首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aberrant microRNA expression is involved in the regulation of various cellular processes, such as proliferation and metastasis in multiple diseases including cancers. MicroRNA‐30e‐5p (miR‐30e) was previously reported as an oncogenic or tumour suppressing miRNA in some malignancies, but its function in lung adenocarcinoma (LAC) remains largely undefined. In this study, we found that the expression of miR‐30e was increased in LAC tissues and cell lines, associated with tumour size and represented an independent prognostic factor for overall survival and recurrence of LAC patients. Further functional experiments showed that knockdown of miR‐30e suppressed cell growth while its overexpression promoted growth of LAC cells and xenografts in vitro and in vivo. Mechanistically, PTPN13 was identified as the direct target of miR‐30e in LAC, in which PTPN13 expression was down‐regulated in LAC tissues and showed the inverse correlation with miR‐30e expression. Overexpression of PTPN13 inhibited cell growth and rescued the proliferation‐promoting effect of miR‐30e through inhibition of the EGFR signalling. Altogether, our findings suggest that miR‐30e could function as an oncogene in LAC via targeting PTPN13 and act as a potential therapeutic target for treating LAC.  相似文献   

2.
We aimed to explore the interaction among lncRNA MALAT1, miR‐129 and SOX2. Besides, we would investigate the effect of MALAT1 on the proliferation of glioma stem cells and glioma tumorigenesis. Differentially expressed lncRNAs in glioma cells and glioma stem cells were screened out with microarray analysis. The targeting relationship between miR‐129 and MALAT1 or SOX2 was validated by dual‐luciferase reporter assay. The expressions of MALAT1, miR‐129 and SOX2mRNA in both glioma non‐stem cells and glioma stem cells were examined by qRT‐PCR assay. The impact of MALAT1 and miR‐129 on glioma stem cell proliferation was observed by CCK‐8 assay, EdU assay and sphere formation assay. The protein expression of SOX2 was determined by western blot. The effects of MALAT1 and miR‐129 on glioma tumour growth were further confirmed using xenograft mouse model. The mRNA expression of MALAT1 was significantly up‐regulated in glioma stem cells compared with non‐stem cells, while miR‐129 was significantly down‐regulated in glioma stem cells. MALAT1 knockdown inhibited glioma stem cell proliferation via miR‐129 enhancement. Meanwhile, miR‐129 directly targeted at SOX2 and suppressed cell viability and proliferation of glioma stem cells by suppressing SOX2 expression. The down‐regulation of MALAT1 and miR‐129 overexpression both suppressed glioma tumour growth via SOX2 expression promotion in vivo. MALAT1 enhanced glioma stem cell viability and proliferation abilities and promoted glioma tumorigenesis through suppressing miR‐129 and facilitating SOX2 expressions.  相似文献   

3.
Accumulating evidence has shown that miR‐429 plays an important role in the development and progression of tumour. However, the role of miR‐429 in glioblastoma multiforme (GBM) remains largely unknown. The present study is designed to investigate the function of miR‐429 in GBM and to explore the molecular mechanism underlying its function. The expression level of miR‐429 was detected in GBM tissues and cell lines by quantitative real‐time polymerase chain reaction. The effect of overexpression of miR‐429 on in vitro cell proliferation, apoptosis and invasion was examined. Western blot analysis was used to detect the influence of miR‐429 on the expression of target gene, and Pearson analysis was used to calculate the correlation between the expression of targets gene and the miR‐429 in GBM tissues. Our study shows that miR‐429 is downregulated in GBM tissues compared with noncancerous tissues (P < .01). In addition, the expression of miR‐429 in GBM cell lines is also significantly lower (P < .01). Enforced expression of miR‐429 inhibits GBM cells proliferation, induces apoptosis and suppresses invasion and leads to the downregulation of the SOX2 protein. Moreover, the expression level of miR‐429 in GBM tissues shows inverse relationship with the expression level of SOX2 protein. Our findings suggest that miR‐429 represents a potential tumour‐suppressive miRNA and plays an important role in GBM progression by directly targeting SOX2.  相似文献   

4.
Osteosarcoma is the most common primary bone tumour in children and adolescents. Accumulating evidence has shown that microRNAs (miRNAs) participate in the development of almost all types of cancer. Here, we investigated the role of miR‐224 in the development and progression of osteosarcoma. We demonstrated that miR‐224 was down‐regulated in osteosarcoma cell lines and tissues. Lower miR‐224 levels were correlated with shorter survivalin osteosarcoma patients. Furthermore, overexpression of miR‐224 suppressed osteosarcoma cell proliferation, migration and invasion and contributed to the increased sensitivity of MG‐63 cells to cisplatin. We identified Rac1 as a direct target gene of miR‐224 in osteosarcoma. Rac1 expression was up‐regulated in the osteosarcoma cell lines and tissues, and there was an inverse correlation between Rac1 and miR‐224 expression in osteosarcoma tissues. Furthermore, rescuing Rac1 expression decreased the sensitivity of miR‐224‐overexpressing MG‐63 cells to cisplatin. We also demonstrated that ectopic expression of Rac1 promoted the proliferation, migration and invasion of miR‐224‐overexpressing MG‐63 cells. These data suggest that miR‐224 plays a tumour suppressor role in the development of osteosarcoma and is related to the sensitivity of osteosarcoma to cisplatin.  相似文献   

5.
MiR‐130b and SAM and SH3 domain containing 1 (SASH1) play an important role in many types of human cancers. The aim of our research was to study their interactions in the process of the proliferation and aggressiveness of oesophageal squamous cell carcinoma (ESCC) cells. Microarray analysis was done to screen the differentially expressed genes in the ESCC tissues. miR‐130b and SASH1 mRNA levels in the ESCC tissues and cells were detected by qRT‐PCR. Dual luciferase reporter system was used to verify the target relationship between miR‐130b and SASH1. The effects of miR‐130b on SASH1 expression were explored by western blot in KYSE30 and TE1 cell lines. CCK‐8 assay, flow cytometry, Transwell, and wound healing assays were conducted to explore the effects of miR‐130b and SASH1 in vitro. In addition, in vivo experiments were conducted to study the roles of miR‐130b and SASH1. miR‐130b was highly expressed, while SASH1 was the opposite in both the ESCC tissues and cells. The expression of SASH1 was inhibited by the direct binding of miR‐130b. The inhibition of miR‐130b reduced the proliferation and aggressiveness of ESCC cells, while it also induced apoptosis and cell cycle arrest in the ESCC cells by suppressing SASH1. The in vivo assay suggested that the overexpression of miR‐130b promoted the growth of ESCC tumours. MiR‐130b was up‐regulated in the ESCC tumour tissues and cells, acting as a tumour promoter. A stimulating effect was demonstrated on ESCC cell growth and aggressiveness by suppressing SASH1, which is an anti‐oncogene.  相似文献   

6.

Objectives

Long non‐coding RNA cancer susceptibility candidate 2 (CASC2) is a novel lncRNA and has been indicated as playing tumour suppressor gene in several tumours. However, the role of CASC2 in osteosarcoma is still uncovered.

Materials and methods

The CASC2 and miR‐181a expressions were measured via qRT‐PCR. CCK‐8 assay and colony formation assay were performed to determine the cell growth, and transwell assay was performed to assess the cell invasion.

Results

We showed that CASC2 expression was downregulated in osteosarcoma samples and cell lines. Moreover, we showed that downregulated expression of CASC2 was correlated with advanced TNM stage. Furthermore, overexpression of CASC2 inhibited osteosarcoma cell proliferation, colony formation, and invasion. In addition, we indicated that ectopic expression of CASC2 suppressed miR‐181a expression and enhanced the expression of Ras association domain family member 6 (RASSF6), PTEN and ATM in osteosarcoma cell, which were the direct target gene of miR‐181a. Moreover, we indicated that RASSF6 expression was downregulated in osteosarcoma samples and cell lines and downregulated expression of RASSF6 was correlated with advanced TNM stage. We found that the expression of RASSF6 was positively correlated with the expression of CASC2 in osteosarcoma tissues. Ectopic expression of CASC2 suppressed the osteosarcoma cell proliferation, colony formation and invasion through regulating RASSF6 expression.

Conclusions

Our data illuminated that CASC2 acted as a tumour suppressor in osteosarcoma progression.  相似文献   

7.
The roles of specific microRNAs (miRNA) in oligodendrocyte (OL) differentiation have been studied in depth. However, miRNAs in OL precursors and oligodendrocyte progenitor cells (OPCs) have been less extensively investigated. MiR‐145‐5p is highly expressed in OPCs relative to differentiating OLs, suggesting this miRNA may serve a function specifically in OPCs. Knockdown of miR‐145‐5p in primary OPCs led to spontaneous differentiation, as evidenced by an increased proportion of MAG+ cells, increased cell ramification, and upregulation of multiple myelin genes including MYRF, TPPP, and MAG, and OL cell cycle exit marker Cdkn1c. Supporting this transition to a differentiating state, proliferation was reduced in miR‐145‐5p knockdown OPCs. Further, knockdown of miR‐145‐5p in differentiating OLs showed enhanced differentiation, with increased branching, myelin membrane production, and myelin gene expression. We identified several OL‐specific genes targeted by miR‐145‐5p that exhibited upregulation with miR‐145‐5p knockdown, including myelin gene regulatory factor (MYRF), that could be regulating the prodifferentiation phenotype in both miR‐145 knockdown OPCs and OLs. Indeed, spontaneous differentiation with knockdown of miR‐145‐5p was fully rescued by concurrent knockdown of MYRF. However, proliferation rate was only partially rescued with MYRF knockdown, and overexpression of miR‐145‐5p in OPCs increased proliferation rate without affecting expression of already lowly expressed differentiation genes. Taken together, these data suggest that in OPCs miR‐145‐5p both prevents differentiation at least in part by preventing expression of MYRF and promotes proliferation via as‐yet‐unidentified mechanisms. These findings clarify the need for differential regulation of miR‐145‐5p between OPCs and OLs and may have further implications in demyelinating diseases such as multiple sclerosis where miR‐145‐5p is dysregulated.  相似文献   

8.
Background information. miRNAs (microRNAs) are a class of non‐coding RNAs that inhibit gene expression by binding to recognition elements, mainly in the 3′ UTR (untranslated region) of mRNA. A single miRNA can target several hundred mRNAs, leading to a complex metabolic network. miR‐16 (miRNA‐16), located on chromosome 13q14, is involved in cell proliferation and apoptosis regulation; it may interfere with either oncogenic or tumour suppressor pathways, and is implicated in leukaemogenesis. These data prompted us to search for and validate novel targets of miR‐16. Results. In the present study, by using a combined bioinformatics and molecular approach, we identified two novel putative targets of miR‐16, caprin‐1 (cytoplasmic activation/proliferation‐associated protein‐1) and HMGA1 (high‐mobility group A1), and we also studied cyclin E which had been previously recognized as an miR‐16 target by bioinformatics database. Using luciferase activity assays, we demonstrated that miR‐16 interacts with the 3′ UTR of the three target mRNAs. We showed that miR‐16, in MCF‐7 and HeLa cell lines, down‐regulates the expression of caprin‐1, HMGA1a, HMGA1b and cyclin E at the protein level, and of cyclin E, HMGA1a and HMGA1b at the mRNA levels. Conclusions. Taken together, our data demonstrated that miR‐16 can negatively regulate two new targets, HMGA1 and caprin‐1, which are involved in cell proliferation. In addition, we also showed that the inhibition of cyclin E expression was due, at least in part, to a decrease in its mRNA stability.  相似文献   

9.
10.
In mammals, birth entails complex metabolic adjustments essential for neonatal survival. Using a mouse knockout model, we identify crucial biological roles for the miR‐379/miR‐410 cluster within the imprinted Dlk1‐Dio3 region during this metabolic transition. The miR‐379/miR‐410 locus, also named C14MC in humans, is the largest known placental mammal‐specific miRNA cluster, whose 39 miRNA genes are expressed only from the maternal allele. We found that heterozygote pups with a maternal—but not paternal—deletion of the miRNA cluster display partially penetrant neonatal lethality with defects in the maintenance of energy homeostasis. This maladaptive metabolic response is caused, at least in part, by profound changes in the activation of the neonatal hepatic gene expression program, pointing to as yet unidentified regulatory pathways that govern this crucial metabolic transition in the newborn's liver. Not only does our study highlight the physiological importance of miRNA genes that recently evolved in placental mammal lineages but it also unveils additional layers of RNA‐mediated gene regulation at the Dlk1‐Dio3 domain that impose parent‐of‐origin effects on metabolic control at birth and have likely contributed to mammal evolution.  相似文献   

11.
12.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

13.
14.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

15.
Our goal was to explore the function of miR‐552 and its potential target AJAP1 in hepatocellular carcinoma (HCC) oncogenesis and progression. In this study, bioinformatics analysis was performed to detect abnormally expressed miRNAs. The relationship between miR‐552 and AJAP1 was validated using luciferase reporter assays. RT‐qPCR and Western blot assays were applied to explore the expression level of miR‐552, AJAP1 and epithelial‐mesenchymal transition (EMT) markers. HCC cell proliferation was examined using CCK8 assays, while migration and invasion were investigated using Transwell assays. Nude mouse tumourigenesis models were established to facilitate observation of HCC progression in vivo. Finally, prognostic analysis was performed to discover how the prognosis of HCC patients correlated with miR‐552 and AJAP1 expression. MiR‐552 overexpression in HCC cells promoted HCC cell migration, invasion and EMT by targeting/suppressing AJAP1. Poorer prognosis appeared in HCC patients with higher miR‐552 expression or lower AJAP1 levels. Our findings suggested that miR‐552 promotes HCC oncogenesis and progression by inhibiting AJAP1 expression.  相似文献   

16.
Increasingly recognized importance has been assumed for microRNA (miRNA) in the regulation of the delicate balance of gene expression. In our study, we aimed to explore the regulation role of miR181c towards Six2 in metanephric mesenchyme (MM) cells. Bioinformatics analysis, luciferase assay and semi‐quantitative real‐time (RT) PCR, subsequently RT PCR, Western blotting, 5‐ethynyl‐2′‐deoxyuridine cell proliferation assay, Cell Counting Kit‐8 assay, immunofluorescence and flow cytometry, were employed to verify the modulation function of miR181c on Six2 in the mK3 MM cell line that is one kind of MM cells. miR181c was predicted to bind the 3′ untranslated region of Six2 by bioinformatics analysis, which was subsequently validated by the in vitro luciferase reporter assay. Moreover, transfection of miR181c mimic can decrease the expression of Six2 both in mRNA and protein levels in mK3 cells. Still, ectopic expression of miR181c inhibits the proliferation, promotes the apoptosis and even makes the nephron progenitor phenotype lose mK3 cells. These results revealed the ability of a single miRNA–miR181c to downregulate the expression of Six2, restrain the proliferation and promote the apoptosis that even makes the nephron progenitor phenotype lose MM cells, suggesting a potential role of miR181c during the kidney development. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.

Objectives

Hypermethylation‐induced epigenetic silencing of tumour suppressor genes (TSGs) are frequent events during carcinogenesis. MicroRNA‐142 (miR‐142) is found to be dysregulated in cancer patients to participate into tumour growth, metastasis and angiogenesis. However, the tumour suppressive role of miR‐142 and the status of methylation are not fully understood in hepatocellular carcinoma (HCC).

Methods

Hepatocellular carcinoma tissues and corresponding non‐neoplastic tissues were collected. The expression and function of miR‐142 and TGF‐β in two HCC cell lines were determined. The miRNA‐mRNA network of miR‐142 was analysed in HCC cell lines.

Results

We found that the miR‐142 expression was reduced in tumour tissues and two HCC cell lines HepG2 and SMMC7721, which correlated to higher TNM stage, metastasis and differentiation. Moreover, miR‐142 was identified to directly target and inhibit transforming growth factor β (TGF‐β), leading to decreased cell vitality, proliferation, EMT and the ability of pro‐angiogenesis in TGF‐β‐dependent manner. Interestingly, the status of methylation of miR‐142 was analysed and the results found the hypermethylated miR‐142 in tumour patients and cell lines. The treatment of methylation inhibitor 5‐Aza could restore the expression of miR‐142 to suppress the TGF‐β expression, which impaired TGF‐β‐induced tumour growth.

Conclusion

These findings implicated that miR‐142 was a tumour suppressor gene in HCC and often hyermethylated to increase TGF‐β‐induced development of hepatocellular carcinoma.
  相似文献   

18.
19.
We aimed to explore the mechanism of the KCNQ1OT1/miR‐760/PPP1R1B axis acting to regulate methotrexate (MTX) resistance of colorectal cancer (CRC). Differentially expressed mRNAs and lncRNAs in MTX‐sensitive CRC cell lines and MTX‐resistant cell lines were determined through microarray analysis. Application of bioinformatics analysis was aimed to uncover the relationships among the lncRNAs/miRNAs/mRNAs, and to demonstrate the effects of cAMP signalling pathway in MTX‐resistant CRC. The expression level of RNA and proteins was, respectively, detected using qRT‐PCR and Western blot assays, whereas the dual‐luciferase reporter gene assay was implemented to verify the targeted relationship. The influence of the lncRNA/miRNA/mRNA axis on biological functions of MTX‐resistant cells and on the growth of tumours determined through both vitro and vivo experiments. LncRNA KCNQ1OT1 and PPP1R1B mRNA were overexpressed in MTX‐resistant CRC tumour cells. KCNQ1OT1 functioned as a sponge of miR‐760, which targeted PPP1R1B. Knockdown of KCNQ1OT1 enhanced chemosensitivity towards MTX through the sponging of miR‐760. MiR‐760 expressed at low levels targeted PPP1R1B in the activated cAMP signalling pathway under MTX treatment. Knockdown of KCNQ1OT1 dampened the proliferation of MTX‐resistant (HT29/MTX) cells by regulating the miR‐760/PPP1R1B axis, which also induced cell cycle arrest together with apoptosis. KCNQ1OT1 regulated the expression of PPP1R1B and the downstream genes CREB and CBP in the cAMP signalling pathway. MTX showed a suppressive function on CRC progression. KCNQ1OT1 enhanced the MTX resistance of CRC cells by regulating miR‐760‐mediated PPP1R1B expression via the cAMP signalling pathway.  相似文献   

20.

Objectives

Chordoma is a rare malignant bone tumour arising from notochordal remnants. Long non‐coding RNA LOC554202, as the host gene of miR‐31, contributes to various cancer developments. However, little is known about the biological function of LOC554202 in chordoma. Here, the relationship between LncRNA LOC554202, miR‐31 and EZH2 was elucidated in chordoma.

Materials and methods

The levels of LOC554402, miR‐31, EZH2, RNF144B, and epithelial‐mesenchymal transition (EMT) markers were measured in chordoma tissues and the chordoma cell lines via quantitative real‐time PCR (qRT‐PCR) or Western blot. FISH assay demonstrated the LOC554402 expression in chordoma tissues. The chordoma cell lines, U‐CH1 and JHC7, were transfected with siRNA or miRNA mimics and analysed for cell proliferation ability, apoptosis, cell migration, and invasion. RNA pull down, RIP assay, and Luciferase Reporter Assay were used to analyze the interaction between LOC554202 and EZH2. Animal tumour xenografts were generated, and qRT‐PCR was performed to investigate EZH2, miR‐31, and RNB144B expression on tumour growth in vivo.

Results

We found elevated expression of LOC554202 was associated with a decreased level of miR‐31 in cancer tissues. Knockdown of LOC554202 or overexpression of miR‐31 suppressed the proliferation, migration, and invasion of chordoma cells. Unexpectedly, EZH2 as a binding protein of LOC554202, and it was positively regulated by LOC554202, leading to the reduced expression of miR‐31. Furthermore, the impaired function of miR‐31 restored expression of the oncogene RNF144B and maintained the metastasis‐promoting activity in vitro. The results in vivo confirmed the anti‐tumour effects of knockdown of LOC554202, which inhibited EZH2/miR‐31 to activate the oncogene RNF144B.

Conclusion

Our results suggest that LOC554202 may play an important role in the progression of chordoma by the direct upregulation of EZH2 and indirect promotion of RNF144B via miR‐31.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号