis (EAE) serves as a model for multiple sclerosis and is considered a CD4(+), Th1 cell-mediated autoimmune disease. IL-12 is a heterodimeric cytokine, composed of a p40 and a p35 subunit, which is thought to play an important role in the development of Th1 cells and can exacerbate EAE. We induced EAE with myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 (MOG(35-55)) in C57BL/6 mice and found that while IL-12p40-deficient (-/-) mice are resistant to EAE, IL-12p35(-/-) mice are susceptible. Typical spinal cord mononuclear cell infiltration and demyelination were observed in wild-type and IL-12p35(-/-) mice, whereas IL-12p40(-/-) mice had normal spinal cords. A Th1-type response to MOG(35-55) was observed in the draining lymph node and the spleen of wild-type mice. A weaker MOG(35-55)-specific Th1 response was observed in IL-12p35(-/-) mice, with lower production of IFN-gamma. By contrast, a Th2-type response to MOG(35-55) correlated with disease resistance in IL-12p40(-/-) mice. Production of TNF-alpha by microglia, CNS-infiltrating macrophages, and CD4(+) T cells was detected in wild-type and IL-12p35(-/-), but not in IL-12p40(-/-), mice. In addition, NO production was higher in IL-12p35(-/-) and wild-type mice than in IL-12p40(-/-) mice. These data demonstrate a redundancy of the IL-12 system in the induction of EAE and suggest that p40-related heterodimers, such as the recently cloned IL-23 (p40p19), may play an important role in disease pathogenesis.  相似文献   

18.

Exact mechanisms of autoimmune disease development are still yet unknown. However, it is known that the development of autoimmune diseases is associated with defects in the immune system, namely, the violation of the bone marrow hematopoietic stem cells (HSCs) differentiation profiles. Different characteristics of autoimmune reaction development in experimental autoimmune encephalomyelitis (EAE) prone Th mice characterizing T-lymphocytes response were analyzed using standard approaches. Profiles of several HSCs differentiation of bone marrow (BFU-E, CFU-E, CFU-GM, CFU-GEMM, T- and B-lymphocytes) of Th male and female mice during spontaneous development of EAE were noticeably different. Patterns of total lymphocytes, B- and T-cells proliferation in several different organs (bone marrow, blood, spleen, thymus, and lymph nodes) were also remarkably different. In addition, there were in time noticeable differences in their changes for some organs of male and female mice. Characters of changes in the profiles of CD4 and CD8 cells proliferation in some organs not always coincide with those for total T lymphocytes. The changes in the differentiation profiles of HSCs and the level of lymphocytes proliferation in the bone marrow and other organs were associated with the increase in the concentration of antibodies against DNA, myelin basic protein, and myelin oligodendrocyte glycoprotein, and catalytic antibodies hydrolyzing these substrates. Despite some differences in changes in the analyzed parameters, in general, the spontaneous development of EAE in male and female mice occurs to some extent in a comparable way.

  相似文献   

19.
Dendritic cells (DCs) are the most potent antigen-presenting cells (APC) of the immune system, and are critically involved in initiation of immune responses in autoimmune diseases. They can modulate the nature of immune responses to stimulatory or tolerogenic fashion. Previous studies have demonstrated that the administration route of DCs is an important variable in eliciting anti-tumor immunity. In this study we used experimental autoimmune encephalomyelitis (EAE) as an animal model of multiple sclerosis to compare different protocols of DC delivery in autoimmunity or tolerance induction. Dendritic cells were generated from bone marrow cells of C57BL/6 mice by culturing in the presence of GM-CSF and IL-4 for 7 days, followed by 2 days culture with TNF-alpha. The obtained DCs were pulsed in vitro with myelin oligodendrocyte glycoprotein (MOG) peptide and injected (5 x 10(5) cells/mouse) via the intravenous (i.v.), intraperitoneal (i.p.) or subcutaneous (s.c.) route into female C57BL/6 mice. In some instances pertussis toxin was also injected zero and 48 hours after DC injection. After follow up of the mice pretreated in this way for 4 weeks, in the i.v. group in which no clinical signs of EAE occurred, the mice were immunized with MOG peptide for EAE induction via the common method and the results were compared with mice that were not pre-immunized. Only after three s.c. DC injections with pertussis toxin, the mice showed mild clinical signs of EAE, whereas mice given i.v. or i.p. injections with or without pertussis toxin failed to develop EAE after 4 weeks. Induction of EAE via the common method after three injections of TNF-alpha treated DCs, in i.v. injected groups showed no protection from EAE. It seems that several factors influence the tolerance versus immunity induction by DCs. Our results showed that the administration route of DCs is one of the pivotal factors in DC-based induction of autoimmune diseases.  相似文献   

20.
We demonstrate the absolute requirement for a functioning class II-restricted Ag processing pathway in the CNS for the initiation of experimental autoimmune encephalomyelitis (EAE). C57BL/6 (B6) mice deficient for the class II transactivator, which have defects in MHC class II, invariant chain (Ii), and H-2M (DM) expression, are resistant to initiation of myelin oligodendrocyte protein (MOG) peptide, MOG(35-55)-specific EAE by both priming and adoptive transfer of encephalitogenic T cells. However, class II transactivator-deficient mice can prime a suboptimal myelin-specific CD4(+) Th1 response. Further, B6 mice individually deficient for Ii and DM are also resistant to initiation of both active and adoptive EAE. Although both Ii-deficient and DM-deficient APCs can present MOG peptide to CD4(+) T cells, neither is capable of processing and presenting the encephalitogenic peptide of intact MOG protein. This phenotype is not Ag-specific, as DM- and Ii-deficient mice are also resistant to initiation of EAE by proteolipid protein peptide PLP(178-191). Remarkably, DM-deficient mice can prime a potent peripheral Th1 response to MOG(35-55), comparable to the response seen in wild-type mice, yet maintain resistance to EAE initiation. Most striking is the demonstration that T cells from MOG(35-55)-primed DM knockout mice can adoptively transfer EAE to wild-type, but not DM-deficient, mice. Together, these data demonstrate that the inability to process antigenic peptide from intact myelin protein results in resistance to EAE and that de novo processing and presentation of myelin Ags in the CNS is absolutely required for the initiation of autoimmune demyelinating disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号