首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Recent studies have suggested that platelet‐rich plasma (PRP) injections are an effective way to retard intervertebral disc degeneration, but the mechanism of action is unclear. Activated platelets release some growth factors, such as transforming growth factor‐β1 (TGF‐β1), which positively modulate the extracellular matrix of nucleus pulposus cells. The purpose of this study was to explore the mechanism underlying the PRP‐mediated inhibition of intervertebral disc degeneration. In an in vitro study, we found that the proliferation of nucleus pulposus cells was greatly enhanced with 2.5% PRP treatment. The TGF‐β1 concentration was much higher after PRP treatment. PRP administration effectively increased the collagen II, aggrecan and sox‐9 mRNA levels and decreased collagen X levels. However, Western blotting demonstrated that specifically inhibiting TGF‐β1 signalling could significantly prevent nucleus pulpous cellular expression of Smad2/3 and matrix protein. In a rabbit study, magnetic resonance imaging revealed significant recovery signal intensity in the intervertebral discs of the PRP injection group compared with the very low signal intensity in the control groups. Histologically, the PRP plus inhibitor injection group had significantly lower expression levels of Smad2/3 and collagen II than the PRP group. These results demonstrated that a high TGF‐β1 content in the platelets retarded disc degeneration in vitro and in vivo. Inhibiting the TGF‐β1/Smad2/3 pathway could prevent this recovery by inactivating Smad2/3 and down‐regulating the extracellular matrix. Therefore, the TGF‐β1/Smad2/3 pathway might play a critical role in the ability of PRP to retard intervertebral disc degeneration.  相似文献   

6.
The study was aimed to investigate the mechanism and administration timing of bone marrow‐derived mesenchymal stem cells (BMSCs) in bleomycin (BLM)‐induced pulmonary fibrosis mice. Thirty‐six mice were divided into six groups: control group (saline), model group (intratracheal administration of BLM), day 1, day 3 and day 6 BMSCs treatment groups and hormone group (hydrocortisone after BLM treatment). BMSCs treatment groups received BMSCs at day 1, 3 or 6 following BLM treatment, respectively. Haematoxylin and eosin and Masson staining were conducted to measure lung injury and fibrosis, respectively. Matrix metalloproteinase (MMP9), tissue inhibitor of metalloproteinase‐1 (TIMP‐1), γ‐interferon (INF‐γ) and transforming growth factor β1 (TGF‐β) were detected in both lung tissue and serum. Histologically, the model group had pronounced lung injury, increased inflammatory cells and collagenous fibres and up‐regulated MMP9, TIMP‐1, INF‐γ and TGF‐β compared with control group. The histological appearance of lung inflammation and fibrosis and elevation of these parameters were inhibited in BMSCs treatment groups, among which, day 3 and day 6 treatment groups had less inflammatory cells and collagenous fibres than day 1 treatment group. BMSCs might suppress lung fibrosis and inflammation through down‐regulating MMP9, TIMP‐1, INF‐γ and TGF‐β. Delayed BMSCs treatment might exhibit a better therapeutic effect. Copyright © 2015 John Wiley & Sons, Ltd. Highlights are as follows:
    相似文献   

7.
8.
Herein, we hypothesized that pro‐osteogenic MicroRNAs (miRs) could play functional roles in the calcification of the aortic valve and aimed to explore the functional role of miR‐29b in the osteoblastic differentiation of human aortic valve interstitial cells (hAVICs) and the underlying molecular mechanism. Osteoblastic differentiation of hAVICs isolated from human calcific aortic valve leaflets obtained intraoperatively was induced with an osteogenic medium. Alizarin red S staining was used to evaluate calcium deposition. The protein levels of osteogenic markers and other proteins were evaluated using western blotting and/or immunofluorescence while qRT‐PCR was applied for miR and mRNA determination. Bioinformatics and luciferase reporter assay were used to identify the possible interaction between miR‐29b and TGF‐β3. Calcium deposition and the number of calcification nodules were pointedly and progressively increased in hAVICs during osteogenic differentiation. The levels of osteogenic and calcification markers were equally increased, thus confirming the mineralization of hAVICs. The expression of miR‐29b was significantly increased during osteoblastic differentiation. Furthermore, the osteoblastic differentiation of hAVICs was significantly inhibited by the miR‐29b inhibition. TGF‐β3 was markedly downregulated while Smad3, Runx2, wnt3, and β‐catenin were significantly upregulated during osteogenic induction at both the mRNA and protein levels. These effects were systematically induced by miR‐29b overexpression while the inhibition of miR‐29b showed the inverse trends. Moreover, TGF‐β3 was a direct target of miR‐29b. Inhibition of miR‐29b hinders valvular calcification through the upregulation of the TGF‐β3 via inhibition of wnt/β‐catenin and RUNX2/Smad3 signaling pathways.  相似文献   

9.
Endothelial‐mesenchymal transition (EndMT) plays a pivotal role in organ fibrosis. This study examined the effect of SIRT1 on transforming growth factor beta (TGF‐β)‐induced EndMT in human endothelial cells (ECs) and its probable molecular mechanism. We assessed EndMT by immunofluorescence staining, quantitative real‐time polymerase chain reaction, Western blotting, and migration and invasion assays. Adenovirus was used to overexpress or knockdown SIRT1 in ECs. The regulatory relationship between SIRT1 and Smad4 was analyzed by coimmunoprecipitation assay. We found that SIRT1 was decreased in TGF‐β‐induced EndMT, and SIRT1 inhibited TGF‐β‐induced EndMT through deacetylating Smad4. Our findings suggest that SIRT1 has an important role in inhibiting EndMT by regulating the TGF‐β/Smad4 pathway in human ECs and, thus, protecting against fibrosis.  相似文献   

10.
Troxerutin, a natural flavonoid guards against oxidative stress and apoptosis with a high capability of passing through the blood‐brain barrier. Our aim was to investigate the role of troxerutin in experimentally induced retinal neurodegeneration by modulating the interferon‐gamma (IFNγ)‐extracellular signal‐regulated kinases 1/2 (ERK1/2)‐CCAAT enhancer‐binding protein β (C/EBP‐β) signaling pathway. Three groups of rats (10 each group) were included. Group I (control group), group II (rotenone treated group): the rats were injected subcutaneously with a single rotenone dosage of 3 mg/kg repeated every 48 hours for 60 days to trigger retinal neurodegeneration. Group III (troxerutin‐treated group): rats received troxerutin (150 mg/kg/day) by oral gavage 1 hour before rotenone administration. A real‐time polymerase chain reaction technique was applied to measure messenger RNA (mRNA) levels of retinal C/EBP‐β. Enzyme‐linked immunosorbent assay technique was utilized to assay tumor necrosis factor‐α (TNF‐α), IFNγ, and ERK1/2 levels. Finally, reactive oxygen species (ROS), as well as carbonylated protein (CP) levels, were assessed spectrophotometrically. Improved retinal neurodegeneration by downregulation of C/EBP‐β mRNA gene expression, also caused a significant reduction of TNF‐α, IFNγ, ERK1/2 as well as ROS and CP levels compared with the diseased group. These findings could hold promise for the usage of troxerutin as a protective agent against rotenone‐induced retinal neurodegeneration.  相似文献   

11.
Fibrosis in animal models and human diseases is associated with aberrant activation of the Wnt/β‐catenin pathway. Despite extensive research efforts, effective therapies are still not available. Myofibroblasts are major effectors, responsible for extracellular matrix deposition. Inhibiting the proliferation of the myofibroblast is crucial for treatment of fibrosis. Proliferation of myofibroblasts can have many triggering effects that result in fibrosis. In recent years, the Wnt pathway has been studied as an underlying factor as a primary contributor to fibrotic diseases. These efforts notwithstanding, the specific mechanisms by which Wnt‐mediated promotes fibrosis reaction remain obscure. The central role of the transforming growth factor‐β (TGF‐β) and myofibroblast activity in the pathogenesis of fibrosis has become generally accepted. The details of interaction between these two processes are not obvious. The present investigation was conducted to evaluate the level of sustained expression of fibrosis iconic proteins (vimentin, α‐SMA and collagen I) and the TGF‐β signalling pathway that include smad2/3 and its phosphorylated form p‐smad2/3. Detailed analysis of the possible molecular mechanisms mediated by β‐catenin revealed epithelial–mesenchymal transition and additionally demonstrated transitions of fibroblasts to myofibroblast cell forms, along with increased activity of β‐catenin in regulation of the signalling network, which acts to counteract autocrine TGF‐β/smad2/3 signalling. A major outcome of this study is improved insight into the mechanisms by which epithelial and mesenchymal cells activated by TGFβ1‐smad2/3 signalling through Wnt/β‐catenin contribute to lung fibrosis.  相似文献   

12.
Acetyl‐11‐keto‐β‐boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia‐induced HK‐2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO‐induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF‐β1, α‐SMA, collagen I and collagen IV in UUO kidneys. In hypoxia‐induced HK‐2 cells, AKBA displayed remarkable cell protective effects and anti‐fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK‐2 cells, AKBA markedly down‐regulated the expression of TGFβ‐RI, TGFβ‐RII, phosphorylated‐Smad2/3 (p‐Smad2/3) and Smad4 in a dose‐dependent fashion while up‐regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF‐β/Smad signalling were reversed by transfecting with siRNA‐Klotho in HK‐2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF‐β/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.  相似文献   

13.
Obstructive nephropathy is the end result of a variety of diseases that block drainage from the kidney(s). Transforming growth factor‐β1 (TGF‐β1)/Smad3‐driven renal fibrosis is the common pathogenesis of obstructive nephropathy. In this study, we identified petchiether A (petA), a novel small‐molecule meroterpenoid from Ganoderma, as a potential inhibitor of TGF‐β1‐induced Smad3 phosphorylation. The obstructive nephropathy was induced by unilateral ureteral obstruction (UUO) in mice. Mice received an intraperitoneal injection of petA/vehicle before and after UUO or sham operation. An in vivo study revealed that petA protected against renal inflammation and fibrosis by reducing the infiltration of macrophages, inhibiting the expression of proinflammatory cytokines (interleukin‐1β and tumour necrosis factor‐α) and reducing extracellular matrix deposition (α‐smooth muscle actin, collagen I and fibronectin) in the obstructed kidney of UUO mice; these changes were associated with suppression of Smad3 and NF‐κB p65 phosphorylation. Petchiether A inhibited Smad3 phosphorylation in vitro and down‐regulated the expression of the fibrotic marker collagen I in TGF‐β1‐treated renal epithelial cells. Further, we found that petA dose‐dependently suppressed Smad3‐responsive promoter activity, indicating that petA inhibits gene expression downstream of the TGF‐β/Smad3 signalling pathway. In conclusion, our findings suggest that petA protects against renal inflammation and fibrosis by selectively inhibiting TGF‐β/Smad3 signalling.  相似文献   

14.
15.
16.
Recent evidence suggests that adventitial fibroblasts (AFs) are crucially implicated in atherosclerosis. However, the mechanisms by which AFs are dysfunctional and contribute to atherosclerosis remain unclear. This study aimed to investigate the role of regulator of G‐protein signalling 3 (RGS3) in the regulation of AFs using apoE knockout mouse as the model. Pathological changes in aortic arteries of apoE knockout mice fed with hyperlipid diet were examined by Movat staining. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in the adventitia was detected by immunohistochemistry. Adventitial fibroblasts were isolated from aortic arteries of apoE knockout mice and infected with RGS3 overexpression lentivirus or empty lentivirus. The expression of RGS3, α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs was detected by real‐time polymerase chain reaction and Western blot analysis. We found that hyperlipidic diet caused significant aortic intima thickening and atherosclerotic plaques in 15‐week‐old apoE knockout mice. Compared to wild‐type mice, RGS3 expression was lower while α‐SMA, TGF‐β1, Smad2, and Smad3 expression was higher in the adventitia of apoE knockout mice. In addition, lentivirus mediated overexpression of RGS3 caused decreased expression of α‐SMA, TGF‐β1, Smad2, and Smad3 in AFs derived from apoE(?/?) mice. In conclusion, these results suggest that RGS3 may provide protection against pathological changes of AFs and the development of atherosclerosis by inhibiting TGF‐β1/Smad signalling. RGS3 may be a potential therapeutic target for atherosclerosis.  相似文献   

17.
18.
19.
The enzyme chondroitin polymerizing factor (ChPF) is primarily involved in extension of the chondroitin sulfate backbone required for the synthesis of sulfated glycosaminoglycan (sGAG). Transforming growth factor beta (TGF‐β) upregulates sGAG synthesis in nucleus pulposus cells; however, the mechanisms mediating this induction are incompletely understood. Our study demonstrated that ChPF expression was negatively correlated with the grade of degenerative intervertebral disc disease. Treatment of nucleus pulposus cells with TGF‐β induced ChPF expression and enhanced Smad2/3, RhoA/ROCK activation, and the JNK, p38, and ERK1/2 MAPK signaling pathways. Selective inhibitors of Smad2/3, RhoA or ROCK1/2, and knockdown of Smad3 and ROCK1 attenuated ChPF expression and sGAG synthesis induced by TGF‐β. In addition, we showed that RhoA/ROCK1 signaling upregulated ChPF via activation of the JNK pathway but not the p38 and ERK1/2 signaling pathways. Moreover, inhibitors of JNK, p38 and ERK1/2 activity also blocked ChPF expression and sGAG synthesis induced by TGF‐β in a Smad3‐independent manner. Collectively, our data suggest that TGF‐β stimulated the expression of ChPF and sGAG synthesis in nucleus pulposus cells through Smad3, RhoA/ROCK1 and the three MAPK signaling pathways. J. Cell. Biochem. 119: 566–579, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
High‐mobility group box 1 (HMGB1) has been reported to attenuate ventricular remodeling, but its mechanism remains mostly unresolved. Transforming growth factor‐beta (TGF‐β) is a crucial mediator in the pathogenesis of post‐infarction remodeling. Our study focused on the effects of HMGB1 on ventricular remodeling, and explored whether or not these effects were depended upon the TGF‐β signaling pathway. Rats underwent coronary artery ligation. An intramyocardium injection of phosphate buffered saline (PBS) with or without HMGB1 was administered 3 weeks after myocardial infarction (MI). At 4 weeks after the treatment, HMGB1 significantly increased the left ventricular ejection fraction (LVEF) (P < 0.05), decreased the left ventricular end diastolic dimension (LVEDD; P < 0.05), left ventricular end systolic dimension (LVESD) (P < 0.05) and the infarct size (P < 0.05) compared with control group. The expressions of collagen I, collagen III, and tissue inhibitor of metalloproteinase 2 (TIMP2) were also decreased, while the matrix metalloproteinases 2 (MMP2) and MMP9 expressions were upregulated by HMGB1 injection (P < 0.05) compared with control group. No effect on TIMP3 was observed. Furthermore, TGF‐β1 and phosphor‐Smad2 (p‐Smad2) were significantly suppressed and Smad7 was increased in HMGB1‐treated group (P < 0.05) compared with control group, no effects on p‐Smad3 and p‐p38 were observed. HMGB1 also upregulated Smad 7 expression and decreased the level of collagen I on cardiac fibroblasts (P < 0.05). Silencing of Smad7 gene by small interfering RNA abolished the fibrogenic effects of HMGB1 on cardiac fibroblasts (P < 0.05). These finding suggested that HMGB1 injection modulated ventricular remodeling may function through the possible inhibition of TGF‐β/Smad signaling pathway. J. Cell. Biochem. 114: 1634–1641, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号