首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
After spinal cord injury (SCI), disruption of blood–spinal cord barrier (BSCB) elicits blood cell infiltration such as neutrophils and macrophages, contributing to permanent neurological disability. Previous studies show that epidermal growth factor (EGF) produces potent neuroprotective effects in SCI models. However, little is known that whether EGF contributes to the integrity of BSCB. The present study is performed to explore the mechanism of BSCB permeability changes which are induced by EGF treatment after SCI in rats. In this study, we demonstrate that EGF administration inhibits the disruption of BSCB permeability and improves the locomotor activity in SCI model rats. Inhibition of the PI3K/Akt pathways by a specific inhibitor, LY294002, suppresses EGF‐induced Rac1 activation as well as tight junction (TJ) and adherens junction (AJ) expression. Furthermore, the protective effect of EGF on BSCB is related to the activation of Rac1 both in vivo and in vitro. Blockade of Rac1 activation with Rac1 siRNA downregulates EGF‐induced TJ and AJ proteins expression in endothelial cells. Taken together, our results indicate that EGF treatment preserves BSCB integrity and improves functional recovery after SCI via PI3K‐Akt‐Rac1 signalling pathway.  相似文献   

2.
Blood–spinal cord barrier (BSCB) disruption following spinal cord injury (SCI) significantly compromises functional neuronal recovery. Autophagy is a potential therapeutic target when seeking to protect the BSCB. We explored the effects of lithium chloride (LiCl) on BSCB permeability and autophagy-induced SCI both in a rat model of SCI and in endothelial cells subjected to oxygen–glucose deprivation. We evaluated BSCB status using the Evans Blue dye extravasation test and measurement of tight junction (TJ) protein levels; we also assessed functional locomotor recovery. We detected autophagy-associated proteins in vivo and in vitro using both Western blotting and immunofluorescence staining. We found that, in a rat model of SCI, LiCl attenuated the elevation in BSCB permeability, improved locomotor recovery, and inhibited the degradation of TJ proteins including occludin and claudin-5. LiCl significantly induced the extent of autophagic flux after SCI by increasing LC3-II and ATG-5 levels, and abolishing p62 accumulation. In addition, a combination of LiCl and the autophagy inhibitor chloroquine not only partially eliminated the BSCB-protective effect of LiCl, but also exacerbated TJ protein degradation both in vivo and in vitro. Together, these findings suggest that LiCl treatment alleviates BSCB disruption and promotes locomotor recovery after SCI, partly by stimulating autophagic flux.  相似文献   

3.
Spinal cord injury (SCI) induces the disruption of the blood-spinal cord barrier (BSCB) which leads to infiltration of blood cells, an inflammatory response, and neuronal cell death, resulting spinal cord secondary damage. Retinoic acid (RA) has a neuroprotective effect in both ischemic brain injury and SCI, however the relationship between BSCB disruption and RA in SCI is still unclear. In this study, we demonstrated that autophagy and ER stress are involved in the protective effect of RA on the BSCB. RA attenuated BSCB permeability and decreased the loss of tight junction (TJ) molecules such as P120, β-catenin, Occludin and Claudin5 after injury in vivo as well as in Brain Microvascular Endothelial Cells (BMECs). Moreover, RA administration improved functional recovery in the rat model of SCI. RA inhibited the expression of CHOP and caspase-12 by induction of autophagic flux. However, RA had no significant effect on protein expression of GRP78 and PDI. Furthermore, combining RA with the autophagy inhibitor chloroquine (CQ) partially abolished its protective effect on the BSCB via exacerbated ER stress and subsequent loss of tight junctions. Taken together, the neuroprotective role of RA in recovery from SCI is related to prevention of of BSCB disruption via the activation of autophagic flux and the inhibition of ER stress-induced cell apoptosis. These findings lay the groundwork for future translational studies of RA for CNS diseases, especially those related to BSCB disruption.  相似文献   

4.
We have previously reported neuroprotection in spinal cord injury (SCI) by Lipitor [atorvastatin (AT)]-pre-treatment. Though informative, pre-treatment studies find only limited clinical application as trauma occurrence is unpredictable. Therefore, this study investigates the efficacy of AT treatment post-SCI. In a rat model of contusion-SCI resulting in complete hindlimb paralysis, AT treatment (5 mg/kg; gavage) was begun 2, 4, or 6 h post-SCI followed by a once daily dose thereafter for 6 weeks. While the placebo vehicle (VHC)-SCI rats showed substantial functional deficit, AT-SCI animals exhibited significant functional recovery. AT diminished injury-induced blood-spinal cord barrier (BSCB) dysfunction with significantly reduced infiltration and tumor necrosis factor-alpha/interleukin-1beta/inducible nitric oxide synthase expression at site of injury. BSCB protection in AT-SCI was attributable to attenuated matrix metalloproteinase-9 (MMP9) expression - a central player in BSCB disruption. Furthermore, endothelial MMP9 expression was found to be RhoA/ROCK pathway-mediated and regulated by AT through an isoprenoid-dependent mechanism. Attenuation of these early inflammatory events reduced secondary damage. Significant reduction in axonal degeneration, myelin degradation, gliosis, and neuronal apoptosis with resultant enhancement in tissue sparing was observed in AT-SCI compared with VHC-SCI. In summary, this novel report presenting the efficacy of post-injury AT treatment might be of critical therapeutic value as effective treatments are currently unavailable for SCI.  相似文献   

5.
In this study, we examined the neuroprotective effects and anti‐inflammatory properties of Dl‐3‐n‐butylphthalide (NBP) in Sprague‐Dawley (SD) rats following traumatic spinal cord injury (SCI) as well as microglia activation and inflammatory response both in vivo and in vitro. Our results showed that NBP improved the locomotor recovery of SD rats after SCI an significantly diminished the lesion cavity area of the spinal cord, apoptotic activity in neurons, and the number of TUNEL‐positive cells at 7 days post‐injury. NBP inhibited activation of microglia, diminished the release of inflammatory mediators, and reduced the upregulation of microglial TLR4/NF‐κB expression at 1 day post‐injury. In a co‐culture system with BV‐2 cells and PC12 cells, NBP significantly reduced the cytotoxicity of BV‐2 cells following lipopolysaccharide (LPS) stimulation. In addition, NBP reduced the activation of BV‐2 cells, diminished the release of inflammatory mediators, and inhibited microglial TLR4/NF‐κB expression in BV‐2 cells. Our findings demonstrate that NBP may have neuroprotective and anti‐inflammatory properties in the treatment of SCI by inhibiting the activation of microglia via TLR4/NF‐κB signalling.  相似文献   

6.
Spinal cord injury (SCI) is a severe neurological disease; however, few drugs have been proved to treat SCI effectively. Neuroinflammation is the major pathogenesis of SCI secondary injury and considered to be the therapeutic target of SCI. Salidroside (Sal) has been reported to exert anti‐inflammatory effects in airway, adipose and myocardial tissue; however, the role of Sal in SCI therapeutics has not been clarified. In this study, we showed that Sal could improve the functional recovery of spinal cord in rats as revealed by increased BBB locomotor rating scale, angle of incline, and decreased cavity of spinal cord injury and apoptosis of neurons in vivo. Immunofluorescence double staining of microglia marker and M1/M2 marker demonstrated that Sal could suppress M1 microglia polarization and activate M2 microglia polarization in vivo. To verify how Sal exerts its effects on microglia polarization and neuron protection, we performed the mechanism study in vitro in microglia cell line BV‐2 and neuron cell line PC12. The results showed that Sal prevents apoptosis of PC12 cells in coculture with LPS‐induced M1 BV‐2 microglia, also the inflammatory secretion phenotype of M1 BV‐2 microglia was suppressed by Sal, and further studies demonstrated that autophagic flux regulation through AMPK/mTOR pathway was involved in Sal regulated microglia polarization after SCI. Overall, our study illustrated that Sal could promote spinal cord injury functional recovery in rats, and the mechanism may relate to its microglia polarization modulation through AMPK‐/mTOR‐mediated autophagic flux stimulation.  相似文献   

7.
Treatment for spinal cord injury (SCI) remains a challenge worldwide, and inflammation is a major cause of secondary injury after SCI. Peripheral macrophages (PMs) have been verified as a key factor that exert anti-inflammatory effects after SCI, but the mechanism is unidentified. As local macrophages, microglia also exert significant effects after SCI, especially polarization. Exosomes show source cell-like biological functions to target cells and have been the subject of much research in recent years. Thus, we hypothesized the PM-derived exosomes (PM-Exos) play an important role in signal transmission with local microglia and can be used therapeutic agents for SCI in a series of in vivo and in vitro studies. For the in vivo experiment, three groups of Sprague-Dawley (SD) rats subjected to spinal cord contusion injury were injected with 200 µg/ml PM-Exos, 20 µg/ml PM-Exos or PBS via the tail vein. Recovery of the rats and of spinal cord function were observed. In vitro, we investigated the potential anti-inflammatory mechanism of PM-Exos and evaluated microglial autophagy, anti-inflammatory type microglia polarization and the upstream signaling pathway. The results showed that spinal cord function and recovery were better in the PM-Exo groups than the control group. In the in vitro study, microglial autophagy levels and the expression of anti-inflammatory type microglia were higher in the experimental groups than the control group. Moreover, the expression of proteins related to the PI3K/AKT/mTOR autophagic signaling pathway was suppressed in the PM-Exo groups. PM-Exos have a beneficial effect in SCI, and activation of microglial autophagy via inhibition of the PI3K/AKT/mTOR signaling pathway, enhancing the polarization of anti-inflammatory type microglia, that may play a major role in the anti-inflammatory process.  相似文献   

8.
Baicalin had neuroprotective effects on inhibiting neuronal cell apoptosis induced by spinal cord ischemic injury. This study aimed to explore the protective effects of Baicalin on rats with spinal cord injury (SCI) and its mechanism of action. The recovery of spinal cord nerve function in rats was evaluated by the Basso, Beattie, and Bresnahan (BBB) score and the combine behavioral score (CBS). The expressions of cytokines tumor necrosis factor α (TNF‐α), interleukin‐1β (IL‐1β), and IL‐6 were detected by the enzyme‐linked immunosorbent assay method. Expressions of inflammation‐related proteins were detected by Western blot. Multivariate statistical analysis was performed for serum metabolites. The BBB and CBS score results showed that Baicalin had a certain improvement on rats with SCI. SCI symptoms were significantly improved in low‐dose and high‐dose groups. The levels of TNF‐α, IL‐1β, and IL‐6 in the SCI group were significantly increased. The expressions of NF‐κB p65, NF‐κB p50, p‐IκBα, and IKKα in the SCI group showed the opposite trend compared with the low‐dose and high‐dose groups. Compared with the sham group, glutamine, levels of 3‐OH‐butyrate, N‐acetylaspartate, and glutathione were significantly reduced, and the levels of glutamate and betaine were significantly increased in the SCI group. When Baicalin was administered, the contents of glutamine synthase (GS) and glutaminase (GLS) were significantly reduced, indicating that Baicalin had the effect of improving GS and GLS. Baicalin has protective effects on improving SCI and lower extremity motor function, has a significant anti‐inflammatory effect, and regulates the serum metabolic disorder caused by SCI in rats.  相似文献   

9.
Acute inflammation is a prominent feature of central nervous system (CNS) insult and is detrimental to the CNS tissue. Although this reaction spontaneously diminishes within a short period of time, the mechanism underlying this inflammatory resolution remains largely unknown. In this study, we demonstrated that an initial infiltration of Ly6C+Ly6G? immature monocyte fraction exhibited the same characteristics as myeloid‐derived suppressor cells (MDSCs), and played a critical role in the resolution of acute inflammation and in the subsequent tissue repair by using mice spinal cord injury (SCI) model. Complete depletion of Ly6C+Ly6G? fraction prior to injury by anti‐Gr‐1 antibody (clone: RB6‐8C5) treatment significantly exacerbated tissue edema, vessel permeability, and hemorrhage, causing impaired neurological outcomes. Functional recovery was barely impaired when infiltration was allowed for the initial 24 h after injury, suggesting that MDSC infiltration at an early phase is critical to improve the neurological outcome. Moreover, intraspinal transplantation of ex vivo‐generated MDSCs at sites of SCI significantly reduced inflammation and promoted tissue regeneration, resulting in better functional recovery. Our findings reveal the crucial role of an Ly6C+Ly6G? fraction as MDSCs in regulating inflammation and tissue repair after SCI, and also suggests an MDSC‐based strategy that can be applied to acute inflammatory diseases.  相似文献   

10.
Tamoxifen has been found to be neuroprotective in both transient and permanent experimental ischemic stroke. However, it remains unknown whether this agent shows a similar beneficial effect after spinal cord injury (SCI), and what are its underlying mechanisms. In this study, we investigated the efficacy of tamoxifen treatment in attenuating SCI-induced pathology. Blood–spinal cord barrier (BSCB) permeability, tissue edema formation, microglial activation, neuronal cell death and myelin loss were determined in rats subjected to spinal cord contusion. The results showed that tamoxifen, administered at 30 min post-injury, significantly decreased interleukin-1β (IL-1β) production induced by microglial activation, alleviated the amount of Evans blue leakage and edema formation. In addition, tamoxifen treatment clearly reduced the number of apoptotic neurons post-SCI. The myelin loss and the increase in production of myelin-associated axonal growth inhibitors were also found to be significantly attenuated at day 3 post-injury. Furthermore, rats treated with tamoxifen scored much higher on the locomotor rating scale after SCI than did vehicle-treated rats, suggesting improved functional outcome after SCI. Together, these results demonstrate that tamoxifen provides neuroprotective effects for treatment of SCI-related pathology and disability, and is therefore a potential neuroprotectant for human spinal cord injury therapy.  相似文献   

11.
Acute spinal cord injury (SCI) has become epidemic in modern society. Despite advances made in the understanding of the pathogenesis and improvements in early recognition and treatment, it remains a devastating event, often producing severe and permanent disability. SCI has two phases: acute and secondary. Although the acute phase is marked by severe local and systemic events such as tissue contusion, ischaemia, haemorrhage and vascular damage, the outcome of SCI are mainly influenced by the secondary phase. SCI causes inflammatory responses through the activation of innate immune responses that contribute to secondary injury, in which polarization‐based macrophage activation is a hallmarker. Macrophages accumulated within the epicentre and the haematoma of the injured spinal cord play a significant role in this inflammation. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. When it comes to therapies for SCI, very few can be performed in the acute phase. However, as macrophage activation and polarization switch are exquisitely sensitive to changes in microenvironment, some trials have been conducted to modulate macrophage polarization towards benefiting the recovery of SCI. Given this, it is important to understand how macrophages and SCI interrelate and interact on a molecular pathophysiological level. This review provides a comprehensive overview of the immuno‐pathophysiological features of acute SCI mainly from the following perspectives: (i) the overview of the pathophysiology of acute SCI, (ii) the roles of macrophage, especially its polarization switch in acute SCI, and (iii) newly developed neuroprotective therapies modulating macrophage polarization in acute SCI.  相似文献   

12.
Stem cell transplantation represents a promising strategy for the repair of spinal cord injury (SCI). However, the low survival rate of the grafted cells is a major obstacle hindering clinical success because of ongoing secondary injury processes, which includes excitotoxicity, inflammation and oxidative stress. Previous studies have shown that 17b‐estradiol (E2) protects several cell types against cytotoxicity. Thus, we examined the effects of E2 on the viability of human eyelid adipose‐derived stem cells (hEASCs) in vitro with hydrogen peroxide (H2O2)‐induced cell model and in vivo within a rat SCI model. Our results showed that E2 protected hEASCs against H2O2‐induced cell death in vitro, and enhanced the survival of grafted hEASCs in vivo by reducing apoptosis. Additionally, E2 also enhanced the secretion of growth factors by hEASCs, thereby making the local microenvironment more conducive for tissue regeneration. Overall, E2 administration enhanced the therapeutic efficacy of hEASCs transplantation and facilitated motor function recovery after SCI. Hence, E2 administration may be an intervention of choice for enhancing survival of transplanted hEASCs after SCI.  相似文献   

13.
14.
VEGF165 Therapy Exacerbates Secondary Damage Following Spinal Cord Injury   总被引:1,自引:0,他引:1  
Vascular endothelial growth factor (VEGF) demonstrates potent and well-characterized effects on endothelial cytoprotection and angiogenesis. In an attempt to preserve spinal microvasculature and prolong the endogenous neovascular response observed transiently following experimental spinal cord injury (SCI), exogenous recombinant human VEGF (rhVEGF165) was injected into the injured rat spinal cord. Adult female Fischer 344 rats were subjected to moderate SCI (12.5 g-cm) using the NYU impactor. At 72 h after injury, animals were randomly assigned to three experimental groups receiving no microinjection or injection of saline or saline containing 2 g of rhVEGF165. Acutely, VEGF injection resulted in significant microvascular permeability and infiltration of leukocytes into spinal cord parenchyma. 6 weeks postinjection, no significant differences were observed in most measures of microvascular architecture following VEGF treatment, but analysis of histopathology in spinal cord tissue revealed profound exacerbation of lesion volume. These results support the idea that intraparenchymal application of the proangiogenic factor VEGF may exacerbate SCI, likely through its effect on vessel permeability.  相似文献   

15.
Previous studies on spinal cord injury (SCI) have confirmed that percutaneous photobiomodulation (PBM) therapy can ameliorate immunoinflammatory responses at sites of injury, accelerate nerve regeneration, suppress glial scar formation and promote the subsequent recovery of locomotor function. The current study was performed to evaluate a large‐animal model employing implanted optical fibers to accurately irradiate targeted spinal segments. The method's feasibility and irradiation parameters that do not cause phototoxic reaction were determined, and the methodology of irradiating the spinal cord with near‐infrared light was investigated in detail. A diffusing optical fiber was implanted above the T9 spinal cord of Bama miniature pigs and used to transfer near‐infrared light (810 nm) onto the spinal cord surface. After daily irradiation with 200, 300, 500 or 1000 mW for 14 days, both sides of the irradiated area of the spinal cord were assessed for temperature changes. The condition of the spinal cord and the position of optical fiber were investigated by magnetic resonance imaging (MRI), and different parameters indicating temperature increases or phototoxicity were measured on the normal spinal cord surface due to light irradiation (ie, heat shock responses, inflammatory reactions and neuronal apoptosis), and the animals' lower‐limb neurological function and gait were assessed during the irradiation process. The implanted device was stable inside the freely moving animals, and light energy could be directly projected onto the spinal cord surface. The screening of different irradiation parameters preliminary showed that direct irradiation onto the spinal cord surface at 200 and 300 mW did not significantly increase the temperature, stress responses, inflammatory reactions and neural apoptosis, whereas irradiation at 500 mW slightly increased these parameters, and irradiation at 1000 mW induced a significant temperature increase, heat shock, inflammation and apoptosis responses. HE staining of spinal cord tissue sections did not reveal any significant structural changes of the tissues compared to the control group, and the neurological function and gait of all irradiated animals were normal. In this study, we established an in‐vivo optical fiber implantation method, which might be safe and stable and could be used to directly project light energy onto the spinal cord surface. This study might provide a new perspective for clinical applications of PBM in acute SCI.  相似文献   

16.
We investigated the effect of triptolide (TP) on spinal cord injury (SCI), and its underlying mechanism. Following the establishment of the SCI model using YFP H‐line transgenic mice, TP was intraperitoneally injected at a dose of 0.2 mg/kg once daily for 7 days. Behavioral tests, Nissl staining, and hematoxylin–eosin staining were employed to assess motor function recovery and neuronal cell death. Western blot and immunofluorescence staining were used to assess autophagy‐associated proteins (LC3B, p62, Beclin‐1) and the apoptosis‐associated proteins (Bcl‐2, caspase‐3, Bax). The TP‐treated group showed improved motor functions, and reduced neuronal cell death. Also, significant upregulation of Bcl‐2 and LC3B expressions, with the downregulation of p62, Bax and caspase‐3 expressions were found in the TP‐treated group. Additionally, phosphorylation of extracellular signal‐regulated protein kinases 1 and 2 (ERK1 and ERK2) was decreased in the TP‐treated group. TP mediates its protective effect in SCI by promoting the autophagic pathway while inhibiting the MAPK/ERK1/2 signaling pathway. These results demonstrate the therapeutic potential of TP in SCI.  相似文献   

17.
Dexmedetomidine (Dex) has been proven to exert protective effects on multiple organs in response to ischaemia‐reperfusion injury, but the specific mechanism by which this occurs has not been fully elucidated. The purpose of this study was to investigate whether Dex attenuates spinal cord ischaemia‐reperfusion injury (SCIRI) by inhibiting endoplasmic reticulum stress (ERS). Our team established a model of SCIRI and utilized the endoplasmic reticulum agonist thapsigargin. Dex (25 g/kg) was intraperitoneally injected 30 minutes before spinal cord ischaemia. After 45 minutes of ischaemia, the spinal cord was reperfused for 24 hours. To evaluate the neuroprotective effect of Dex on SCIRI, neurological function scores were assessed in rats and apoptosis of spinal cord cells was determined by TUNEL staining. To determine whether the endoplasmic reticulum apoptosis pathway CNPY2‐PERK was involved in the neuroprotective mechanism of Dex, the expression levels of related proteins (CNPY2, GRP78, PERK, CHOP, caspase‐12, caspase‐9 and caspase‐3) were detected by western blot analysis and RT‐PCR. We observed that Dex significantly increased the neurological function scores after SCIRI and decreased apoptosis of spinal cord cells. The expression of ERS‐related apoptosis proteins was significantly increased by SCIRI but was significantly decreased in response to Dex administration. Taken together, the results of this study indicate that Dex may attenuate SCIRI by inhibiting the CNPY2‐ERS apoptotic pathway.  相似文献   

18.
The aim of the present study was to assess the effect of a metalloporphyrinic peroxynitrite decomposition catalyst, ww-85, in the pathophysiology of spinal cord injury (SCI) in mice. Spinal cord trauma was induced by the application of vascular clips to the dura via a four-level T5–T8 laminectomy. SCI in mice resulted in severe trauma characterized by oedema, neutrophil infiltration, production of inflammatory mediators, tissue damage and apoptosis. ww-85 treatment (30–300 µg/kg, i.p. 1 h after the SCI) significantly reduced in a dose-dependent manner: (1) the degree of spinal cord inflammation and tissue injury, (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation and PARP activation, (4) pro-inflammatory cytokines expression, (5) NF-κB activation and (6) apoptosis. Moreover, ww-85 significantly ameliorated the recovery of limb function (evaluated by motor recovery score) in a dose-dependent manner. The results demonstrate that ww-85 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.  相似文献   

19.
Traumatic spinal cord injury (SCI) is typically the result of direct mechanical impact to the spine, leading to fracture and/or dislocation of the vertebrae along with damage to the surrounding soft tissues. Injury to the spinal cord results in disruption of axonal transmission of signals. This primary trauma causes secondary injuries that produce immunological responses such as neuroinflammation, which perpetuates neurodegeneration and cytotoxicity within the injured spinal cord. To date there is no FDA-approved pharmacological agent to prevent the development of secondary SCI and induce regenerative processes aimed at healing the spinal cord and restoring neurological function. An alternative method to electrically activate spinal circuits is the application of a noninvasive electromagnetic field (EMF) over intact vertebrae. The EMF method of modulating molecular signaling of inflammatory cells emitted in the extra-low frequency range of <100 Hz, and field strengths of <5 mT, has been reported to decrease inflammatory markers in macrophages, and increase endogenous mesenchymal stem cell (MSC) proliferation and differentiation rates. EMF has been reported to promote osteogenesis by improving the effects of osteogenic media, and increasing the proliferation of osteoblasts, while inhibiting osteoclast formation and increasing bone matrix in vitro. EMF has also been shown to increase chondrogenic markers and collagen and induce neural differentiation, while increasing cell viability by over 50%. As advances are made in stem cell technologies, stabilizing the cell line after differentiation is crucial to SCI repair. Once cell-seeded scaffolds are implanted, EMF may be applied outside the wound for potential continued adjunct treatment during recovery.  相似文献   

20.
应用cDNA微阵列技术筛选大鼠脊髓损伤修复相关基因   总被引:2,自引:0,他引:2  
Xiao L  Ma ZL  Li X  Lin QX  Que HP  Liu SJ 《生理学报》2005,57(6):705-713
脊髓损伤是一类常见的、高致残率的中枢神经系统疾病,由于多种复杂因素影响其损伤后的修复过程,损伤脊髓的再生能力非常有限。本研究采用cDNA微阵列技术筛选大鼠脊髓损伤后出现的差异表达基因。实验组动物在T8-T9进行脊髓全横断手术,对照组动物只打开椎板;4.5d后取脊髓进行RNA提取并在反转录过程中进行Cy3/Cy5标记,然后与预制的、带有4041条特异性探针的芯片进行杂交。Cy5/Cy3信号比值≥2.0视为脊髓损伤后出现差异表达的基因。通过筛选,我们得到了65个上调表达基因(21个已知基因,30个已知EST和14个未知基因)和79个下调基因(20个已知基因,42个已知EST和17个未知基因)。进一步通过半定量RT-PCR对其中的5个上调已知基因(Timpl,Tagln,Vim,Fc gamma receptor,Ctss)和三个下调已知基因(stearyl-CoA desaturase,F2,Ensa)的表达情况进行了验证,结果显示与芯片结果一致。这些基因可能在脊髓损伤后的修复过程中起一定的作用,对其深入研究将有助于揭示脊髓损伤修复的分子机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号